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This paper investigates the online monitoring of electrical machine winding insulation systems based on parametric modeling and identification. The proposed method consists in monitoring the drift of diagnostic indicators built from in-situ estimation of high-frequency electrical model parameters. The involved model structures are derived from the RLC network modeling of the winding insulation, with more or less lumped parameters. Because they often present an important modeling noise, the authors propose to use the output error method not only to estimate the model parameter values but also to evaluate their uncertainty. This process is based on the numerical integration of the model sensitivity functions. The socalled global identification scheme is coupled with an optimization algorithm that brings the closer combination of any diagnostic model structure and its excitation protocol usable in operating conditions. Experimental data recorded from an industrial wound machines are used to illustrate the methodology.

INTRODUCTION

Among the various ocean energy technologies under development, tidal stream and offshore wind turbines have nowadays reached their demonstration or even commercial size. However, their first operating feedbacks and also recent research reports on Marine Renewable Energy (MRE) have highlighted the complexity and the harshness of the marine environment [START_REF] Muhr | Aging and degradation, their detection and monitoring & asset management[END_REF], [START_REF] Judendorfer | Challenges to machine windings used in electrical generators in and tidal power plants[END_REF]. Thus, the reduction of the capital expenditure and the operating costs of the offshore energy farms are clearly the technological and scientific barriers that should be unlocked to ensure the economical viability of the MRE [3].

To this end, the predictive maintenance is a key issue [START_REF] Yang | Experimental evaluation of using the surge PD test as a predictive maintenance tool for monitoring turn insulation quality in random wound AC motor stator windings[END_REF]. Indeed, due to the cyclical nature of marine energy resources, the insulation system of marine electrical generators suffers regular thermal cycling and is therefore hardly stressed [START_REF] Judendorfer | Challenges to machine windings used in electrical generators in and tidal power plants[END_REF]. To avoid its premature degradation by thermal, mechanical (lamination) or chemical processes that could leads to an unscheduled costly outage, the most efficient way is to continuously monitor the insulation health state. It is well known that the aging of an insulation system mainly results in the variation of its capacitance and resistance: this is the underlying principle of the classical offline diagnostic methods such as RI and PI [START_REF] Stone | Electrical insulation for rotating machines[END_REF] [START_REF] Stone | Recent important changes in IEEE motor and generator winding insulation diagnostic testing standards[END_REF]. For the online monitoring of stator insulation condition, the Partial Discharge (PD) analysis is currently the only mature technology [START_REF] Yang | Experimental evaluation of using the surge PD test as a predictive maintenance tool for monitoring turn insulation quality in random wound AC motor stator windings[END_REF] But it may present serious limits for in-situ monitoring when the measurements of the partial discharges are done in a noisy environment. The analysis of the leakage currents [START_REF] Lee | An online technique for monitoring the insulation condition of AC machine stator windings[END_REF] or the detection of resonance frequency changes by measurement of high frequency electrical field changes [START_REF] Perisse | A New Method for AC Machine Turn Insulation Diagnostic Based on High Frequency Resonances[END_REF] are some alternative methods proposed in recent scientific literature.

The in-situ monitoring approach investigated in this paper is based on the online estimation of turn-to-turn and turn-toground capacitances of electrical parametric models [START_REF] Liu | A new Approach for Electrical Machine Winding Insulation Monitoring by Means of High Frequency Parametric modelling[END_REF] [START_REF] Liu | High Frequency Modelling of Stator Windings Dedicated to Machine Insulation Diagnosis by Parametric Identification[END_REF]. The drift of their estimated values can be used for planning optimized corrective maintenance. Indeed, previous researche shows that the winding must be changed when the capacitance increase of 10 % [START_REF] Perisse | Robust diagnostics of stator insulation based on high frequency resonances measurements[END_REF]. Nevertheless, taking the right decision required not only to link the model parameter shifts to the physical aging phenomena , but also to evaluate the confidence in the estimated values in order to avoid false alarms. This is the subject of this article. First, the principle of the proposed diagnostic approach is justified from the predictive maintenance context of offshore marine turbines. The theoretical framework of model identification by the output error method is presented in the next part. The third section illustrate the methodology with experimental data.

