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Research Article
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Yis paper derives new closed-form expressions for the masses of negative multinomial distributions. Yese masses can be
maximized to determine the maximum likelihood estimator of its unknown parameters. An application to polarimetric image
processing is investigated. We study the maximum likelihood estimators of the polarization degree of polarimetric images using
diXerent combinations of images.

1. Introduction

Ye univariate negative binomial distribution is uniquely
de_ned in many statistical textbooks. However, extensions
de_ning multivariate negative multinomial distributions
(NMDs) are more controversial. Most de_nitions are based
on the probability generating function (PGF) of these distri-
butions. Doss [1] proposed to de_ne the PGF of an NMD as
the inverse !th power of a polynomial linear in each of its
variables. Yis de_nition can also be found in the famous
textbook [2, page 93] and the computation of its modes
has been investigated in [3]. A more general class of NMDs
introduced in [4] was characterized by PGFs of the form|I − Q|!|I − QZ|−!, where ! > 0, Q is an # × # matrix,
and Z = diag(%1, . . . , %#). In particular, matrices Q yielding
in_nitely divisible PGFs were derived. Finally, Bar-Lev et al.
[5] introduced NMDs whose PGFs are de_ned as the inverse!th power of any agne polynomial. Necessary and sugcient
conditions on the coegcients of this agne polynomial were
derived to obtain the PGF of a multivariate distribution
de_ned on N

#
0 (where N0 is the set of nonnegative integers)

[6].Yese very generalmultivariateNMDswere recently used
for image processing applications in [7].

Ye family of NMDs introduced in [5] can be de_ned
as follows. Let us denote [#] = {1, . . . , #} the set of the# _rst nonzero integers. We denote z$ = ∏%∈$%% as the
monomial obtained bymultiplying all the entries of the vector
z = (%1, . . . , %#) ∈ R

# whose indexes belong to *, where* ⊂ [#] stands for any subset of the indexes. Let -#(z) =∑$⊂[#],$ /== 0 2$z$ be an agne polynomial with respect to the# variables (%1, . . . , %#) such that 1 − -#(1) /== 0. Ye NMD
distribution de_ned at pair (#, -#) is represented by its PFG
which is given by

GNM(#,*!) (z) = (1 − -# (z))−!(1 − -# (1))!. (1)

Such laws are denoted asNM(#, -#). However, as explained
in [6], all couples (#, -#) do not provide a valid NMD.
More speci_cally, BernardoX has derived a _nite number of

conditions over -# such that (1 − -#(z))−!(1 − -#(1))! is the
PGF of an NMD for all positive integer #. Ye corresponding
expression of the coegcient of z! in the Taylor expansion of(1 − -#(z))−! is given by the formula

6- (!, -#) = ∑
.∈2"
(!)|.| p.8! , (2)



where :- = {8 : P# → N} andP# is the set of all subsets of[#]. However, this expression of 6-(!, -#) does not allow us to
explicitly compute the masses of NMDs in the general case.

As a _rst goal of this paper, we propose a way of com-
puting the masses of multivariate NMDsNM(#, -#) de_ned
above. A speci_c attention is devoted to bivariate and trivari-
ate cases. In particular, it allows us to retrieve the results of [7]
obtained for bivariate NMDs. Ye second part of the paper
is devoted to the application of NMDs to image processing,
more speci_cally to polarimetric image processing [8, 9].
Polarimetric image processing has received a considerable
attention in the image processing and optical communities
(see for instance [10–12] and references therein). Ye state of
polarization of a polarimetric image is classically character-
ized by the degree of polarization (DoP) whose estimation is
of major importance [13, 14].YeDoP of polarimetric images
can be classically estimated by using four images associated
to four diXerent polarizations [15]. However, estimating the
DoP using less than four images is interesting since it allows
one to reduce the acquisition time and the resulting cost of
the imaging system. As a consequence, there has been
recently an increasing interest in deriving estimators of the
DoP based on a reduced number of polarimetric images.
Depending on the intensity of the acquired images, polari-
metric images are referred to as low Mux or high Mux images
(low Mux corresponding to a small intensity and high Mux to a
larger intensity). DoP estimation based on a single polari-
metric image was considered in [16, 17] under high Mux and
low Mux assumptions. DoP estimators derived from two
intensity images degraded by fully developed speckle noise
were studied in [18, 19]. Finally, imaging systems using three
polarimetric images were studied in [20, 21], under high Mux
and low Mux assumptions.

Yis paper studies the maximum likelihood estimators
(MLEs) of the square DoP based on two or three polarimetric
images. Yese estimators are computed by maximizing the
masses of bivariate or trivariateNMDsderived in the _rst part
of this work.

Ye paper is organized as follows. Section 2 recalls impor-
tant results on NMDs. Section 3 proposes a new way of com-
puting masses of NMDs. A particular attention is devoted
to bivariate and trivariate cases. Section 4 addresses the
problem of estimating the square DoP of low Mux polarimet-
ric images using the maximum likelihood (ML) principle.
DiXerent MLEs are constructed depending on the number
of available polarimetric images. Simulation results are pre-
sented in Section 5.

