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ABSTRACT

Organizations like the Internet Archive have been capturing
Web contents over decades, building up huge repositories of
time-versioned pages. The timestamp annotations and the
sheer volume of multi-modal content constitutes a gold mine
for analysts of all sorts, across different application areas,
from political analysts and marketing agencies to academic
researchers and product developers. In contrast to traditional
data analytics on click logs, the focus is on longitudinal stud-
ies over very long horizons. This longitudinal aspect affects
and concerns all data and metadata, from the content itself,
to the indices and the statistical metadata maintained for it.
Moreover, advanced analysts prefer to deal with semantically
rich entities like people, places, organizations, and ideally
relationships such as company acquisitions, instead of, say,
Web pages containing such references. For example, tracking
and analyzing a politician’s public appearances over a decade
is much harder than mining frequently used query words or
frequently clicked URLs for the last month. The huge size of
Web archives adds to the complexity of this daunting task.
This paper discusses key challenges, that we intend to take
up, which are posed by this kind of longitudinal analytics:
time-travel indexing and querying, entity detection and track-
ing along the time axis, algorithms for advanced analyses
and knowledge discovery, and scalability and platform issues.

1. MOTIVATION

Big-data analytics for the Web of the Future - Web 2.0 (com-
munities, their behavior, etc.) and Web 3.0 (semantic anno-
tations, linkeddata.org, etc.) - has been a hot topic for some
time. However, the Web of the Past is an equally important
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topic for both academics and real-life applications. Academ-
ically, longitudinal data analytics is even more challenging
and has not received due attention. The sheer size and con-
tent of such web archives lends itself to wide applicability
for analysts in a great number of different domains.

National libraries and organizations like the Internet Archive
(archive.org) and its European sibling (internetmemory.org)
have been capturing Web contents over decades. These
archives host a wealth of information, providing a gold mine
for sociological, political, business, and media analysts. For
example, one could track and analyze public statements made
by representatives of companies such as Google or Tandem
Computers, characterizing the evolution of patterns in their
attitude towards energy efficiency. Another example could
be tracking, over a long time horizon, a politician’s public
appearances: which cities has she/he visited, which other
politicians or business leaders has she/he met, and so on.
Analyses of this kind could also be carried out on large news
archives, but this can be seen as variant of Web archive ana-
lytics; moreoever, the Web (and especially the recent Web
2.0) has a wider variety of coverage, potentially leading to
the discovery of more interesting patterns and trends.

Web archives contain timestamped versions of Web sites
over a long-term time horizon. This longitudinal dimension
opens up great opportunities for analysts. For example, one
could compare the notions of “online friends” and “social
networks” as of today versus five or ten years back. Similar
examples relevant for a business analyst or technology jour-
nalist could be about “tablet PC” or “online music”. This
requires finding all Web pages from certain eras that contain
these and/or other related phrases. Unfortunately, this is
beyond hope today. Web archives like the Internet Archive
provide URL-based access only, via the Wayback Engine.
For a given URL, you can retrieve all archived versions of
the page; then you can navigate a version on a per-site basis
and will be automatically connected to the proper version as
of the same snapshot. But this kind of time-travel browsing
does not work across sites. There is no support for keyword
search along the time axis at all. The NutchWAX open-
source software has been tried for archive search, but has
not been deployed for public access. Searching for phrases
(i.e., multiple keywords occuring contiguously in a page) is
computationally much harder (requiring position indexes,
etc.), and way beyond today’s capabilities. The goal is to
allow rich text queries with a temporal filter, such as { “tablet



PC” Europe market} @ [2003-2007], rank the results by time-
aware relevance, and aggregate them into a suitable form
for subsequent analytics (e.g., into some form of temporally
extended text cube).

