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Abstract

This paper introduces VEDAI: Vehicle Detection in Aerial Imagery a new
database of aerial images provided as a tool to benchmark automatic target
recognition algorithms in unconstrained environments. The vehicles con-
tained in the database, in addition of being small, exhibit different variabil-
ities such as multiple orientations, lighting/shadowing changes, specularities
or occlusions. Furthermore, each image is available in several spectral bands
and resolutions. A precise experimental protocol is also given, ensuring that
the experimental results obtained by different people can be properly repro-
duce and compared. Finally, the paper also gives the performance of baseline
algorithms on this dataset, for different settings of these algorithms, to illus-
trate the difficulties of the task and provide baseline comparisons.

Keywords: Detection, Low Resolution Images, Vehicles, Database, Aerial
Imagery, Infrared Imagery

1. Introduction

Automatic Target Recognition (ATR), which is the task of automatically
detecting targets in images, has an history of more than 35 years of research
and development in the computer vision community. The basic aim of such
ATR systems is to assist or remove the role of man from the process of de-
tecting and recognizing targets and hence to implement efficient and reliable
systems of high performance. One typical application is surveillance and
reconnaissance, two tasks which need to be more and more automatic, as
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recent high resolution surveillance sensors produce imagery with high data
bandwidth. As explained by Wong [1], a surveillance mission over a 200 mile
square area with a one foot resolution (an appropriate size for recognizing
many targets), will generate approximately 1.5 x 10'? pixels of data. If the
area is split in 10 million pixels images, photo interpreters would have to ex-
amine over 100,000 images, which is an impractical workload and results in
a delayed or incomplete analysis. In addition, the delay would allow movable
targets to relocate so that they can not be found in subsequent missions.

Despite the aforementioned very long history of ATR in the computer
vision literature, it is still a challenging problem even with the most recent
developments of this area. This is demonstrated by the figures given in the
experiments section of this article.

The traditional way to address ATR consists in the following pipeline [2]:
(i) preprocessing, which consists in improving target contrast and reducing
noise and clutter (ii) target detection, i.e. the process of localizing the area
in an image where a target is likely to be present, often done by computing
image regions with high contrasts (iii) segmentation, which consists in accu-
rately extracting the potential targets from the background and (iv) recogni-
tion, consisting in extracting visual features from these potential target and
finally classifying them.

Modern approaches for automatic object detection uses a rather different
paradigm. Indeed, they try to avoid taking intermediate decisions by relating
directly the input space with the final decision space and making extensive
use of machine learning techniques. Two prototypical examples are the face
detector of Viola and Jones [3] based on the use of Haar wavelets and a
cascade of boosted classifiers and the Dalal and Triggs’s pedestrian detector
[4] using Histogram of Oriented Gradients (HOG) combined with Support
Vector Machine (SVM) classifiers. The popular bag-of-words model [5] has
also been used successfully for object detection [6]. The combination of
such efficient machine learning algorithms with discriminative features is the
foundation of modern object detection algorithms. More improvement has
also been done recently by using more complex object models, such as the
Deformable Parts Model [7].

One reason to explain the progress in this field is the release of publicly
available datasets allowing the development, the evaluation and the compar-
ison of new algorithms in realistic conditions. PASCAL VOC [8] benchmark
provides one of the key datasets for object detection. From 2005 to 2013,
yearly evaluation campaigns have been organized. The detection competi-



tions of PASCAL VOC consist in predicting the bounding box and the label
of each object from twenty possible target classes in the test image. In 2012,
a total of more than 10,000 annotated images were available for training and
validation. Several other datasets, presented in the related work section, are
available for the evaluation of different detection tasks (e.g. person detection,
face detection), such as ImageNet [9] or LabelMe [10].

However, none of these datasets is actually adapted to ATR. Indeed,
one specificity of ATR is to require the detection of small targets while these
dataset includes objects whose size in images is usually bigger than 200 pixels
and can be the main topic of the image. These recent datasets are more
concerned by the diversity of object appearance, articulated objects, number
of categories than by target size, image noise, multi-spectral images, sensor
technology.

On the other hand, and as far as we know, none of the recent approaches
for object detection (e.g. [4, 7, 11]) have been evaluated in the context of
ATR.

Within this context, the motivation for this paper is twofold. First,
the paper introduces VEDAI (Vehicle Detection in Aerial Imagery), a new
database designed to address the task of small vehicle detection in aerial im-
ages within a realistic industrial framework. This dataset was made to help
the development of new algorithms for aerial multi-class vehicle detection in
unconstrained environment, giving the possibility to evaluate the influence
of image resolution or color band on detection results. Images includes vari-
ous backgrounds such as woods, cities, roads, parking lot, construction sites
or fields. In addition, the vehicles to be detected have different orientations,
can be altered by specular spots, occluded or masked. No specific constraints
were put on the types of vehicles. This diversity of backgrounds and vehicle
appearances will allow to make progress in the field of automatic scene anal-
ysis, scene surveillance and target detection. Second, we benchmark some
baseline algorithms and show their performance on the proposed dataset, to
allow people to have some point of comparison.

The organization of the paper is as follows. After presenting the related
works in Section 2, we introduce the dataset (i.e. the images, the vehicle
classes as well as the background types, the annotations and the organiza-
tion of the dataset) in Section 3. To make comparisons between algorithms
possible, we give in Section 4 the evaluation protocol associated with the
dataset. We finally present in the last section (Section 5.2) experiments in
which baseline algorithms are evaluated on the dataset, giving baseline results



and some analysis of the influence of the parameters on the performance.

2. Related works

Object detection — often considered as being one of the most challenging
computer vision task — has a long history in the computer vision literature.
This section focuses on three aspects of the problem, namely (i) the datasets
publicly available to develop, validate and compare object detectors, (ii) the
different ways to measure detection performance, (iii) the current state-of-
the-art approaches for object detection.

2.1. Databases for object detection

Modern approaches in computer vision rely on machine learning and re-
quire annotated training data. In addition, there is also an increasing need
for comparing approaches with each other and establishing what are the most
promising avenues. The consequence is that a lot of new datasets have been
recently produced and made publicly available. If most of them are related
to object /scene recognition (e.g. [12, 13, 14, 15, 16]) — which is related to our
problem but covers different needs — only a few of them specifically address
object detection.

More precisely, datasets for detection usually fall into the following cate-
gories: (i) pedestrian detection (ii) face detection (iii) detection of everyday
objects (iv) vehicle detection. A summary of these datasets is given Table 1.

Person/pedestrian detection. This is one of the very popular detection task,
probably because of the large number of applications (surveillance, index-
ing, traffic safety, etc) that may result. The INRIA person dataset, first
introduced in [4], contains several hundreds cropped images of humans with
different resolution (64x128, 70x134, 96x160). Images are also provided with
the whole background and the base is separated in train and test sets. The
images come from various sets of personal photos and a few from the web.
The people appear in any orientation and among a wide variety of back-
grounds. Many people are bystanders taken from the backgrounds of the
input photos, so ideally there is no particular bias in their pose. This dataset
was introduced because the previous dataset of reference — the MIT person
dataset [17] — was not challenging enough.

The CalTech pedestrian dataset [18] has been introduced once the INRIA
person dataset was considered to be too small and too easy and addresses



more specifically the case of pedestrian detection. It is a collection of images
taken from a vehicle driving through regular traffic in an urban environment.
It contains 350,000 labeled pedestrian bounding boxes in 250,000 frames.
Occlusions are annotated with a two bounding box system and annotations
are linked between frames, forming tracks.

The increase of the number of images between these two datasets (from
hundreds to thousands) reflects a current trend in the production of datasets.

