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Organic thin film transistors (OTFT) based on N,N’-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboxylic

diimide (TTCDI-5C) with Al or Au top contact electrodes were deposited on SiO2 (200nm) /p-Si (001)

substrates. Carrier mobility was examined as a function of temperature in the range from 50 K to 310K.

Two distinct carrier transfer behaviours were observed: temperature independent behaviour below 150

K and thermally activated behaviour  above  150 K. Activation energies presented values of 85 – 130

meV depending on the metal  electrodes (Au, Al), which can be attributed to the carrier traps at the

interface and the energy-level offset between the lowest unoccupied molecular orbital (LUMO) and the

work functions of the respective metals.



I INTRODUCTION:

OTFTs have received much attention since the mid nineties. Applications in devices such as active

matrix displays have been already reported1,2. Although the performances of these devices are still

poor  relative  to  those  composed  of  inorganic  semiconductors,  their  fabrication  processes  are  less

complex than for their silicon counterparts, leading to a significant advantage in terms of fabrication

costs.  OTFTs based on p-type materials  such as pentacene and oligothiophenes exhibit  quite high

carrier  mobilities  up  to  0.1-8  cm2V-1s-1.3-5 However  for  assembly  of  complementary  circuits,  high

performance n-type materials are also required. Additionally thin films for use in OTFTs are generally in

a polycristalline state and so charge carrier transport is strongly influenced by grains boundaries6. Thus

it is necessary to identify suitable bulk n-type semi-conducting molecules, which form highly crystalline

thin films with enhanced intermolecular orbital overlap. Of the known n-type semiconductor molecules,

N-alkyl  perylene tetracarboxylic  diimides (PTCDI-R)  fulfill  these expressed requirements. They have

been widely studied and can exhibit  carrier  mobility  as high as 1.3 cm2V–1s–1 in  a vacuum.7,8 High

electron affinities of N and O atoms modify molecular orbitals leading electrons to major carrier while

the alkyl chain substituents contribute to improve molecular packing. For further improvement, fine

tuning of molecular orbitals (HOMO, LUMO levels) as well as the energy-level offset (energy matching

between molecular orbital and work function of electrodes) is essential. 

Previously, we have demonstrated the potential of a family of molecules based on terrylene for

use in field effect transistors. The expanded aromatic core of terrylene results in a small HOMO-LUMO

gap and large electron affinity9. In the present study, we investigate the behaviour of the charge carrier

mobility  of  OTFTs  constructed  using  N,N’-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboxylic  diimide

(TTCDI-5C, cf. Fig.1a) with different metal electrodes to assess carrier transport in these OTFTs.

II EXPERIMENTS:

TTCDI-5 thin films were deposited  on SiO2/Si  substrate in vacuum  with a base pressure below

5x10-9 Torr. A deposition rate of about 0.06 ML min-1 was used for all  films prepared in this work. The

thin films thickness is 15ML.  A detailed description of experimental procedure was given in previous

work9. Figure 1b presents  an AFM  image  of  a  TTCDI film  deposited  at  an optimized  substrate

temperature of 140°C. Film morphology consists of compact rectangular grains with an average area of

0.06 μm2/grain. Roughness of the surface is 2nm. From XRD spectra (not shown here), we found the

molecules were highly ordered and oriented with the (001) axis normal to the surface substrate.



For  the thin  film transistors  (OTFT),  all  experiments  including molecular  deposition,  electrode

contact as well as electrical  measurement were carried out in vacuum. First,  the TTDCI films were

deposited  on  thermally  grown  SiO2 (200nm)  /p-Si  (001)  substrates.  Metals  of  electrodes with  a

thickness of 50 nm were deposited using an e-beam evaporator for aluminium and a heated crucible

for gold. The channel length was 50 μm and the width 400 μm. An illustration and photograph of the

top-contact OTFT structure are shown in figure 2 (top). OTFTs thus prepared were transferred into the

electrical measurement chamber for transistor analysis by means of a vacuum transfer system to avoid

exposure  to  air.  Electrical  measurements  were  performed  in  vacuum  of  10-5 Torr at  a  variable

temperature from 50 K to 310 K.

III RESULTS AND DISCUSSION:

A Thermal behaviour of carriers mobilities:

Figure 2 (bottom) presents typical ID-VD curves of the TTCDI-5C transistors at room temperature

(gold  electrode). A clear difference in the threshold voltages (V t) was observed depending on electrode

metals. The Vt for Au and Al electrodes were 20 V and 16 V, respectively. The main reason for the lower

Vt in the Al electrode device originate from its lower work function (4.3 eV for Al and 5.1 eV for Au).

We calculated the mobilities of the TTCDI-5C OTFTs in the temperature range from 50K to 310K  in

both devices prepared using gold or aluminium electrodes using the following equation10,11 :

ID, sat=
W
2L

Cox sat V G−V T 
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where Cox, µsat and VT are the gate dielectric capacitance per unit area, field effect mobility at saturation

regime  and  the threshold voltage, respectively. Then we prepared the Arrhenius plots of the carrier

mobilities of the OTFTs which are shown in figure 3. These plots can be divided into two ranges:  less

temperature dependent range from 50 K to 150 K and thermal activation temperature range from 150

K  to  310  K.  Below  150  K,  it  can  be  regarded  that  the  carriers  are  trapped  at  the  defects  and

temperature is not high enough to activate these trapped carriers to conduction. This is a property of

the TTCDI film and is not related to the metal used to prepare the electrodes.