II. MATERIAL AND METHOD

A. System modeling

Modeling and identification are essential stages for system control, optimal design and monitoring. Discrete recurrence equations and identification algorithms derived from the least square framework are often used for the synthesis of control laws [START_REF] Trigeassou | Diagnostic des machines électriques[END_REF]. But if the goal is to deeply understand the system behavior, then the approach using knowledge continuous-time models is preferable. Indeed, their parameters have a physical signification and can be more simply linked to the physical phenomena taking place in the system to monitor [START_REF] Liu | High Frequency Modelling of Stator Windings Dedicated to Machine Insulation Diagnosis by Parametric Identification[END_REF]. This a priori knowledge allows not only the experimenter to propose different sets of mathematical equations -also called model structures -close to the phys system, but also to build diagnostic indicato their drift for making strategicdecision. where θ is the parameter vector, , is th input u(t) and the model output , vector, and the functions fand g are based which are generally non-linear with respect to that bold letters refer to vectors.

In practical terms, the function and g ar classical modeling approach of transform machine winding [START_REF] Wright | General theory of fast-fronted interturn voltage distribution in electrical machine windings[END_REF]. They can deal with ve such as three R, L, C lumped elements in complex network that can explain the pr voltage in the insulation system. In fact, c structure to investigate remains a difficult in the experience of the user and its understa phenomena remain a key condition of the concerns us,it is well-known that the w resistance depends on temperatur (T°) and th of a dielectric element change with aging moisture, and to a lesser extent with T° [ inductance parameter of a winding cond volume deals with the energy localized in the the electromagnetic field, which remains con high frequency [START_REF] Guardado | A machine winding model for switching transient studies using network synthesis[END_REF]. Previous studieshave sh and mutual inductance can be considered frequency range [200 kHz -100 MHz] [START_REF] Venegas | A Finite Element Approach for the Calculation of Electrical Machine Parameters at High Frequencies[END_REF].

These kind of considerations may allow to r of unknown model parametersthat must be on insulation diagnosis. For example, the inductances of a winding distributed const depend on insulation aging, moisture anf T°d iagnostic context, they can be initialized method or global identification methods su algorithms. elementary physical volumes lements. This model fineness is the state vector of (1), and as cost. On the other hand, the next e model parameters, the more the ide power in a wide frequency meter uncertaintiesare likely to stic model must present the best f the model structure and the citation number of its physical parameters. Fig. 2 re of system modelling dedicated to in-situ ins In this scheme, the parameter estimation m respect to industrial constraints; in particularl the electrical machine insulation system shou variable speed drive.

B. Principle of system excitation and measu

As explained below, the model identif related to the excitation signal that can be identification. Fig. 3 shows the technical so for the in-situ excitation of the insulat monitored generator is torque-controlled in a But the high frequency excitation is applied insulation through a coupling box, betwee phases and the stator housing. Theref identification is performed in a open-loop co required specific algorithms [START_REF] Trigeassou | Electrical Machines Diagnosis[END_REF].