Face detection. Face detection is another well known detection task. Con-
trarily to pedestrian detection and despite the fact that it is often considered
as an important task related to interesting applications such as security or
safety, only a few datasets exist. Most of the existing face-related databases
are indeed oriented toward face recognition (e.g. [15]) and not face detection.
The CMU-MIT dataset [19], which includes the MIT dataset [20], is one of
the dataset of reference, extensively used in the past. It contains only 130
different images for a total of 507 different faces (front view only). More-
over, this dataset is small and the evaluation protocol and the metric are
not clearly defined. The results presented by the numerous papers using it
can not be compared in a reliable way, as noticed by [21]. More recently,
Kodak has compiled and released a new image database for benchmarking
face detection and recognition algorithms [22]. This database has 300 images
of different sizes, the size of faces in images varying from 13 x 13 pixels to
300 x 300 pixels. Finally, the most used and well-known dataset in face de-
tection is Face Detection Dataset Benchmark (FDDB, [23]). It is made from
images extracted from Faces in the Wild dataset ([24]). It is worth noting
that FDDB removed all faces that are smaller than 20 pixels width or height.

FEveryday life objects. Some other databases have a more general purpose and
mix several object classes, often taken from the everyday life. For example
the ETHZ dataset [25] contains 5 different classes (namely ‘logo’, ‘bottle’,
‘giraffe’, ‘mug’ and ‘swan’), which are characterized by specific shapes. It
contains distinct train and test subsets. The images have been downloaded
from Flickr and Google Search Images. The dataset does not only include
photos but also paintings, drawings and computer rendered images. Around
40 images are available for training and 40 for testing, per class. Another
dataset containing everyday life objects is the dataset from Pascal VOC
challenge [8], which is one of the most famous challenge in computer vision.
This challenge includes a detection task. The latest editions of the Pascal



Figure 1: Some vehicles from PASCAL VOC 2007 dataset [8]

VOC rely on a dataset of 20 classes, for a total of several thousands images,
split into train, validation and test sets. The original images were taken from
other publicly available datasets as well as from websites such as Flickr.
A third multi-class challenge is proposed with the LabelMe dataset [10].
LabelMe is different from other databases because it can be annotated by
anyone. The precise number of classes is therefore changing over time. In
December 2006, it was containing 111,490 polygons on 11,845 static images
and 18,524 video sequences. Many images still need to be annotated. Finally,
it worth to mention the recent ImageNet dataset [9], which is popular at the
moment, and can be used for object detection. It contains more than 14
millions of images.

Images such as images from Flickr, commonly used in publicly available
datasets, are photographies taken with consumer cameras. If they are ob-
viously suited to the evaluation of image retrieval algorithms, the context
is too different from aerial surveillance. In addition, objects of interest are
often the main subject of the pictures e.g. vehicles are often in the center
of the image and are very large. To illustrate this point, some vehicles from
PASCAL VOC are shown Figure 1. Regarding the larger ImageNet dataset,
which is not designed at all for surveillance and security applications, it does
not contain any annotations of vehicles in aerial image nor infrared images.
We did not really find images that would fit the task covered by this paper,
except some aerial images for which vehicles are on roads or highway but are
to small to be detected in a reliable way, even for humans.

Vehicle detection. As shown by the works of [27, 28], the databases we pre-
sented so far have some intrinsic bias, which can be explained by how the
images have been collected. Furthermore, they are vey different from the
task considered in this paper. Closer to our area of interest, vehicle detec-
tion has also received a lot of attention during the last decade. Despite the
existence of available vehicle databases, most of these bases contain vehicles



Figure 2: Four illustrative OIRDS images [26].

seen from the ground and the vehicle is the main topic of the image (e.g.
the INRIA Car dataset [29]). Some (even closer) works on target detection
in aerial imagery use aerial databases ([30, 31]), but unfortunately they are
not publicly available. Consequently, to our knowledge, none of the results
addressing vehicle detection in aerial images are reproducible.

We can mention the work of [32], which uses 9 sequences dedicated to the
tracking of vehicles in aerial imagery. However there is only 9 sequences, and
not more than 50 images per sequence. Furthermore, all of them are in an
urban environment. To our knowledge the only available dataset is OIRDS
(Overhead Imagery Research DataSet) [26], which contains 180 vehicles in
900 annotated images. It contains five classes of vehicles (‘truck’; ‘pick up’,
‘car’, 'van’ and ‘unknown’); annotations give information such as color, spec-
ularity and distance to the ground. Some images of the OIRDS dataset are
given Figure 2. However, this database has two issues, which make it hard



‘ Database ‘ Classes ‘ Folds ‘ # Images ‘ Eval. ‘

Inria Pedestrian 1 train/test 2,000 DET+ OP
CalTech Pedestrian 1 train/test 250,000 | MR/FPPI+ OP
CMU 1| no protocol 130 no protocol
FDDB 1 10 folds 2845 ROC curves
ETHZ 6 | train/test 500 rec/FPPI
PASCAL 20 | train/val/test >10,000 | AP+prec/rec
LabelMe >400 no cut >40,000 no protocol
ImageNet 21841 | train/val/test | >14,000,000 | AP+prec/rec
OIRDS 4 no cut 900 no protocol
Proposed Dataset 9| train/test 1200 AP+OP

Table 1: Summary of existing databases for object detection. DET means ”Detection
Error Trade-off”;, MR means ”Miss Rate”, OP is for ”"Operating Points”, FPPI is the
abbreviation of ”False Positive Per Image”, rec is used for ”Recall”, prec for ”Precision”,
AP means ” Average Precision”, no protocol means that no protocol is given.

to use to benchmark target detection algorithms. First of all, no evaluation
protocol is defined. The risk is hence that each evaluation can use different
images for training or testing and use different scores. Second, the dataset
is obtained by aggregating multiple sources of images (20 different sources)
and does not have enough statistical regularity. Indeed, there are 20 different
sources for 900 images, with only 45 images per source on average, which is
too limited.

These issues make the results difficult to reproduce, preventing other re-
searchers to make any comparisons with this work. For example, the authors
of [33], which did use this dataset, used their personal split of the database
(easy, medium and hard) but the precise set of images in each split is not de-
fined, preventing from reproducing the results. As well, [34] uses this dataset,
but gives only qualitative results on it.

Performance evaluation

Fair empirical evaluations of detection algorithms can be done if and only
if a clear evaluation protocol is defined. In addition to the datasets, a metric
must be also specified. This section reviews the different performance metrics
used in the object detection literature.

First, as pointed out by [18], we can oppose the per windows performance
used in several papers on object detection (e.g. [4]) to the per image perfor-
mance, which is the norm for object detection [35]. The per windows case



assumes that the detection task is evaluated by classifying cropped windows
centered on objects of interest against windows from images without the ob-
ject. The typical assumption is that better per window scores will lead to
better performance on entire images, but [18] shows that, in practice, per
window performance can fail to predict per image performance.

As explained by [36], Receiver Operator Characteristic (ROC) curves [37]
are commonly used (e.g. [3, 19]) to present results for binary decision prob-
lems. Please, note that even if object detectors often output probabilities of
scores, they are usually thresholded (using a discrimination threshold), ac-
cording to different operational points and hence considered as binary. The
ROC curve is a graphical plot which illustrates the performance of a binary
classifier system as the discrimination threshold is varied. It is created by
plotting the fraction of true positives out of the positives (TPR = true pos-
itive rate) vs. the fraction of false positives out of the negatives (FPR =
false positive rate), at various threshold settings. The ROC curve is some-
times substituted by the Detection Error Tradeoff (DET) curve (e.g. [4, 38]),
plotting False Reject rate vs. False Acceptation rate. It contains the same
information as ROC curves, but using 1-TP instead of TP. The x- and y-axes
are scaled non-linearly by their standard normal deviates, yielding tradeoff
curves that are more linear than ROC curves, helping to see small differences
when performance is high.

However, ROC curves can present an overly optimistic view of an algo-
rithm’s performance if there is a large skew in the class distribution. This
is typically the case for object detection using sliding windows, as the vast
majority of the windows to be processed are negative windows while only a
very few windows per images are positive. It is even more true in surveil-
lance application, as you may have hundreds of images without any vehicles
to detect. Consequently, a large change in the number of false positives can
lead to a small change in the false positive rate used in ROC analysis.