A clear difference depending on the electrode material was observed in the temperature range above

170 K. To interpret this observation, we referred to the multiple trapping and release model (MTR). It

supposes  that charge transport in the semiconductor is ruled by charges trapping into localized states

in the forbidden gap followed by thermal release.12,8 Thus we fitted the Arrhenius plots using  next



equation: 

=0exp −Ea

k BT 
where μ, kB and Ea are carrier mobility, the Boltzmann constant and the activation energy, respectively.

The  activation  energies  were determined  to  be  130  meV  and  85  meV  for  Au  and  Al contacts

respectively. 

B. Discussion:

Two distinct factors -trapping at the interface and energy mismatch between work function and 

LUMO- are probably contributing to the difference in the activation energy. In the following sections, we 

discuss respective factors.

1. Trapped carriers:

To explain the difference between the values of the activation energies, we first evaluated carrier

traps. In figure 4, both OTFTs exhibited positive threshold voltage shifts with decreasing temperature.

Indeed at lower temperature there is less thermal energy available to  activate  trapped carriers into

delocalized states.  Thus more carriers  remain trapped and screen the gate field.  Therefore,  OTFTs

required a greater gate voltage to enable  conduction7,13. The shifts in the threshold voltage ∆V were 23

V for the Au contacts and 15 V for the Al contacts. The number of trapped carriers can be estimated

using the following equation with the elementary charge e 7,13:

e

CΔV
N ox
t 

In the case of gold electrodes, Nt  is about 2.4x1012 carriers/cm² while the corresponding value for the

aluminium electrodes is 1.9x1012 carriers/cm². These values seem to be quite high when compared with

the molecular density of TTCDI thin films which is typically in the range of 1014 molecules/cm². However

Nt is  a  total  summation  of  carriers  including  those  trapped  at  the  insulator/organic  and  the

metal/organic interfaces, as well as those fixed in the insulator and organic films. Among these trapped

carriers,  the observed difference in Nt for  the respective electrode metals  can be ascribed to  the

carriers trapped at  the metal/organic interfaces. This means that the activation energies should be

determined by taking into account the carrier transfer at the metal/TTCDI interface. Here we note that

the threshold voltage of the OTFT with Al electrodes remained lower than that with gold electrodes.

This gap is linked to the defects at the metal/organic layer interface in addition to the  relative work



function of the metals. Regarding the defects, it should be mentioned that  Al was deposited using a

cooled e-beam evaporator  while gold was deposited using a heated crucible so that  the substrate

temperature for the case during gold deposition was slighty higher possibly  generating  defects  and

increasing the numbers of trapped carriers at the Au/TTCDI interface. 

2. HOMO/LUMO levels and metals work functions:

With  respect  to  the  work  functions  of  the  electrode  metals,  we examined the  energy  level

diagram involving HOMO/LUMO levels and work functions of the electrode metals as shown in figure 5.

In passing from gold to aluminium, the difference in energy between work function and the LUMO level

of TTCDI-5C molecules is reduced. Consequently injection of electrons into the LUMO, as well as into the

defects states, becomes easier  causing a decrease in the energy for activating the charges into the

organic layer. This explains the difference between the activation energies (Ea) of the different metal

electrodes. Also, the mismatch between the Al work function and the LUMO is still  around 0.78 eV

according to our diagram so that this barrier should affect the charges injection. This point has been

raised previously and it has been proposed that the presence of an interfacial electric dipole layer

lowers the barrier to electron injection and the apparent metal work function can vary by up to 1 eV14-16.

IV CONCLUSION:

In summary we have designed OTFTs based on TTCDI-5C which operated as n-channel transistors. Two

kinds  of  transistors  were  prepared  containing  gold  or  aluminium electrodes.  Dependences  of  the

carriers mobility and threshold voltage on temperature were investigated. Two different behaviours

were observed for carrier transport: a temperature independent behaviour below 170 K and a thermally

activated  one  at  higher  temperature.  Activation  energies  were  calculated  from  the  temperature

dependence of the carrier mobility. Those were 85 meV for aluminium contacts and 130 meV for gold

contacts.  The  difference  in  activation  energies  can  be  explained  by  the  energy  matching  mainly

between  work  function  of  electrodes  metals  and  the  LUMO  level  of  the  TTCDI-5C  molecules.

Additionally,  defects  and  dipoles  produced  at  the  metal/molecule  interface  also  influence  carrier

transport.  These experimental  results emphasize the importance of  optimizing the energy levels of

molecules with work functions of the metal electrodes, as well as the interface formation techniques. 
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Figures captions:

Figure 1: (a) Chemical structure of the TTCDI-5C molecule. (b) AFM image of the TTCDI-5C thin film.

Figure 2:  (top)  Scheme  and optical  microscope image  of the  top contact  TTCDI-5C OTFT,  (bottom)

typical drain current-drain voltage curves of TTCDI-5C OFET.

Figure  3:  Arrhenius  plot  of  the  carrier  mobilities  of  the  TTCDI-5C  OFETs  with  gold  and  aluminium

contacts.

Figure 4: Evolution of the threshold voltage versus the temperature.

Figure 5:  Energy diagram of HOMO/LUMO levels of TTCDI-5C molecules and work function of god and

aluminium.








