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A n-type  semiconductor  molecule  N,N’-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboximide

(TTCDI-5C) was synthesized. Theoretical calculations predict several advantages in electrical

properties,  including  large  adiabatic  electron  affinity  and  small  reorganization  energy.  The

molecule was deposited on SiO2 surfaces and the structure of the resultant thin film was studied.

Grain size and thin film cristallinity improve as the temperature increases. Top-contact organic

thin film transistors (OFETs) using TTCDI-5C as the semiconductor layer were fabricated using

SiO2 as  the  gate  dielectric.  Values  of  charge  carrier  mobility  up  to  7.24x10–2 cm2V–1s–1 and
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current on/off ratios higher than 104 were obtained, demonstrating the potential of TTCD-5C for

use in OFETs.
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Organic semiconductor  molecules have been a focus of considerable research interest

during the past decade, since such molecules have demonstrated their potential for application to

flat display panels as well as for low-cost and large-area electronics1,2.

Regarding organic thin film transistors (OFETs), the highest electrical performances have been

achieved with pentacene,  a p-type semiconductor, for which carrier mobilities as high as 1.5

cm2V–1s–1
 have  been  reported3-5.  However,  there  is  a  lack  of  n-type  semiconductors  with

performances  comparable  to  p-channel  materials.  The  preparation  of  both  p-channel  and  n-

channel devices would enable the design of complementary circuits using only semiconducting

molecular thin films.

Improvement in the performance of an organic transistor requires optimization of several key

attributes  of  the  thin  films,  especially  crystallinity,  -orbital  overlap  and  grain  boundary

structure. A strong coupling exists between the geometric and electronic structures. Molecules

for use in organic transistors should:

- have an extensively  conjugated  -electronic  system since the   and  *-orbitals  form

delocalized  wave functions  that  support  the  charge  carriers  and a  high  electron  affinity

regarding n-channel materials to allow efficient electrons injection into the LUMO5.

- possess  excellent  qualities  in  terms of  crystal  packing and thin  film formation.  Most

organic molecules  with an extensive  conjugated  -electron  system have an edge-to-face

configuration  due to  intermolecular  CH- interactions,  and this  type of  packing hinders

intermolecular  -orbital overlap. The most favorable configuration is face-to-face packing

with molecules standing perpendicular to the substrate surface to optimize the overlap of -

orbitals, especially for the first monolayers of thin films, since they will act as a channel

when used as organic field effect transistors.

- form  thin  films  with  maximal  grain  size  to  lessen  the  detrimental  effect  of  carrier

scattering at grain boundaries.
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Of the n-type semiconductor molecules, the N-alkyl perylene diimides (PTCDI-R) fulfill these

expressed requirements. They have been widely studied and have shown carrier mobility as high

as 1.3 cm2V–1s–1 under vacuum6.

We present in this study results regarding the thin film growth of  N,N’-Bis(n-pentyl)terrylene-

3,4:11,12-tetracarboximide7 (TTCDI-5C)  (Fig.  1(a))  and  the  electrical  properties  of  the

corresponding thin film field effect transistors.

It was expected that this terrylene derivative molecule would be worthy of attention since the

conjugated - electronic system is more extended than that of the perylene.

At  room temperature  the  transport  regime  is  mainly  led  by  hopping,  so  that,  at  the

molecular level, charge transport can be described as the exchange of a carrier between a charged

molecule  and a neutral  one.  Regarding the semi-classical  Marcus theory, the rate  for carrier

hopping can be written as5,8:
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The two parameters J and  are the key. J is the transfer integral between two adjacent molecules

and must  be as large as  possible,  while   is  the reorganization  energy and is  related  to  the

geometric relaxation of the charged molecules9.   should be minimized to maximize transport

properties.