When dealing with highly skewed datasets, Precision-Recall (PR) curves
[39] give a more informative picture of an algorithm’s performance. Recall
is defined as the fraction of correctly predicted true positive (TP) over the
total of positive (P), i.e. Recall = TZ, while Precision is the fraction of true
positive (TP) among all the positive predictions (false positive FP plus true
positive TP), i.e. Precision = TPZ%. The Precision-Recall curves are used
to evaluate most of the object detection algorithms, such as [40, 41, 42, 43].

Instead of representing the performance by a curve, it is often more appro-
priated to use particular operational points adapted to a given application.
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A common measurement is the False Positive Per Image rate (FPPI) and the
False Positive Per Window rate (FPPW) for a given threshold. For example,
in [4], the operating point giving the recall at 10~* FPPI is chosen while [18]
chose 1 FPPI . Once a characteristic is fixed (e.g. the FPPI) the performance
is given by the other one (e.g. the recall). This characterizes the behavior of
the algorithm for the expected FPPI or FPPW. In industrial context, algo-
rithms need to meet specifications; it explains why this metric is often used
in such contexts by companies. Some other operating points are sometimes
used, as for example the equal error rate, which is the point where FPR is
equal to Recall. This choice is often arbitrary and chosen because easy to be
computed.

Another way to represent detection algorithms performance by scalar
numbers instead of curves is to use the area under the curve e.g. the Area
Under the ROC curve or AUROC. The better an algorithm is, the closer to
1 its AUROC is. In the same way, the Average Precision is the area under
the precision-recall curve. Usually, the Average Precision is computed on an
interpolated curve of 11 points, as explained by [44]. Despite it is not adapted
to the evaluation of surveillance tasks — for which using an operational point
is more relevant — this measure is included in our protocol as it has been used
extensively in the recent computer vision literature (e.g. in PASCAL VOC
[8] which is a standard).

In addition the evaluation protocol has to specify when a prediction is a
true positive, 7.e. when the prediction and the object match. Detection algo-
rithms usually output rectangular regions (bounding boxes) around detected
objects. Predictions are then (generally) considered as being correct if both
the position and the scale of the predicted bounding boxes are correct. This
is often done by computing the Jaccard index (e.g. [8]), defined as the area
of the intersection divided by the area of the union of the two rectangular
bounding boxes (ground truth and prediction). Some other works simply
measures the overlap (e.g. [33]) between both. When several objects are on
the image, multiple detections can be assigned to the same ground truth an-
notation, e.g. when several objects are in line one beside the other. This can
be handled in different ways, such as by building a bipartite graph [45, 46]
or by relaxing of the overlap criterion [47, 48].

Finally, the use of rectangular bounding boxes raises some issues, as noted
by [49], because the shape of the object is in general not rectangular as shown
by Figure 3.
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Figure 3: Left hand-side: the prediction (blue box) is counted as false positive according
to the Jaccard index, as the ground truth (green box) covers non object. Right hand-side:
while the prediction (blue box) cover the cat and only the cat, it is counted as a false
positive as it does not cover it entirely. Viewed from another point of view, this area could
be counted a true positive.

2.2. State-of-the-art object detection approaches

Sliding window classification is the dominant paradigm in object detec-
tion. It consists in independently classify all sub-windows as being object or
non-object and selecting predominant bounding boxes after a non maximal
suppression stage.

The approaches differ in the classifier they use, which is in general ei-
ther a boosted classifiers (e.g. [3, 50, 51]), SVM classifiers (e.g. [4, 52, 7,
53] or neural networks (e.g. [54]) and more recently, Convolutional Deep
Networks[11, 55, 56, 57, 58].

The classifiers use a feature based representation, embedding some in-
variance to basic transformations such as small shift or illumination vari-
ations. The most efficient features are Haar-like wavelets (e.g. [59]) com-
puted from integral histograms (e.g. [60]), edgelets (e.g. [51]), shapelets
(e.g. [61]), but also histogram of gradients (HOG) (e.g. [4, 62]), bag-of-
words (e.g. [63]), multi-scale spatial pyramids [64], covariance descriptors
(e.g. [38]), co-occurrence features (e.g. [65]), local binary patterns (e.g.
[66]), color-self-similarity (e.g. [67]), or combinations of such features (e.g.
(66, 50, 67, 65, 68]). Regarding deep learning approches, the features are
learnt at the same time as the classifier.
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If most of the sliding window based approaches consider the object (and
its associated templates) as being rigid, some recent approaches have suc-
cessfully investigated models in which the objects are represented by the
combination of different parts, which are spatially organized. We can men-
tion, for example, the Deformable Part-based Models (DPM) [7, 53, 61] based
on the pictorial structures of [69], the poselet model [70] or the mixture of
parts of [71].

One way to make the sliding window faster — following the success of
Viola and Jones [3] — is to use cascades. Cascades have been successfully
applied to the star-structured models of [7] in [43] and [42] for this purpose.
It is also possible to skip the windows that are likely to contain none of
the targets by alternative approaches, such as the use of interest points in
the form of a cascade of jumping windows as proposed by [72], the use of
saliency operators like objectness [73, 74] or the use of segmentations [41, 40]
as candidates to object-like window hypotheses.

A few work have also been done specificly for vehicle detection. The work
of [30] make the comparison between different methods, but uses as well
classic features and classic classifier. They also use color, which is not a good
feature in term of application, as it is obviously not a wanted property that
vehicles are more likely to be detected if they have specific color properties.
The work of [75] use a pixel classification approach, which is different from
the sliding window approach. However, their work is based on learning color
feature to detect vehicles.

3. The VEDAI dataset

As explained in the introduction, our motivation is to propose a dataset
which would allow the development and benchmarking of (small) target de-
tection algorithms, and more specifically of vehicle detection in aerial images.

The specifications of the dataset must satisfy the following constraints:

e the images should be free of copyright or at least freely usable within the
computer vision community, which is a strong criterion as producing
aerial images is usually expensive,

e the number of different targets as well as their types should be diverse
enough to represent the needs of the related applications,

e backgrounds should be as diverse as possible,

12



Figure 4: Four illustrative images of the database: two color images (first row) and two
infrared images (second row).

e targets should be small (in pixels),

e the ground-truth, included in the annotations distributed with the
dataset, should be complete enough to allow the development and eval-
uation of target detection algorithms.

Images. After reviewing all the possible sources of images that would fit
with the previous requirements, we decided to retained the satellite images

13



of the Utah AGRC [76], which gives access to many freely distributable
aerial orthonormal images. More precisely, we selected the HRO 2012 6inch
photography set, with has a resolution of 4.92in x 4.92in per pixel (12.5cm x
12.5cm per pixel). The images were taken during spring 2012. Raw images
have 4 uncompressed color channels (three visible color channels and one
near infrared channel).

The original satellite images are very large, probably too large for stan-
dard detection algorithms. We therefore decided to cut them in smaller
images. Another advantage in doing this is to focus the dataset on inter-
esting regions. Indeed, the vast majority of the images contains repeated
similar textures (e.g. lakes, mountains, forest) that would bias the perfor-
mance evaluation. By selecting by ourselves interesting regions, we tried, as
far as possible, to maximize the diversity of the dataset, in terms of vehicles
as well as in terms of backgrounds and distractors.

A total of 1,210 1024 x 1024 images have been manually selected and
included into 4 different sub-sets: (i) large-size color images (LCI), (ii) small-
size color images (SCI), (iii) large-size infrared images (LII), (iv) small-size
infrared images (SII). The exact position of the 1024x1024 image in the
big image provided by the UTA database is given, in case someone wish to
extend the database. Please note that the small images are exact duplicates
or the large ones, except they are downscaled to (512 x 512) to make the
targets smaller. The color images have three 8-bits channels image (R,G,
B) while the infrared images have only one 8-bits channel. All images have
been taken from the same distance to the ground. This is a big difference
with other datasets such as PASCAL [8] or LabelMe [10], were distance to
objects can change a lot. This choice was made because for surveillance
application, the airplane is often at a known distance from the ground, and
the surveillance system often have some specification of height. Furthermore,
there is no oblique view for the images, unfortunately we did not find some
oblique views to add to our dataset. These two limitations make the problem
easier, however it does not make the database trivial, as it can be seen in the
results. Splitting the dataset according to target sizes and type of imaging
reflects the two main needs of surveillance applications. Thanks to the near
infrared set, we can have a determination of the performance of algorithm
without any color cue. The number of images is not very high, however it is
representative of what an industrial firm could collect with a new sensor. It
is however possible to learn on other data and test on ours.