A high-frequency high-voltage signal g specially developed for testing different ex (further studies will also explore the feasib high frequency spectral content of the PWM The pulse generator is based on a Mosfet h driver system that controls the transisto very low match delay so that the rising and voltage impulses reach approximately 10 V/n is driven by a microcontroller card, which sim of different excitation protocols, from the sim pseudo random binary signal (Fig. 4). T contains two capacitances C p which value is the ones of the R-L-C network models (typi Their impedance can therefore be neglec frequency range of the input/output sign insulation system identification. The resistan impedance adaptation of the BNC cable a sensor for the measurement of the high flowing in the insulation system. The input s its currentoutput ⁄ are oscilloscope Yokogawa DL9140, equipped converter rating at 2.5 GHz. The experimen illustating the methodology is presented in se C. System identification by the output error Many identification algorithms can be identification. The choice depends on the na structure (linear or not with respect to the pa the inputs), the nature of the measurement an the dynamic of the physical changes to diag half bridge with a or switches with a falling rates of the ns. The half bridge mplifies the design mple step up to the The coupling box s very higher than ically several nF). cted in the high nals used for the nce R d ensures the and R m is used as frequency current system and e acquired by a with a 8 bits AD ntal bench used for ection III. method used for system ature of the model arameters and/or to nd structure noises, gnose, or even the acceptable computational cost [ In fact, the insulation sys several years and the calcul monitoring system is clearly n economic and industrial st Moreover, the outputs of contin R-L-C networks are not linear Thus, we propose to use the sensitivity functions for insula This method presents a compu methods derived from least-squ estimator with a relative imm errors [START_REF] Trigeassou | Electrical Machines Diagnosis[END_REF]. This is an interesti simplicity of the diagnostic important modeling noise. . Then, a simulation of the only the measured input signa numerical integration of the defined by [START_REF] Muhr | Aging and degradation, their detection and monitoring & asset management[END_REF]. It can be perfo matrix in case of linear state algorithm in more general cas parameter vector is obtain following quadratic criterion distance [START_REF] Trigeassou | Recherche de modèles expérimentaux assistés par ordinateur[END_REF]:

∑ arg
where N is the number of input , is the output error at scalar or a vector depending o output. Many methods can optimization of the multivariab has its own advantages and Nelder-Mead algorithm [23 robustness even with a bad init algorithms ensure a small optimum [START_REF] Trigeassou | Parameter estimation for knowledge and diagnosis of electrical machines[END_REF]. As previously perform an initial global op em.

Fig. 5. Principle of the output error m [START_REF] Eykhoff | System identification: parameter and state estimation[END_REF], [START_REF] Ljung | System Identification: Theory for the User[END_REF], [START_REF] Walter | Identification of parametric models from experimental data[END_REF].

stem aging has a dynamic of ation cost of a MRE turbine not a criterion compared to the trakes of their maintenance. nuous-time models derived from r in respect to their parameters. e output error method and the ation system identification [START_REF] Trigeassou | Parameter estimation for knowledge and diagnosis of electrical machines[END_REF]. utational cost much higher than uares but it provides an unbiased munity in respect to modeling ing feature because the required model generally leads to an ing principle of the output error model: the system output y s (t) is odel output for the right value of ut noise which embeds oise. Let be an estimation of e system output , using al can be obtained by the continuous state-space model ormed by using the exponential e-space or the Runge Kutta 4 se. Then, the optimal estimated ned by the minimization of the , also called the state-

, , (2) 
g min (3) 
samples and , sample time , which can be a on the dimension of the system be used for the non-linear ble function

. Each of them drawbacks. For example the 3] ensures the convergence tialization, whereas the gradient convergence time near the said, an offline method can ptimum usable for a gradient method (with the OE model).

method. And the dynamic of the insulation phenomena are very slow. Therefore the gr are well adapted to the problematic of m monitoring of insulation system.

Near the optimum, and the of the state-distance gives: δ . δ where and denote the gradient D at point . Then, the derivative of (4) gives:

that should allows to reach the objective iteration from the starting point . Unfort approximation of the hyper-surface n point, and therefore multiple iterations are for example use the Newton algorithm [START_REF] Bachir | Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines[END_REF]:

. . for which the gradient vector ) gives th search in the parametric space, whereas th hessian matrix gives the depth of the descen algorithm must be supervised by a con initialized to the unit at each nth iteration decreased in order to ensure that Moreover, the numerical derivation of of and will induce dramatically compu A better solution consists in using the sen Indeed, by derivating (2) two times in respec the following gradient and hessian express depend on the measurements, the model sim the values of the output-sensitivity functions:

2 ∑ , . 2 ∑ , .
where , , , is the jac , and the output-sensibility function the sensibility of the ith model output in parameter . Note that , is a singlemodel output is scalar. Equation [START_REF] Lee | An online technique for monitoring the insulation condition of AC machine stator windings[END_REF] shows th component ⁄ (giving the search d axis) deals with the sum of the output error output-sensitivity function of the paramete output errors at each sample time can be all by a small variation than the model ou this parameter. In fact, equation ( 8) proposes of the hessian matrix by neglecting the second of the model output. This approximation en hessian defined by ( 8) to be a positive other words, the hyper-surface is app nth iteration step of ( 6 

t and the hessian of with respect to [START_REF] Stone | Electrical insulation for rotating machines[END_REF] point in one tunately, ( 4) is an near the objective required. One can

) ( 6 
)
he direction of the he inverse of the nt. In practice, the ntrol parameter n and that can be . for the calculation utational problems. nsitivity functions. ct to one obtains sions, which only mulated output and

, ( 7 
)
, ( 8 
)
cobian matrix of , , evaluate respect to the jth -row matrix if the hat the jth gradient direction in thers weighted by the er . Indeed, the the more reduced utput is sensible to s an approximation d order derivatives nsures the pseudodefinite matrix. In proximated at each d given by: uniquely defined by the va functions at sample times , numerical integration of representation derived from the : , , where ⁄ and the function and g in relatio jacobian matrices of and g matrix , , ⁄ functions. In other words, th structure by the proposed me provide the analytical expressio and g, and their four jacobians then be employed by a mast numerical integration of (1) an the quadratic criterion as propo D. Evaluation of the estimated Near the optimum, the quad error model can be re-arranged

2 ∑ , ,
where ∑ is the optimization algorithm (6) s illustrated by Fig. 6, the second ellipsoid defined by "t vector, and therefore the obje with . This explain identification should rather be , given by the implicit where the coefficient is chose Fig. 6. Shape of the hypersurface crite [START_REF] Liu | A new Approach for Electrical Machine Winding Insulation Monitoring by Means of High Frequency Parametric modelling[END_REF] alues of the output-sensitivity which can be obtained by the the following state-space e deriving of (1) in relation to :

, . , , , . , , (10) 
are the jacobian matrices of on to x, and are the in relation to , and the statecontains the state-sensitivity he identification of any model ethod only requires the user to on of the state-space functions s. These analytical functions can ter function which ensures the nd [START_REF] Liu | High Frequency Modelling of Stator Windings Dedicated to Machine Insulation Diagnosis by Parametric Identification[END_REF], and the optimization of sed by [START_REF] Stone | Recent important changes in IEEE motor and generator winding insulation diagnostic testing standards[END_REF]. d parameter uncertainty dratic criterion (2) for the output as follow:

, , , ( 11) 
e energy of the noise that the should ideally reach. But as d term of (11) deforms the hypertrue" value of the parameter ective point can be reached ns why the real objective of the to find the elliptic hyper-curve equation 1 , en to ensure that is inside the erion near the optimum.

iso-distance curve

, . If the output e modeled by a random noise with normal distr then taking 9 ⁄ allows to say that of 95% to be inside , [START_REF] Richalet | Identification des processus par la méthode du modèle[END_REF]. In more can only propose the smallest value which intersection of iso-distance , obta excitation protocols is not void.

Finally, the iteration algorithm (6) an integration of the sensitivity function state-s approximation of the hessian matrix can reveal a valley in the hypersurface a valley in one parameter direction means t has not been sensibilized by the exication pr condtion number (or eigenvalues) provide us the parameter uncertainties. For example, in dimension parametric space, the iso-distance an ellipse which equation in the eigenbase is .

.

where and are the eigenvalues of observe that the major and minor axis of related to the square root of the eigenvalue v parameters uncertainties Δ and Δ can thu the projection of the ellipse major and mino of the natural parametric space.