Analysts are not interested in text or Web pages per se,
even if the underlying sources are in text or multimodal
form. Instead, they want to see, compare, and understand
the behavior of (and trends about) entities like companies,
products, politicians, music bands, songs, movies, etc., thus
calling for entity-level analytics over Web archives. For the
tablet-PC search, they would ideally obtain information
grouped by named entities like Apple Corp., Microsoft Corp.,
etc. - combined with the time dimension, for example, by
year. Likewise, the matches for “tablet PC” would ideally
be based on product names rather than the literal text, to
capture also related products such as e-book readers. This
calls for lifting the entire archive contents, or at least the
slices that are relevant for this analytic task, from the text
level to the entity level: detecting named entities, resolving
ambiguous names, tracking the same entity in its mentions
over extended time periods. Obviously, this is a daunting
task, regarding both semantics and scalability, already for
current corpora in digital libraries (e.g., PubMed) or enter-
prises. As entities morph and get renamed over time, e.g.,
by company acquistions or mergers, this is a grand challenge
for large-scale longitudinal analytics.

This paper elaborates on these challenges, identifies spe-
cific technical aspects and discusses the problem space. We
address semantic and scalability issues. To appreciate the
latter, let us merely point out that the Internet Archive
currently holds more than 150 Billion versions of Web pages,
captured during the timeframe from 1996 until now. Its
coverage is getting sparser as Web contents has become so
diverse, dynamic, and humongous. A high-coverage archive
would have to be an order of magnitude larger.

2. CHALLENGE: TIME-TRAVEL INDEXING

One of the fundamental underpinnings of the envisioned kind
of longitudinal analytics is indexing for time-travel queries.
The general form of these queries is t1t2 . . . tm@[Tiow; Thigh]
where the t; are text terms and Tj,. and Thign are the
boundaries of a time interval of interest (time points are
a special case). In the simplest case, terms are just sin-
gle keywords, but analysts also need phrases (e.g., product
names, campaign slogans, quotations) and may even use addi-
tional constructs like negation or distinguishing optional from
mandatory terms (e.g., in analyzing intellectual-property is-
sues). A good design for an index to support such queries
is not obvious at all. It entails difficult issues regarding 1)
the choice of data structures, for example, multidimensional
index trees versus IR-style inverted lists versus hash-based
synopses, 2) the challenge of efficiently building this huge
index (for a given data structure) and incrementally maintain-
ing it, and the associated consistency issues for concurrent
analytics tasks, 3) the organization of the index on scale-out
platforms so that time-travel queries can be run with high
throughput, user-acceptable latency, high availability, and
low cost (incl. energy-efficiency). Note that throughput is
an issue, even if analysts are a rare species, compared to
Facebook users. The reason is that complex analytic tasks
may trigger, under the hood, a large number of simpler
time-travel queries.

Data structures: The choice is widely open. A database

person, at first thought, would most likely advocate a mul-
tidimensional index structure like an R-tree or perhaps a
tailored time-key index like the Multiversion B-tree or the
TSB-tree. However, mapping our data space onto one of
these structures is full of problems. First, the high dimen-
sionality of the text-term aspect prevents a straightforward
mapping; there is no way to support a million text terms by
a one-million-dimensional R-tree. And we do need to support
multidimensional queries that consist of several terms. Sec-
ond, the processing of multidimensional range queries over
these indexes would result in non-sequential, traversal-style
access patterns, thus hurting the effectiveness of the hard-
ware data caches. With many-core processors and flash-based
storage, access locality is absolutely crucial for performance.
An alternative approach is to adopt the IR paradigm of in-
verted lists. There is usually, one list of postings (document
identifiers and associated payload data such as precomputed
scores) per term. Each list can be compressed extremely
well (see IR literature and also the techniques used by major
search engines), and this results in excellent sequential per-
formance. However, with the temporal dimension folded into
such an index, an inverted list would contain the postings
for all document versions across the entire timespan of the
archive. Consequently, lookups for time points or short inter-
vals are penalized by this blow-up in the version space. This
problem is aggravated for phrase search. Unless we constrain
the flexibility of the analyst by pre-identifying interesting
phrases, we need a position index. Here each per-word list
contains postings for each occurrence of the word in each
document. Blending this kind of index organization with
the temporal dimension in an optimized way is a formidable
challenge.

Index build: MapReduce is a popular paradigm for build-
ing huge indexes on distributed storage. For standard text
indexes, this is indeed a great way of harnessing scale-out
architectures (and algorithmically not that different from
parallel-database techniques). We are studying how to ex-
ploit and extend this paradigm in order to build the combined
text-time indexes that we need. A key option pertains to the
creation of combined text-and-time indices vs separate time
and text indices.