While some datasets contain a single type of background (e.g. [31] con-
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name image size | resolution(cmpp) | #chanels | chanels type
large-size color images (LCI) | 1024x1024 12.5x12.5 3 colors
small-size color images (SCI) 512x512 25.0x25.0 3 colors
large-size infrared images (LII) | 1024x1024 12.5x12.5 1 near infrared
small-size infrared images (SII) | 512x512 25.0x25.0 1 near infrared

Table 2: the different subsets.

tains only vehicles on roads in urban environment), our dataset has many
different type of backgrounds (e.g. fields, grass, mountains, urban area, etc.).

Images with too many vehicles (for example a large parking lot, such as
presented in [33]) were excluded, as an algorithm which returns random posi-
tions would provide good scores on such images, and performance evaluation
would be difficult. Figure 4 shows some illustrative images.

Vehicles. The proposed dataset contains nine different classes of vehicles,
namely the ’plane’, 'boat’, ‘camping car’, 'car’, 'pick-up’, 'tractor’, 'truck’,
'van’, and the 'other’ category. Typical images illustrating theses classes are
given Figure 6). Two meta-classes are also defined and considered in the
experiments.The ’small land vehicles’ class containing the ’car’, ’pick-up’,
‘tractor’, and van’ classes, and the 'large land vehicles’ class containing the
‘truck’ and the 'camping car’ classes. There is an average of 5.5 vehicles per
image, and they occupy about 0.7% of the total pixels of the images.

Folds. Tmages, among each subset, are divided in 10 folds, in order to allow a
10-folds validation protocol. The folds are made in such a way that each fold
contains approximately the same number of vehicles of each class, except for
the ’airplanes’ class for which there were too few targets for splitting them
equally. Table 3 gives some statistics about the database.

Annotations. Each target in the dataset has been annotated by one human
operator in the following way. First, the coordinates of the center of the
vehicle in the image is given, as well as its orientation (the angle it makes
with the horizontal line, modulo 7 or 27), the coordinates (in pixels) of its 4
corners and its class label. In addition, there are also two binary flags stating
if the vehicle is occluded or not and if it is fully contained in the image. The
orientation is set to the range [0 — 7] when the difference between front and
back is not obvious, which is the case for the ”camping car” and the ”other”
clagses. For the "plane” class, we annotated the plane so that the wings’
plane are within the annotation rectangle and that the orientation follow the

15



Class name Tag | Targets per fold | Total | Orientation
Boat boa 17 170 [—7 7]
Camping Car cam 39 390 [0 7]
Car car 134 1340 [—7 7]
Others oth 20 200 [0 7]
Pickup pic 95 950 [—7 7]
Plane pla — 47 [—7 7]
Tractor tra 19 190 [—7 7]
Truck tru 30 300 [—7 7]
Vans van 10 100 [—7 7]
Small Land Vehicles | slv 295 2950 [—7 7]
Large Land Vehicles | llv 69 690 [0 7]

Table 3: Statistics of the dataset

00000000 580.69 1009.22 3.012318 554 [...] 1021 002 1 O
00000001 344.82 812.36 -0.013888 326 [...] 819 001 1 O
00000001 413.21 811.24 -0.011363 392 [...] 819 009 1 O

Table 4: Exerpt from the annotation file. This file contains, for each target and from left
to right (one target per line), the image ID, the coordinates of the center in the image, the
orientation of the vehicle, the 4 coordinates of the 4 corners, the class name, a flag stating
if the target is entirely contained in the image, a flag stating if the vehicle is occluded.

fuselage. For the "other” class, the orientation is along the length of the
vehicle. One single annotation file, given with the dataset, gathers all the
annotations. Some illustrative lines are shown in Tab. 4.

For convenience, the annotations are also provided as a set of independent
files, one per image, each file being named according to the image name
(e.g. annotation file of image 00000010. png is named 00000010.txt). They
contain exactly the same information than the main annotation file. One set
of annotation is provided for 512 x 512 images (both IR and color) and a
different one for the 1024 x 1024 images. A tool to explore the database is
also provided. This tool allows to inspect the images of a specific set and see
the polygons around the vehicles, as well as their orientation. An example is
given Fig. 5.
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Figure 5: One illustration of the annotation provided, as given when using the tool to
explore the database.

4. Performance evaluation

As explained before, our motivation for proposing this new dataset is to
provide the computer vision community with tools allowing to make progress
in the field of automatic target detection. However, progress can be measured
if and only if the way to evaluate performance is clearly defined. This is the
purpose of this section, which defines the evaluation protocols accompanying
the dataset. These evaluations are done independently for each sub-dataset
and each category.
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Figure 6: Images illustrating the different categories of the dataset. From left to right :
car, truck, camping car, tractor, plane, boat, other, pickup and van.

000001 Cam 150 12 1.13
000001 Car 415 189 -0.50
000002 Car 319 489 1.12
000002 Pla 32 411 1.01
000002 Tru 144 28 0.12

Table 5: Exerpt of a detection file. Each line represent a single detection encoded by the
image number of the image containing the target, the target class, the x and y coordinates
of the target in the image and finally the detection score.

4.1. Protocol

The protocol relies on a ten-folds cross validation procedure. It is a stan-
dard way to evaluate algorithms in machine learning [77]. Cross-validation is
a model validation technique to assess how the results of a statistical analy-
sis will generalize to an independent data set. One round of cross-validation
involves partitioning a sample of data into complementary subsets, perform-
ing the analysis on one subset (called the training set) and validating the
analysis on the other subset (called the testing set). To reduce variability,
multiple rounds of cross-validation are performed using different partitions
and the validation results are averaged over the rounds. Our dataset is pro-
vided with pre-defined folds (i.e. the list of images in each fold is fixed),
the folds being defined in such a way that the number of vehicles per fold is
approximately the same, for each category.
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Among the 10 folds, a single fold is retained as testing data to evaluate
the model, while the remaining 9 folds are used as training data. The cross-
validation process is then repeated 10 times, with each of the subsamples
used exactly once as test data. The 10 results from the different folds are
then averaged to produce a single estimation and the standard deviation over
the 10 folds is reported as well.

The advantage of this method over repeated random sub-sampling is that
all observations are used for both training and validation and each observa-
tion is used for testing exactly once. Please note that despite train/validation
splits are provided, any split can be used for the cross validation. The per-
formance on the test fold is evaluated through the measures of performance
defined in the next section.

4.2. Metrics

The detection algorithm to be evaluated has to process the set of images
contained in one of the test fold and output a set of predictions, which are the
predicted locations of the target in the test images. Detections are 5-tuples
vectors containing respectively the id of the images in which the target was
detected, the class of the target, its coordinates in the image reference and
a confidence score. There are no restriction regarding the range of values of
the detection scores, but a higher score is interpreted as more confidence in
the detection.

Ideally — and as we are interested by different operating points (e.g. dif-
ferent points of the ROC curve) — the operating point should be a parameter
of the detection algorithm, which should be run for the different operating
points. It is especially true for algorithms relying on cascades, as they cannot
score their detections for the whole range of score (low scores are rejected by
the first levels of the cascade). However, for simplicity and because it covers
most of the cases, we assume that the detection algorithm can provide scores
and the different operating points are obtained by thresholding the detection
scores accordingly.

In practice, algorithms have to output a text file with one line per pre-
dicted detection, as illustrated Table 5. Each line contains the image id, the
class, the position and the score of the detection.