From  calculation  at  the  B3LYP/6-31G(d)  level,  the  respective  values  of   and  adiabatic

electronic affinities (EAa) for PTCDI-R and TTCDI-R are given in Table I and isosurface plots

of the frontier orbitals are also shown (cf. Fig. 1(b)). The p-orbitals of oxygen atoms clearly

contribute to -HOMO and -LUMO. The reorganization energy  of TTCDI-R is lower and the

adiabatic electron affinity (EAa) is larger than that of PTCDI-R. These results are consistent with

increased conjugation length. Therefore, the larger electron affinity should lead to a more facile
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injection  of  electrons  into  the  LUMO9,10 with  the  smaller   being  advantageous  for  carrier

hopping between molecules. 

TTCDI-5C11-14 thin films were deposited using a vacuum deposition technique  with a

base pressure below 5x10–9 Torr. Stable deposition rate and effective delivery of the molecules

were thus possible, with the molecules being focused on the substrate through a heated glass tube

set between the crucible and substrate15.  A deposition rate of about 0.1 ML min–1,  monitored

using a quartz crystal microbalance, was used in all the experiments of this work. n-type Si(001)

terminated by SiO2 layers was used as the substrate throughout.

The structure and morphology of the thin films were examined by atomic force microscopy

(AFM  SII,  SPI4000).  X-ray  diffraction  (XRD)  patterns  were  obtained  using  a  Bruker  D8

Discover (Cu K source,  = 0.15418 nm) to check the crystallinity of the thin films.

Thin  film  field  effect  transistors  based  on  TTCDI-5C  molecules  were  made  using  silicon

substrates  with  thermally  grown  silicon  dioxide  at  a  thickness  of  214  nm.  Top  contact

configuration was chosen for an FET with 50 nm thick gold electrodes for the drain and source.

Electrical  properties  were  investigated  using  Agilent  Technologies  B1500A  Semiconductor

devices analyzer operating under vacuum.

First, the effect of substrate temperature on the morphology and the crystallinity of the

thin  films  was  investigated.  15  ML-thick  organic  thin  films  were  prepared  and  substrate

temperature was varied from room temperature (RT) to 200 °C. AFM images are presented in

figures  2(a)-(d).  Grain size and shape evolve  with temperature.  At  RT, grains  are  somewhat

circular with diameters of approximately 50 nm. As the temperature is increased, grain shape

becomes  more rectangular. At  140 °C,  grain  dimensions  reach about  250   50 nm. Surface

roughness remains in the range 1  5 nm over the temperature range RT to 140 °C (cf. Fig. 2(h)).

At higher temperatures, surface morphology differs substantially: coverage of the surface by the

grains is degraded. Roughness increases dramatically, reaching 14 nm at 200 °C. The critical
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temperature in terms of quality of the surface morphology, coverage and roughness appears to be

140 °C.

Next, we studied the formation of the first five monolayers of the organic thin films. This is

because the initially formed monolayers act as a channel in the OFET. For this purpose, the

substrate temperature was fixed at 140 °C. From the AFM images in figures 2(e)-(g) we can

observe that the first two layers completely cover the substrate surface and that growth is two-

dimensional.  Subsequently, grain-like  morphology appears  and the  three-dimensional  growth

mode predominates.

Structural analyses of the TTCDI-5C thin films were obtained by using XRD measurements.

Typical XRD pattern is shown in figure 3, taken at 140 °C. XRD pattern contains a primary peak

labeled (001) at 2 = 5.58 which corresponds to a d spacing of 1.58 nm. This reveals that the

molecules stand upright on their alkyl chains at an angle to the substrate surface. We should

mentioned that at low substrate deposition temperature, we observed a second peak close to the

(001) one at 2 = 4.90. It was attributed to a metastable thin-film phase as previously reported

for  pentacene  and  PTCDI-5C6,16.  Furthermore  the  TTCDI-5C thin  film exhibits  (00l)  Bragg

reflections up to the fourth order. The full width at half maximum (FWHM) of the rocking curve

of the (001) peak is 0.12 ± 0.01 (substrate Si(004): 0.04). This means that the thin film is quite

well-ordered, which is a key requirement for efficient charge transport, although this value is

slightly higher than that obtained for PTCDI-5C under the same growth conditions (0.06)16.