Assume each document has a lifespan defined by its last
update to current time. At the next update, the lifespan of
the document expires and a new one emerges. Thus, the same
document, as it evolves through time, is essentially viewed
as a series of different documents. In this setting, one could
create a MapReduce job (actually a series of MapReduce
jobs) that builds text indices, per term, per preset time
interval. This is logically equivalent to first creating text
indices with posting lists where each posting (docID, term,
score) is annotated with a lifespan and then partitioning
the posting lists by time intervals. The approach embeds
lifespan information with each posting, merging the time and
text indices. However, building such an index creates issues
such as how to handle documents whose lifespans overlap the
indexed time intervals? Replication of relevant posting list
entries is a solution. But this exacerbates an already difficult
issue: space. An even more formidable task is deciding which
should be the preset time intervals for which to build the
indices. At one end, large preset time intervals defeat the
purpose. At the other, small index time intervals will be
inefficient for queries with large time horizons, since many
time-interval indices would need to be merged at query time.



A promising solution might be to build several overlapping
time-interval indices, at different time-interval granules and
employ the best selection of time indices at query time.
These time-interval indices can be hierarchically organized,
creating in essence an index of indices, which can be traversed
to discover the optimal individual indices to use. Deciding
this is a difficult optimization task on its own right.
Another approach would be to build separate indices for
time and text. The interesting issues here pertain how to
best utilize the MapReduce framework to build time-interval
structures and which structures lend themselves to better
buildup with MapReduce. For more elaborate structures,
which are candidates for time indices (such as interval trees
and segment trees), it is not clear how to utilize MapReduce
for building and efficiently accessing them at query time.

3. CHALLENGE: QUERYING & RANKING

Query processing: With a rich suite of indexes and syn-
opses, the query processor faces many choices in combining
the system’s data structures. Querying text and time in an
integrated manner is a largely unexplored territory. Prior
work on news mining typically assumes that timestamps are
high-quality metadata. This is not the case at all in Web
archives, and this in turn implies that many queries are explo-
rative with wide time-range conditions and complex search
conditions about phrases (contiguous words) or soft phrases
(nearly contiguous words within a proximity window).
Ranking models: For conventional text search, the rank-
ing of query results is based on word-occurrence statistics,
including the idf measure (inverse document frequency) for
the specificity of terms. For time-travel queries, the situation
is more complicated. A once rare word may now be used in
an inflationary manner, so it would now have low weight in
the score aggregation for a multi-keyword query. But when
a temporal query travels back to that former period, the idf
value back then matters. For example, in the query “online
friend”@August2002, “friend” would now have low weight but
should have high weight as of 2002. Similar issues arise with
“static” authority measures such as PageRank, as they are
no longer that static anymore in the context of longitudinal
archives. Statistical values like idf change continuously with
every new update, as they are corpus-dependent (and not
confined to a single document). Approximation techniques at
lower cost are presumably sufficient, but finding good trade-
offs with (probabilistic) guarantees on the deviation error is
difficult. Hence, the time dimension affects everything: not
just data, but also its indices and their maintenance, and the
related statistics and metadata that govern ranking models.
With phrases as query conditions, there are further diffi-
culties. Ideally, we would like to consider the idf value of
an entire phrase rather than merely aggregating the scores
of the constituting words. But this cannot be precomputed,
as it may be only now that we realize the interestingness
of a phrase like “online friend” and would now like to pin-
point the onset of this emerging phrase years ago. Finally,
bursty-ness in time could be an important ingredient in the
ranking of search results. For example, an analyst may look
for interesting time points in the longitudinal answers to a
query “tablet PC”. This should ideally return pages on the
2002 edition of Windows for tablet PCs, the launching of the
iPad in 2010, the revival of e-books, and also salient points
or periods for more specific results such as intensive press
coverage of specific products in certain regions of the world.

Here, interesting points could be found by considering the
“first derivative” of measures like idf, PageRank, etc.