As it is commonly done in such situation, we aim at evaluating the perfor-
mance for different operating points, which is done, as said before, by varying
a detection threshold. More precisely, the first metric is the Precision-Recall
Curves, chosen because (i) contrarily to the ROC curve it is not dependent
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on the number of windows processed by images and (ii) because of its wide
use in the computer vision literature. The second one is the average recall for
a given number of False Positive Per Image, which is closer to what people
who develop applications need to know. Both are defined in the following
paragraphs.

For a given image I and a particular value of the threshold ¢, only the
detections in I having a score greater than that ¢ are supposed to be detec-
tions, the other are discarded. The number of detections in I that match
with the ground truth are denoted as True Positive or T'P(I,t) while the
detections corresponding to non-target regions are denoted as False Positive
or FP(I,t), for the given threshold ¢. In the same way, targets that are not
detected (missed) are denoted as False Negative or FIN(I,t).

It allows us to define the precision and the recall of a given testing fold,
for a given operating point ¢, as:

_ Yreold TP(1,1)
Yreold TP 1) + Yregord FP(1,1)
Zlefold TP(Iv t)
Nr

where Np denote the number of targets in the considered fold.
We also define the Fulse Positive Per Image rate (FPPI) as:

_ Zlefold FP
Ntest

(1)

precision(t)

recall(t) = (2)

FPPI(t) (3)
where N 4 is the number of images in the considered fold.

The entire precision-recall curve is very informative, but there is often a
desire to summarize it into a single number. The traditional way of doing this
is the 11-point interpolated average precision. The interpolated precision is
measured at the 11 recall levels of 0.0, 0.1, 0.2, . . . , 1.0. Then the
arithmetic mean of these interpolated precisions is computed. This method
has been used in TREC 8 [44].

In addition to the average precision, we also compute the recall for the 4
different FPPI rates of 1072, 107!, 1 and 10 false positives per images.

This gives a total of 5 measurements: the mean average precision and
the FPPI for 4 recall rates. These 5 measurements are computed for each
ones of the 10 test folds, and the mean values and corresponding standard
deviations are reported as well.
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We now have to define what a True Positive is, i.e. when a predicted
target fits with one of the target of the ground truth. In principle, it would
be necessary to find the best set of matches between predictions and ground
truth. In our case the targets do not overlap and, as objects have a single
scale, it can be done much more simply by assigning each prediction to the
nearest target in the ground truth.

By denoting as p = (z,y) the coordinates (in pixels) of the predicted
target and as P = (X,Y) the coordinates of the closest target in the ground
truth, the prediction is considered as being correct (i.e. as a TP) if the
prediction is within an ellipse centered on the ground truth, according to the
following criterion:

(p_P>t<cosa —sina >t<v(;]2 (l)><cosa —sina>(p_P>§1 n

sina cosa iz sina cosa

where W and H are the half height and half width of the target in pixels
and a is the (ground truth) orientation of the target. By construction, the
ellipses are touching the edge of the targets (except for the plane category,
but we remind that it is not used for the detection as it has too few images).
Consequently, there is no overlap between the ellipse of two targets and
therefore no need for considering more complex assignation procedures. If
several detections are associated to the same ground truth target, the one
having the best score is counted as a TP while other ones are discarded
because they are not False Positive nor True Positive either.

5. Experiments with baseline algorithms

We have tested several recent algorithms on our dataset, providing a
baseline to be compared with. These experiments are both motivated by (i)
characterizing the dataset by showing how state-of-the-art algorithms behave
on the dataset, and by (ii) giving some baseline results allowing to position
new approaches. We do know that they are not the best possible algorithms,
however they can be considered as strong baselines to be compare with, and,
in addition, they show how challenging this dataset is.

We concentrated our effort on sliding windows approaches, which are the
most efficient approaches for this type of task, at the moment. More specifi-
cally, we have implemented a standard SVM-based sliding window pipeline,
with 3 different features, namely HOG [4], LBP [78], and LTP [79]. We have
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also experimented the code of [7] (Deformable Part Model or DPM in short),
which, in addition, decompose objects into different roots and parts. For
completeness, we have also implemented a template matching approach [80],
as template matching was considered in the past as the standard approach
for small target detection, and we tested a non sliding window protocol based
on the Hough forest [81].

5.1. Experimental settings of the different detectors

5.1.1. The sliding window pipeline

Visual features. Rectangular regions to be classified are represented by one
of three features or by their combination (concatenation of the representa-
tions). The following paragraphs describe more precisely how these features
are implemented (namely Histogram of Oriented Gradient, Local Binary or
Ternary Pattern).

Our implementation of the Histograms of Gradients 31 (HOG31) is based
on [4] and includes the improvements suggested by [7], supposed to give
better results. [7] claims that augmenting the standard HOG feature with
contrast sensitive and contrast insensitive features improves performance. It
gives a 31-dimensions descriptor, the 27 first components are sensible to the
orientation of the gradient, while the 4 last components are sensible to its
intensity. We will refer to this descriptor as HOG31 in the different tables.
The norm of the gradient used here is the maximum norm over the different
channels in case of color image. With these features, the rectangular region to
be represented is divided according to a grid of 16 x 16 blocs with an overlap
of 8 pixels. Histograms of oriented gradient are computed for each block with
9-orientation bins when the orientation is unsigned and 18 otherwise.

Local Binary Patterns (LBP) [78] are made of local differences of the
image. More precisely, each pixel p of the image is given a binary code in the
following way : code = 3,y 2/(I(p) < I(p;)) where the p; are the pixels in the
neighborhood (V') of the pixel p to be encoded. We take a 3 x 3 neighborhood
resulting in a set of 256 possible different codes. We use only uniform LBP,
which are those containing at most two bitwise transitions from 0 to 1 or
vice versa when the bit pattern is traversed circularly (consequently there
are 59 different uniform LBP). Histograms of codes are computed within
16x16 cells, before being L.1-normalized.

Local Ternary Pattern (LTP) [79] is an extension of LBP, aiming at
dealing with problems on near constant image areas. With this encoding
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the difference between the center pixel and a neighboring pixel is repre-
sented by three different values (1, 0 or -1) according to a threshold e. The
ternary pattern is the combination of two binary patterns taking into ac-
count its positive and negative components: code = 3 ;o 2¢.(e < p; — p) +
Siev 20757 (V) (¢ < p —p;). In our experiments, we set ¢ = 5, which is a
standard value. As for LBP, noisy codes are removed by taking only uni-
form LTP. Histograms are computed within 16 x 16 blocks, normalized by
L1l-normalization. For LBP and LTP, color images have just been used as
grayscale images, averaging the three different channels.

Support Vector Machine (SVM) classifier. In our experiments we used the
svimlight [82] library. For efficiency, we use a linear kernel in all of our
experiments. An initial classifier is trained with the targets of the training
set as positive training data and randomly chosen background regions (not
overlapping with targets) as negative data. The performance of the classifier
can be improved in a second time by adding hard negative examples, as in
[4]. They are the false positive regions with highest scores. We repeat this
process until we pass through the whole database.

Step size. One key parameter of the algorithm is the step-size, which is
amount of shift (in pixel) between two positions of the sliding window. In
practice, the step size has been set to 8 pixels — which appeared to be a good
tradeoff between efficiency and performance for the 1024x1024 images — and
of 4 pixels for the 512x512 images. As the size of the vehicles is supposed to
be approximately known, only 4 scales are explored in addition to the original
one, all above the original scale, as the models are build from the smallest
size of positive example. The scaling factor is of 2%, which is a typical value
in such situations (e.g. [7]). In practice, the image is downscaled while the
size of the sliding window is the same.

Multi-roots classifier. As we use linear classifiers, representing object’s ap-
pearance with a single model is usually not enough. In practice we used
the multi-root SVM approach of [7] and model the targets with 12 different
roots. We cluster the target orientations into 6 different groups and learn
one detector for each group. Each view has an average height and width,
obtained by averaging training bounding box sizes. It fixes the aspect ratio
of each view. It is important to note that the rectangular regions used for
training the classifiers are not those given in the ground truth: we instead
use the closest regions of the grid (using the step-size given above) so that
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the training examples capture the shifts of the targets within the bounding
boxes due to the step-size. In addition, we flip all the images according to
vehicle orientation and learn another set of 6 detectors. It gives a total of 12
detectors. Each of them is applied on the image independently.