Taken together, the results from AFM images and XRD pattern suggest that the use of a substrate

temperature deposition of 140 °C is a good compromise in term of grain size, surface roughness

and crystallinity of the thin films. According to these observations, organic thin films transistors

were fabricated using this substrate temperature.

Here  we  present  results  regarding  the  properties  of  organic  field  effect  transistors

prepared using TTCDI-5C molecules.  Measurements were conducted under low vacuum and
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samples  were  temporarily  exposed  to  air  before  introduction  into  the  vacuum  electrical

measurement system. From the ID-VD curves in figure 4 inset, these molecules clearly show n-

type operation. Figure 4 shows the dependence of the drain current ID on the gate voltage VG for

a drain voltage of VD = 70 V. The saturation regime current is given by the following equation5,18:

  2

2 TGsatoxD VVC
L

W
I   (2)

where Cox is the gate dielectric capacitance per unit area, µsat the field effect mobility at saturation

regime and VT the threshold voltage.

The field effect saturation mobility µsat was calculated from Equation (2) and the slope ID
1/2 vs.

VG in the saturation region. The mobility was found to be 7.24 x 10–2 cm2V–1s–1 for a channel

length and width of 50 µm and 400 µm respectively. ION/IOFF ratio was 12200 and the threshold

voltage 16 V.

The reason for motilities remaining low may be due to the short air exposure just before the

introduction of the sample in the electrical measurement system. These organic anions are easily

oxidized  by  water  and  oxygen,  so  that  devices  quickly  cease  to  operate  in  air.  Currently,

experiments using a vacuum transfer system are ongoing for improving device performance.

In  summary,  theoretical  calculations  indicate  that  key  parameters,  such  as  the

reorganization  energy  and  the  adiabatic  electron  affinity  related  to  the  charge  transport

properties,  make TTCDI-5C more  suitable  than  PTCDI-5C  for  use  as  the  semiconductor  in

OFETs.

TTCDI-5C  thin  films  were  deposited  on  an  SiO2 surface  under  vacuum  using  a  hot  wall

deposition technique.  Surface morphology and film structure were analyzed using AFM and

XRD. Grain size increases slightly with temperature from 50 nm to 50   250 nm at 140 °C.

Surface roughness remains in the range 1 to 5 nm up to 140 °C and then increases substantially

up to 200 °C. XRD measurements indicate a fairly well-ordered thin film at 140 °C with (00l)
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Bragg reflections corresponding to a d spacing of 1.58 nm. Furthermore, a metastable thin-film

phase was detected at lower substrate deposition temperatures.

Organic  field  effect  transistors  have  been  fabricated  using  TTCDI-5C  molecules  as  the

semiconductor thin film in a top-contact configuration. Field effect mobility of 7.24 x 10–2 cm–

2V-1s-1 was  obtained  in  the  saturation  regime.  This  study  demonstrates  the  potential  of  the

terrylene family of derivatives for the fabrication of OFETs.
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Table  I:  Reorganization  energies  (),  adiabatic  electron  affinities  (EAa)  and HOMO-LUMO
bandwidth of PTCDI-R and TTCDI-R

Table 1.

 (meV) EAa (eV)
HOMO-LUMO
bandwidth (eV)

PTCDI-R 265 2.32 2.54
TTCDI-R 222 2.50 1.99
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Figures captions

Figure  1:  a)  Chemical  structure  of  N,N’-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboximide
(TTCDI-5C). b) Isosurface plots of frontier orbitals, including LUMO and HOMO of TTCDI-
5C.

Figure 2: AFM images of TTCDI-5C thin films. (a)-(d): 15 ML, substrate temperatures of RT,
100 °C,  140 °C and 200 °C respectively. (e)-(g):  1.3,  1.6  and 5 ML at  140 °C.  h:  surface
roughness of the 15 ML thick films versus substrate temperature.

Figure 3: -2 X-ray diffraction scans (logarithmic scale) of TTCDI-5C thin films deposited at
140 °C with a thickness of 30 ML. 

Figure 4: Electrical characterization of OFET. ID
1/2-VG curve at VD = 70 V. Length of the FET

channel: 50 µm. Inset: ID-VD curves for VG from 0 to 70 V
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