4. CHALLENGE: ENTITY TRACKING

Entity detection: Detecting named entities in Web pages
and thus lifting the entire analytics to a semantic rather
than keywords level is a grand challenge already for standard
text mining. The difficulties arise from name ambiguities,
thus requiring a disambiguation mapping of mentions (noun
phrases in the text that can denote one or more entities)
onto entities. For example, the mention “Bill Clinton” can
be the former US president William Jefferson Clinton, but
Wikipedia alone knows five or so other William Clintons. If
the text says only “Clinton”, the number of choices increases,
and phrases like “the US president” or “the president” have a
wide variety of potential denotations. For established kinds of
data cleaning and text mining, methods for entity resolution
(aka. record linkage) have made reasonable progress (e.g. by
using statistical learning for collective labeling), and could
handle a good fraction of such cases.

Entities in time: In the Web archive case, some addi-
tional aspects are assets while others pose major obstacles.
The timestamp of an archived Web page can help to narrow
down the disambiguation candidates for phrases like “the
US president”. Similarly, the connection with previous and
successive versions of the same page can help to identify
changes at specific timepoints, which may in turn be cues
for entity resolution. Cases where the temporal dimension
introduces new complexity are when names of entities have
changed over time. Examples are people’s name changes after
getting married or divorced (or simply out of some mood), or
organizations that undergo restructuring in their identities.
Bell Labs is a notorious example; a simpler one is Tandem
Computers, a leading company on highly available, scalable
systems in the 1980s. Suppose a technology-and-business
analyst wants to track companies that used products of Tan-
dem Computers, over the last 30 years (Web archiving does
not go back that long, but there are digitized news archives
from this era). Tandem was acquired by Compaq, which
was later acquired by HP; the NonStop product line (incl.
NonStopSQL) has many instances with all kinds of naming
variations and still exists today. So we need to identify, from
the site captures of Web archives, all mentions of this business
entity, its products, and also the enterprises that employed
one these products over the years. This would allow us to
construct an entire timeline of how the company and its
products were doing over several decades: business tracking
at the entity-relationship level, automatically inferred from
Web history. Such entity tracking should be combinable with
filters and aggregations on keywords or phrases. For example,
we could restrict the entire analysis to input sources that
contain “zero downtime” or “24x7” or “ultra-high availability”.
We emphasize again that this could be an ad-hoc interest of
some analyst; so hardly anything could be precomputed.

A benchmark proposal: Generalizing the example, a
conceivable but currently still elusive benchmark could be
the following. For all page versions in a Web archive, with
100 billions of files, identify all entities that are known to
Wikipedia at some point in the Wikipedia history. That is,
map each mention to the Wikipedia article as of the proper
timepoint. For example, when Carla Bruni is mentioned
on an entertainment site of July 2005, we should map her
name to the former model and singer Carla Bruni Tedeschi,



as reflected in Wikipedia as of this time. But the same
name seen in August 2009 should be mapped to the French
first lady Carla Bruni-Sarkozy (her offical name now). Here
different time periods pose different ambiguity challenges.
The timestamps of the archived pages are only of partial
help, because the page contents can be older; crawl-based
dating is not reliable at all. This is a big issue in dealing with
locations (e.g., Mumbai vs. Bombay) and organizations (e.g.,
Bell Labs vs. AT&T Bell Labs vs. Alcatel-Lucent Bell Labs).
The challenge lies in the enormous scale and temporal depth,
and, of course, the goal of accomplishing this benchmark
task with very high precision and recall.

S. CHALLENGE: EFFICIENT ANALYTICS

Interesting phrases and entities: The envisioned system
should support a wide spectrum of analytical tasks, spanning
the text, entity, and time dimensions. We want to address
different tasks of increasing complexity: frequent phrases,
interesting phrases, comparative slicing, time pivoting, and
entity-entity as well as entity-phrase co-occurrences. Here an
interesting phrase could be one that is salient for a particular
time period. This could be modeled by information-theoretic
measures like relative entropy. Intuitively, a phrase is inter-
esting if it is frequent in the period of interest and infrequent
otherwise. An example could be “yes we can” for the period
January 2008 through June 2009. Similar analyses should
be possible for interesting entities, returning, for example,
Deepwater Horizon for the period April through July 2010.
This kind of analytics is algorithmically well understood,
but carrying it out on a 100-billion-pages archive is a very
ambitious goal.