Non-mazimal suppression. It has been observed that sliding window detec-
tors usually output multiple detections for one single target. Filtering out
these extra detection is often called in the literature Non Maximum Suppres-
sion (NMS) [3]. In our experiment, we did this by keeping only the detections
having the best score in case two detections overlap, as done by [3]. This
merge the results from the different detectors.

5.1.2. Template Matching

In addition, we also implemented a standard template matching approach.
The templates are obtained by clustering training targets according to their
orientation. We then represented each cluster by 2 templates obtained by
the k-medoid algorithm ([83]). We then used the normalized sum of square
differences to locate template occurrences:

S (f(i) — template(i))?
VIS [[template]|

S(f) = 1/mintemplate(

5.1.3. The Deformable Part Model

Our experiments with the Deformable Part Model (DPM) detector [7] use
the latest implementation publicly available!. Only one parameter has to be
set, the number of roots used to learn the model. However, to adapt our
database, some modifications had to be done. To make the DPM working
with so small objects, we have had to upscale the images, and remove the
lines of code that discarded small positive examples. Following the work of
[84], the learning of the parts was deactivated, as it does not seem relevant
to learn parts on so small targets. When compared to our own detection
pipeline, there are several differences. First, it uses a mirror approach in
such a way that each root is divided in two roots with a left right distinction.
Second, it has a latent learning, that match the examples that look alike
together, instead of only relying on the orientations and height /width ratio.

Lyversion 5, available at http://cs.brown.edu/~pff/
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5.1.4. Random Hough Forest

We also tested a Random Hough Forest algorithm of [81], which is not
based on a sliding window protocol 2. We used 15 trees for all sets. For the
VeDAI-Small sets we used 4x4 patchs (which were the best in preliminary
experiment), and for the VeDAI-Large sets, we used 8x8 patches.

5.2. Results

Four different types of results are presented in this section. First, the
performance of the baseline detectors introduced in section 5 are compared
on the small-size infrared images (SII sub-set). In a second time, the best of
the baseline detectors is evaluated on the 3 other sub-sets, and the influence
of the type of images or resolution is commented. Third, a brief parametric
study is proposed, in which we experiment on the key parameters of the
different detection algorithms. Finally, we show how the parameters of the
evaluation process influence the evaluation of the performance.

5.2.1. Results on the SII sub-set

This sub-set is the most difficult as only one bandwidth is used and as
the images are the smallest. The quantitative results are shown in Table 6.

We run 7 different detectors on this sub-set. The 4 first are based on the
standard sliding window pipeline previously described with different features:
SVM+HOG31, SVM+LBP, SVM+LTP and SVM+HOG+LBP (concatena-
tion of HOG and LBP descriptors). The three last ones are the DPM (using
only the root and no parts), the Hough Forest (HF') and the template match-
ing (TM) approaches.

Best results are obtained with the combination of HOG and LBP features
and a SVM classifier, but it must be noticed that all the SVM-based meth-
ods give approximatively the same performance. The template matching
algorithm gives very bad results. We experimented also an alternative tem-
plate matching approach using HOG instead of raw pixel intensities as input.
It did improve the results but not sufficiently to surpass the SVM+feature
pipeline. The performance of the DPM is comparable to the performance
of the HOG based detector. Finally, the Hough Forest method give some
interesting results, but is worse than all the SVM + feature methods.

2We used the code provided at http://www.iai.uni-bonn.de/~gall/projects/
houghforest/houghforest.html
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mAP

detector slv 1lv Boa Cam Car Oth Pic Tra Tru Van
DPM 72.442.6 | 40.744.6 | 26.1+19.2 | 41.9411.7 | 60.5£4.2 | 6.0£4.5 | 52.345.3 | 33.84+15.6 | 34.345.9 | 36.3+10.2
SVM +HOG31 71.542.5 | 36.04+4.7 | 32.24+14.9 | 33.4+8.9 | 55.44+2.6 | 6.9+£4.2 | 48.64+4.9 | 07.44+03.6 | 32.548.0 | 40.6+14.8
SVM +LBP 64.34+3.2 | 22.945.4 | 07.6+05.4 | 24.1+£9.5 | 51.7£5.2 | 1.0£0.9 | 48.244.5 | 06.3+02.8 | 25.746.3 | 38.1+14.0
SVM + LTP 73.14£3.1 | 40.9£5.5 | 17.948.0 | 45.6+7.9 | 60.4+£4.0 | 6.5+3.1 | 56.9£5.5 | 21.2408.6 | 35.7£9.5 | 51.6+17.1
SVM +HOG31+LBP | 75.0+2.2 | 42.245.4 | 34.1+£16.1 | 47.5+11.2 | 61.3+3.9 | 2.04+1.3 | 57.5+4.5 | 17.54£08.2 | 37.4+8.4 | 44.7+£14.4
™ 2.2+1.7 | 1.0+£1.2 | 0.03+0.03 | 3.24+24 5.3+1.5 | 0.1£0.02 | 0.6£1.0 0.240.2 0.4+0.6 1.7+3.5
HF 39.744.0 | 28.2+6.9 | 10.143.1 32.548.7 | 39.8+4.0 | 5.2+0.02 | 30.7£5.5 | 15.3+4.7 | 17.7+4.5 | 40.5+12.6

recall at 1 FPPI

detector slv 1lv Boa Cam Car Oth Pic Tra Tru Van
DPM 71.8+2.6 | 62.945.5 | 48.0+£32 | 72.948.6 | 74.544.5 | 22512 | 70.64+5.0 | 61.4+19 | 60.1+4.7 | 85.9+7.5
SVM +HOG31 71.4£3.0 | 56.845.8 | 64.8+15 | 64.9+8.8 | 70.54£3.9 | 32.943.5 | 69.54+4.7 | 34.9+14 | 51.14+9.2 | 80.5%11
SVM +LBP 62.942.9 | 38.0+4.8 | 29.4+£14 | 42.0+8.5 | 65.9+4.7 | 8.6£5.1 | 65.246.0 | 29.5+8.3 | 48.849.4 | 76.0£16
SVM +LTP 72.04£3.5 | 59.244.8 | 51.6£14 | 67.6+6.6 | 77.2£4.8 | 26.5+11 | 72.845.0 | 60.2+14 | 59.1+11 | 85.2+10
SVM +HOG31+LBP | 74.7+2.9 | 59.7+£5.8 | 56.9+16 | 72.4£7.6 | 77.6+3.8 | 16.2+£8.9 | 75.14+4.4 | 53.1+£14 | 60.6£10 | 86.849.6
™ 3.8+2.4 | 3.5+3.6 | 0.6£1.9 | 12.3+3.7 | 10.5+2 | 0.0+£0.0 | 1.2+£1.7 | 1.944.2 | 1.8+£3.9 9.5+12
HF 37.445.0 | 41.849.8 | 38.7+15 | 59.3+6.7 | 47.7+6.8 | 33.9+8.8 | 46.846.4 | 51.6+10.8 | 40.9+7.4 | 75.2+12