E. Design of the optimal excitation protocol

Let us note

, … , the d para by the design of the diagnostic indicator, indicator used for insulation diagnosis, a parameters that characterize the system excita a simple voltage step, it can be the length N its step amplitude. Then, as shown by Fi protocol parameter for a given model obtained by the minimization of the dia uncertainty ΔDI, which expression is give uncertainty propagation:

Δ ∑ Δ
For each value of , the identificatio parameters and the evaluation of error can be ribution 0, , has a probability e general case, one h ensures that the ained for different nd the numerical space [START_REF] Liu | High Frequency Modelling of Stator Windings Dedicated to Machine Insulation Diagnosis by Parametric Identification[END_REF] give an , which analysis . The presence of that this parameter rotocol. In fact, the information about the case of a twoe curve , is given by: [START_REF] Trigeassou | Diagnostic des machines électriques[END_REF] . One can , are inversely alues (Fig. 7). The us be derived from or axis on the axes l ameters concerned the diagnostic and the set of ation protocol. For of the records and ig. 8, the optimal structure can be agnostic indicator en by the law of

, ( 13 
)
on of the optimal their uncertainty Δ , are determined u process.

F. Identification in practice

In practice, the protocol op state distance normalized by the ∑ where 1 ⁄ if the diagonal matrix in case of a m therefore an a-dimensional no not only to compare differen structure, but also to compare d Moreover, the inversion of numerical problems when m different orders of magnitude. the optimization [START_REF] Stone | Recent important changes in IEEE motor and generator winding insulation diagnostic testing standards[END_REF] in the re following variable change: δ the relative variation of near equation ( 9) of the hypere becomes:

δ δ diag
and the optimization is then space, with a much better condi III. APPLICATION WI For simplicity, the followi with the identification of a si derived from the visual analy discharging the winding insulat a step voltage excitation protoc A. Experimental bench and me 

system output is scalar (or a multiple output system). is ormalized critrerion that allows nt protocols for a same model different model structures.

f the hessian matrix may face to model parameters are in very

The solution consist in making elative parametric space by the diag . δ , where δ is r the optimum. By this way, the llispoïd around the optimum .

. diag δ performed in a a-dimensional itioned hessian matrix .

ITH EXPERIMENTAL DATA ing illustrates the methodology imple lumped parameter model ysis of the current charging / tion, and for the optimization of ol. easurements boratory bench used for the ystem under test concerns a 1.5 motor. The excitation voltage is nd the magnetic core. Fig. 10 rements used for identification: and the output Note that similar currents are machine, and also for the three mization.

B. Model identification

The parametric model proposed by Fig shape of the measured current as the sum . Its justification in not thisarticle. The function and g of representation (1) are obtained considering voltages and the inductance currents as stat analytical jacobian matrices can be obtained symbolic calculations. The parameters are fi the output error method coupled with t optimization algorithm. Then, the results initialize the Newton iteration algorithm [START_REF] Stone | Recent important changes in IEEE motor and generator winding insulation diagnostic testing standards[END_REF]. good agreement between the measured and for the estimated parameters and Table I gi means and standard deviations for ten experim 

C. Protocol optimization

For the simplicity of exp illustrate methodology o exciation protocol, for the p Morever, let us suppose (even only the capacitance paramete insulation aging and that the di given by the ratio ⁄ . this indicator is obtained thanks

∆ ∆
where the parameter uncert the choice of and the lenght the evolution of this relative un the step protocol is obtained for IV. CO This study investigates th electrical machine insulation maintenance. The state monit identification of high frequenc the output error method. The id advantages of the numerical in functions for estimating the mo Now, with the developed experimental tools and the programed identification algorithms, it becomes very simple to analyze different continuous-time model structures. Future works will therefore explore the ability of complex structures derived from the R-L-C network modeling of winding insulation. And an industrial induction machine will be aged in accordance with IEEE standard aging procedures. This will allows to propose efficent aging indicators.
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 I ESTIMATED VALUES OF THE MOD

	Fig. 9. Experimental bench.		
	Mean	1	1800	19.5	0.350	101.2
	Std	0.1	1	0.3	0.004	1.1