Text-entity-time analytics: Comparative slicing goes
beyond the previous stage by trying to identify salient phrases
or entities for different subsets of an archive, where the sub-
sets are determined by ad-hoc filters on phrases, entities, and
time. For example, we may be interested in a discriminative
analysis of public quotations by key people of Google, for the
year 2005 versus the year 2010, and perhaps with focus on
European Web sites. Here we need to identify temporal slices
of the archive, but also select only those page versions that
contain mentions of the entity Google, the word “quotation’
or some paraphrase for people’s statements, and geographic
names indicating Europe. The result could be phrases like
“do no evil” (the company motto) for 2005 and “nobody was
harmed” (Eric Schmidt’s reaction to concerns about privacy)
for 2010. This line of analyses is a form of co-occurrence
mining in the joint space of text, entities, and time. Another
analytic task could be time pivoting: for a given entity, find
the most interesting timepoints or periods along with a digest
of most salient phrases or entities. One can view this as a
generalization of tag-cloud timelines. Supporting all this in
a truly ad-hoc manner - without any pre-selected phrases or
entities and precomputed statistics - is a challenge.

Efficiency: A good part of such tasks could be addressed
by MapReduce-based algorithms in a scalable manner. How-
ever, these algorithms also need to be efficient in the sense
that they use resources - processors, memory consumption,
interconnect bandwidth, and energy - in a cost-beneficial
manner. If an efficient algorithm can reduce resource con-
sumption, this pays off directly in a lower electricity bill or
the ability to run a higher throughput of independent tasks
by a larger number of analysts. Thus, we envision a smart
combination of scale-out-oriented scanning, hashing, and
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merging techniques with index lookups, complex execution
plans, and statistical approximation methods. The optimiza-
tion space has an enormous number of degrees of freedom.
Here the notion of an execution plan goes way beyond the
traditional kind of query execution plan, as it would also in-
volve phrase-mining, entity-resolution, temporal-aggregation,
and statistical-computation steps.

6. CHALLENGE: SCALABLE PLATFORM

Figure 1 shows a system architecture, addressing how control
and data flow is envisaged within the LAWA project. The
base layer consists of storing Web pages and updating the
collection with data from new Web crawls. Data at the base
layer is processed using MapReduce to produce so-called
primary indices (currently .warc files) for the documents in
the collection. We envisage a scalable row-store platform
(such as HBase) and HDFS as the storage systems for these.

The primary indices contain the essential data, needed to
build richer indices, such as text and time-text indices (of
the forms discussed earlier), and other statistical structures,
such as Bloom Filters and/or histograms needed to estimate
join sizes (e.g. of text and time index files), sketches used to
estimate cardinalities of sets, etc.

The top layer, the Analytics Engine, is responsible for pro-
cessing analytics tasks. In turn, these may be expressed as a
workflow of complex queries (e.g., involving joins, range selec-
tions, top-K operations, etc.) which are handed to the layer
underneath, the Complex Query Processing Engine, which
in turn may (or may not) utilize (or even build) additional
query-specific indices.

Analytics Engine
— Phrase ID, Correlation
Terms/Phrases, Aggregation

Query processing engine
Range Queries(e.g. on Time Stamp),
Rank Queries, Join, Rank Join,
Complex Queries

[

Rich Indices & Statistics
Inverted Indices, Join Indices, Top-K
Indices, Statistical Data Stuctures
(Bloom Filters, Histograms, Sketches, etc)

[ |

Data Export
Primary Indexing (warc file)

[

Data Gathering - Web Crawling
of Archive Data

Figure 1: LAWA system architecture

We have discussed some of the key challenges associated
with longitudinal analytics over massive data collections
of Web archive data. Numerous open research problems
are revealed and initial thoughts, trade-offs, and a system
organization are presented. As a whole, this area presents
new opportunities for our community to design, develop, and
deploy solutions, which will help us learn from the past and
anticipate the future. It’s about time!
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