recall at 0.1 FPPI

detector slv v Boa Cam Car Oth Pic Tra Tru Van
DPM 46.14+4.4 | 28.5+4.3 | 23.4£19 374411 | 31.44+5.8 | 10.7+£8.2 | 30.9£6 39.3+£18 | 33.7+£3.7 | 54.2£15
SVM + HOG31 41.945.7 24.0 39.0+14 | 30.1£11 | 24.445.7 | 9.3£5.9 | 27.74£5.4 | 13.34£3.5 | 33.54+9.8 | 48.9+17
SVM + LBP 37.7£5.8 | 17.9+£6 8.94+7.1 | 24.6+9.5 | 26.3£7.9 | 1.9£3.1 | 29.34+5.5 | 10.8£5.7 | 26.946.7 | 47.1£18
SVM + LTP 43.74£6.5 | 29.045.4 | 22.4+47.2 | 42.6+7.4 | 29.14£6.2 | 8.3+6.0 | 37.14£5.1 | 25.4+12 | 35.3+9.4 | 64.3£16
SVM + HOG31+LBP | 49.145.3 | 30.1+6.9 | 40.24+16 | 45.14+12 | 30.7£7.0 | 3.0£4.3 | 36.0+£5.9 | 20.1£6.5 | 36.4+7.7 | 53.3+14
HF 9.8+1.7 | 21.145.7 | 13.3+5.8 | 28.2+11 | 184425 | 3.2+£5.2 | 12.245.1 | 16.7+£7.1 | 15.843.9 | 48.4+16

recall at 0.01 FPPI

detector slv v Boa Cam Car Oth Pic Tra Tru Van
DPM 23.44+4.9 | 6.8£3.0 | 15.3£13 | 10.4+12 | 13.44£6.8 | 1.94£3.2 | 12.54+4.2 | 18.9+£9.9 | 18.54+7.8 | 17.0+16
SVM+HOG31 17.546.5 | 9.5+4.3 | 19.7£15 71457 | 7.8+£5.5 | 2.8+3.9 | 6.9+4.4 | 1.943.1 | 17.447.0 | 29.0+16
SVM +LBP 16.2£5.6 | 6.1£13.5 3.6+5 11.8+£6.6 | 5.5£2.2 | 0.0£0.0 | 10.9+£2.2 | 1.24£2.4 | 12.5£8.0 | 29.5£12
SVM +LTP 16.54+6.9 | 13.9+4.9 | 8.9+7.3 | 20.0£7.6 | 9.3£3.7 | 2.6£3.6 | 11.8£7.3 | 7.8+£7.3 | 17.6£10 | 35.5%18
SVM + HOG31+LBP | 19.149.6 | 13.54+4.2 | 22.8%11 20.6£13 | 8.3+5.2 | 0.0£0.0 | 15.14+8.4 | 9.6+7.0 |20.249.2 | 32.6%15
HF 42+1.3 | 8.7+4.1 | 25433 | 10.0+4.7 | 9.1+3.9 | 0.5£1.6 | 2.7£1.6 | 4.0+4.4 | 5.7£3.6 | 29.0£13

Table 6: Performance of the different detectors on the SII sub-set. The mean performance
as well as the standard deviation are given for (i) mAP (ii) recall at 1, 0.1 and 0.001 FPPI.
DPM stands for Deformable Parts Model, TM for Template Matching and HF for Hough
Forest.

But the most interesting lesson we can get from this table is the bad
overall performance obtained by all of these methods. Indeed, even if the
mAP is quite high, the recall at 0.01 FPPI — which is a realistic operating
point for the targeted applications — is between 10% and 20%, which means
that the vast majority of the targets are not detected. One can also note
that for low FPPI, the standard deviation becomes larger as the number
of detected target becomes too small to have a reliable estimation of the
variance. These bad results are consistent with previous works on pedestrian
detection, in low resolution images which report a miss rate of more than
60% [85, 86] at 0.1 FFPT for images of 640x480 pixels.

Classes with fewer examples (‘tractors’, ‘boats’ and ‘other’) are hard to
learn, as we could expect. The ‘van’ category however have few training
examples but is not so badly detected, probably because its appearance is
quite distinct from other classes.
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mAP
sub-set slv v Boa Cam Car Oth Pic Tra Tru Van
S1I 75.0£2.2 | 42.244.4 | 34.0£16.1 | 47.5411.2 | 61.3£3.9 | 2.0£1.3 | 57.5+4.5 | 17.6+8.2 | 37.44+8.4 | 44.7 +14.4
SCIL | 74.942.5 | 44.146.7 | 38.1+15.9 | 58.849.7 | 63.64+5.3 | 2.9+2.3 | 55.24+5.3 | 15.6+9.2 | 36.1+£7.2 | 50.3£17.5
54
51

LI 77.0£1.6 | 45.74£3.9 | 36.9 £16.2 | 52.949.3 | 62.6+£4.5 | 4.4+1.8 A4+45.2 | 10.946.2 | 34.3+6.8 | 48.1+19.9
LCI | 76.841.5 | 45.6+£4.2 | 40.4+15.7 | 55.448.1 | 63.8+£4.1 | 5.6+3.7 5+4.8 | 13.949.5 | 38.1£9.6 | 49.44+17.9
recall at 1 FPPI
sub-set slv v Boa Cam Car Oth Pic Tra Tru Van
SII 74.7£2.9 | 59.7+£5.8 | 56.9£16 67.6+6.6 | 77.6+3.8 | 16.2£8.9 | 75.1+4.4 | 53.1+14 | 60.6+10 | 86.8 £9.6
SCI | 74.6+2.8 | 62.846.4 | 64.4£15 80.2+7.1 | 79.844.3 | 15.9+7.9 | 73.8+4.5 | 48.24+15 | 63.848.8 | 84.6+£15
LII 76.8+2.3 | 65.1+4.6 61.0£12 76.1+£6.0 | 78.3+4.1 | 24.3+7.8 | 75.7+5.5 | 43.8+£15 | 58.7+9.4 83.4£10
LCI | 76.542.3 | 66.2£4.5 | 68.5+13 80.6+6.5 | 78.94+3.5 | 29.6+8.3 | 73.1+3.5 | 42.4+14 | 61.0+12 | 83.3+£14
recall at 0.1 FPPI
sub-set slv 1lv Boa Cam Car Oth Pic Tra Tru Van
SII 49.145.3 | 30.1£6.9 | 40.2+16 45.14+12 | 30.7£7.0 | 3.0+4.3 | 36.0+5.9 | 20.1+£6.2 | 36.3+7.7 | 53.3+14
SCIL | 47.7+£7.2 | 32.847.0 | 42.9+13 55.449.8 | 32.7+10 | 3.94+4.4 | 33.7+6.4 | 16.6+13 | 36.1+8.0 | 64.2+18
LII 51.6+£5.9 | 33.845.3 | 39.9+17 474412 | 31.5+£6.6 | 7.1+4.2 | 31.04+5.3 | 14.54£8.2 | 35.9+5.8 | 56.3+20
LCI | 51.9£3.3 | 32.6+5.6 | 42.7£16 48.7+7.7 | 35.5+7.9 | 5.5+5.2 | 29.3+6.2 | 19.949.9 | 37.5+10 | 64.1£20
recall at 0.01 FPPI
sub-set slv 1Iv Boa Cam Car Oth Pic Tra Tru Van
SII 19.1£9.6 | 13.5+4.2 22.84+11 20.7+13 8.3+5.2 | 0.0+£0.0 | 15.1484 | 7.8+£7.3 | 20.249.2 | 32.7 £15
SCI 19.748.5 | 13.748.9 26.1+13 29.24+14 8.9+7.0 1.0£2.2 | 11.8£8.3 | 6.6£5.6 | 16.5£7.6 | 36.6+18.4
LI 19.34£8.1 | 15.0+£7.7 | 30.2+16 20.6+£13 | 11.1£7.0 | 1.1£2.3 | 7.744.5 | 2.844.7 | 17.0£5.7 | 39.7421
LCT | 24.148.6 | 12.3+£5.7 | 28.5+15 24.6+9.5 | 10.0£6.4 | 2.1 £3.6 | 9.2+4.1 | 6.1£7.5 | 20.0+9.1 | 34.3+16.6

Table 7: Performance of the SVM 4+ HOGLBP detector given as mean average precision
and recall for 10, 1, 0.1 and 0.01 FPPI. The table gives the mean over the 10 folds as well
as the standard deviation.

5.2.2. Performance on large-size images and color images

We took the detector performing best on the small-size images sub-set
(i.e. the SVM+HOGHLBP detector), and tested it on the three other sub-
sets, namely LII, SCI, LCI. These results can be seen in Table 7. Results
obtained with color images are usually better, even if the HOG feature does
not strongly exploit color information. Surprisingly, the performance of the
'pick up’ and ’tractor’ classes are not as good as on infra-red images. This
could be due to the fact that pick-ups and tractors often carry objects, which
could give much more irrelevant color gradient in the visible bandwidth. In
conclusion, the choice of the imaging technology (infrared or color images)
depends on the targeted applications.

Resolution is also a factor of improvement, even if we expected a more
significant gap. For some classes the gain in performance is significant (e.g.
‘oth’; ’cam’, ’boa’), but surprisingly the performance of the 'pick up’ and
‘tractor’ classes decreases. This can be due to the loads at the rear of these
vehicles, which is blurred at low resolution, making the appearance more
stable.
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5.2.3. Parametric study

Number of root models. The number of roots of the model is critical for ob-
taining good performance. It is in practice the most sensible parameter.
Some preliminary experiments have shown that at least four roots are nec-
essary to get good performances (see Figure 7). Targets aspect ratios are
very different due to the diversity of possible orientations and vehicle ap-
pearances, explaining why different roots (with different aspect ratios) are
needed. Regarding the DPM, using parts in addition to the root can improve
the performance a little bit, but the code then become very unstable (we be-
lieve this is because when roots are too small, part sizes become lower than a
critical threshold) and do not give any results. However, we have been able
to see that it improves the performance by 3% of mAP on the folds when the
code succeeded. This result is consistent with the previous work of Divvala
[87], which states that the number of roots is more important than the latent
learning or the deformable parts.

Mean Average Precision 0.01 FRPPI
100 100
80
B0
40 1
20, M
0 . L . . 0t . . .
2 4 5 a 10 2 4 5 a 10
Mumber of Root Models Mumber of Root Models
0.1 FPRI 1 FPPI
100 100
a0
0 g
40 W |
20F ] o}
0 . L . . 0 . . . .
2 4 5 a 10 2 4 5 a 10
Mumber of Root Models Mumber of Root Models

Figure 7: Performance (mAP) as a function of the number of roots in the models using
the DPM and for the ’slv’ category. Error bars represent the standard deviation.
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Mean Average Precision Recall for 0.01 FPPI
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Figure 8: Influence of the sliding window step-size with the SVM+HOG detector on the
’slv’ class. Error bars represent standard deviation.

Parameters of the sliding windows. The step-size in the sliding windows al-
gorithm can impact the performance. Figure 8 shows that if the step-size is
too high (higher than twice the step size of the learning stage), the perfor-
mance significantly drops (except for the recall at 0.01 FPPI which is already
so bad that it is not affected). The presented results are those given by the
SVM+ HOG detector on the ’slv’ category, but similar behavior has been
observed for other classes and other detectors.

The number of scales at which the image is processed also affect the
performances but not significantly, as shown by Figure 9. This was expected
as the distance between the camera and the target is constant and is supposed
to be known.

We also have tested the influence of the threshold used for the non-
maximum suppression. Remind than when two detections are too close (in
terms of overlap measured by the Jaccard index between them), only the best
one (i.e. the one with the highest score) is kept. Fig. shows that choosing
a very small Jaccard index (such as 0.1) lowers the results a little bit. How-
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Mean Average Precision Recall for 0.01 FPPI
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Figure 9: Influence of the number of scales used during the detection phase with the
SVM+HOG detector on the slv class. Error bars represent standard deviations.

ever, as the targets are in general far from each-other, detections are rarely
affected by non maximal suppression. If the threshold is too high, the non-
maximal suppression stage does not eliminate enough multiple detections
and the performance drops by 10%.

5.2.4. Further analysis

Single class analysis. We investigate here a slightly different scenario in
which we artificially remove all the targets which does not belong to the
class of the detector to be evaluated. This is done, in practice, by only
counting as false positives the predictions made on background regions (de-
tection caused by vehicles from other classes are simply discarded and not
counted as true positive neither).

Table 8 shows that, in this case, the performance only improves a little
bit. The only significant gain is for cars and pick up, that are confused one
from another. It demonstrates that most of the false positives do come from
the background and not from the vehicles of other classes.
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Figure 10: Influence of the Non Maximum Suppression threshold in the sliding windows
approach, using the SVM+HOG31 detector on the ’slv’ subset . Error bars represent
standard deviations.

slv v boa cam car
with other vehicles 49.14+5.3 | 30.1+6.9 | 40.2+16 45.1+12 30.7+7
without other vehicles | 54.24+4.8 | 33.1+6.5 | 45.5+£15.7 | 48.64+11.8 | 65.7£6.5
gain +5.1 +3.0 +5.3 +3.5 +30.5
Oth Pic Tra Tru Van
with other vehicles 3.0+4.3 | 36.0+5.9 | 20.1+6.5 | 36.4+7.7 | 53.3+£14
without other vehicles | 4.0+4.8 | 61.0£5.0 | 24.54+9.1 | 42.449.1 | 62.4+13.7
gain +1.0 +25.0 +4.4 +6.0 +9.1

Table 8: Amount of false positive due to background false alarms: in these experiments,
false positives due to vehicles of other classes are not counted as false positives. This
experiment was performed on the SII sub-set using a SVM+HOGLBP detector. We report
here the mean recall for 0.1 FPPI as well as the standard deviation.

Detection accuracy. The following experiments were designed with the moti-
vation of evaluating the accuracy of the detection. Remind, that a detection
is counted as a true positive if the center of the detection falls in an ellipse
specified by the size (in pixels) of the vehicle. A threshold of 1.0 corresponds
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Figure 11: Mean average precision on the ’slv’ category with a SVM+HOG detector, as
a function of the threshold defining spatially the limit between true and false positives.
Error bars represent standard deviations.

to the ellipse that fits with the edge of the vehicle. We can see Figure 11
how the performance is affected by setting differently this threshold. The
performance is relatively stable meaning that (i) detections are relatively ac-
curate (ii) the value chosen for the threshold in the definition of the metric
is adequate and its choice is not critical.

Invariance to small shifts. In order to measure the invariance of the bench-
mark to small target shifts, we produced six variants of the dataset images
obtained by flipping the original images horizontally, vertically and both.
We apply the same transformations on transposed images. The motivation
for doing this is that the target will be shifted with respect to the positions
of the sliding windows (please remind that there is step-size is of 8 pixels
in the sliding window) and its orientation will change as well. We ran the
SVM+HOG31 on the ’slv’ category and measure the standard deviation of
the performance over these 7 sub-sets (the original one plus the 6 artificially
generated). As shown in Table 9, the standard deviation is smaller than the
difference between folds, which shows the relative invariance of the detectors
to small target shifts.
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slv mAP | 0.01 FPPI | 0.1 FPPI | 1 FPPI | 10 FPPI
Mean 72.9 20.8 45.0 72.5 90.5
Standard Deviation | 0.25 1.6 0.80 0.44 0.35

Table 9: Mean and standard deviation of SVM+HOG31 detector over the 10 folds, when
using different flips and transpositions of the original images.

6. Conclusions

This paper presents VEDAT (Vehicle Detection in Aerial Imagery), a new
database for evaluating the detection of small vehicles in aerial images. The
dataset includes different vehicle categories for a total of more than 3700
annotated targets in more than 1200 images. The images are split in four
different categories corresponding to two different sizes of the images (1024 x
1024 and 512 x 512) color or infrared. The backgrounds as well as the targets
are diverse. The dataset is released with precisely defined image splits and
metrics, allowing reliable evaluation. The dataset as well as the annotations
are publicly available.

In addition to the dataset, we have experimented and evaluated different
state-of-the-art detectors. The main conclusions of these experiments in that
none of the detectors gives usable results on this dataset. For example, the
best result on the 'car’ class, is a recall of 13.44+ 6.8 at 0.01FPPI, which is
clearly below the need of targeted applications. We hope that this dataset
will allow the development of new — and more efficient — target detection
algorithms.
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