2. Negative Multinomial Distributions

An #-variate NMD is the distribution of a random vectorN =(?1, . . . , ?#) taking its values in N
#
0 whose PGF is

@N (z) = E( #∏
.=1
%3#. ) = [-# (z)]−!, (3)

where E denotes the mathematical expectation, z = (%1, . . . ,%#), ! > 0, and -#(z) is an agne polynomial of order #. (A
polynomial -#(z) with respect to z = (%1, . . . , %#) is agne

if the one variable polynomial %4 ∣→ -#(z) can be written

as G(−4)%4 + I(−4) (for any J = 1, . . . , K), where G(−4) andI(−4) are polynomials with respect to the %5’s with L /== J.)
Yese discrete distributions have received much interest in
the literature (see for instance [2] and the references therein).
Of course, the agne polynomial -# has to satisfy appropriate
conditions to ensure that @N(z) is a PGF. Yese conditions
include the trivial equality -#(1, . . . , 1) = 1. However,
determining all pairs (-#, !) such that @N(z) is a PGF is
still an open problem (see [6], for discussions related to this
problem). As explained in [6], the agne polynomial-#(z) can
be rewritten

-# (z) = G# (M1%1, . . . , M#%#)G# (M1, . . . , M#) , (4)

where M1, . . . , M# are positive numbers and G# is an agne
polynomial such thatG#(0, . . . , 0) = 1.YeTaylor expansions

of [G#(z)]−! and [-#(z)]−! in the neighborhood of (0, . . . , 0)
will be denoted as follows:

[G#(z)]−! = ∑
!∈N!0
6! (!, G#) z!,

[-#(z)]−! = ∑
!∈N!0
6! (!, -#) z!,

(5)

where ! = (N1, . . . , N#) and z! = ∏#5=1%-$5 . Equations (3)
and (4) clearly show that the masses of multivariate NMDs
denoted as 6!(!, -#) can be expressed as follows:

6! (!, -#) = 6! (!, G#) ∏#5=1M-$5G#(M1, . . . , M#)−! . (6)

3. Masses of Negative
Multinomial Distributions

In this section, we derive new expressions for the coegcients6!(!, G#) that will be used to compute the masses of NMDs.
Ye particular cases of bivariate and trivariate NMDs will
play an important role for the estimation of the DoP on
polarimetric images. In order to compute the 6!(!, G#), we
derive several results summarized in this section whereas all
demonstrations are reported in the appendix.

(eorem 1. DenoteP∗# as the set of nonempty subsets of [#] ={1, . . . , #}. Any aVne polynomial G# such that G#(0) = 1
denoted as

G# (z) = 1 − ∑
$∈P∗!
M$z$ (7)

can be expressed as follows:

G# (z) = ∏
5∈[#]
(1 − M5%5) − ∑

$∈P∗! ,|$|⩾2
K#$z$ ∏
5∈[#]\$
(1 − M5%5) ,

(8)



where |*| is the cardinal of the set *. Moreover

G# (z) = [∏
5∈[#]
(1 − M5%5)]

× (1 − ∑
$∈P∗! ,|$|⩾2

K#$ z$∏5∈$ (1 − M5%5))
(9)

= [∏
5∈[#]
(1 − M5%5)]

× (1 − T# ( %11 − M1%1 , . . . ,
%#1 − M#%#)) ,

(10)

where T# is the polynomial deYned by T#(z) =∑$∈P∗! ,|$|⩾2 K#$z$ and K#$ is related to the 2|$| − 1 variablesM9, W ∈ P∗$ as follows:

K#$ = |$|∑
$∈P!
|$|>1

M$M[#]\$ + (|*| − 1)∏
5∈$
M5. (11)

Remark 2. In the trivariate case de_ned by # = 3, the poly-
nomial G3(z) can be expressed as

G3(z) = (1 − M1%1) (1 − M2%2) (1 − M3%3)
× [1 − T3 ( %11 − %1 ,

%21 − %2 ,
%31 − %3)] ,

(12)

where the coegcients of the polynomial

T3(z) = \1,2%1%2 + \1,3%1%3 + \2,3%2%3 + \1,2,3%1%2%3 (13)

can be determined using the relations

\5,4 = M5,4 + M5M4, L, J ∈ {1, 2, 3} , L /== J,
\1,2,3 = M1,2,3 + M1M2,3 + M2M1,3 + M3M1,2 + 2M1M2M3. (14)

Ye next theorem provides a relation between the coegcients
of the polynomials G#(z) and T#(z) introduced above.

(eorem 3. Let G#(z) = 1 − ∑$∈P∗! M$%$, a = (M1, . . . , M#),
and T# be the aVne polynomial deYned in (10) and (11). For
any N and ^ in N

#, denote as 6;(!, G#) the coeVcient of z;

in the Taylor expansion of [G#(z)]−! and as 6-(!, 1 − T#) the

coeVcient of z- in the Taylor expansion [1 − T#(z)]−!. [e
following relation can be obtained:

6; (!, G#) = ∑
-+?=;
6- (!, 1 − T#) (!1 + N)? a?_! (15)

= ∑
0⩽?$⩽;$, 5=1,...,#

6;−? (!, 1 − T#)

× #∏
5=1
(! + 5̂ − _5)?$ M

?$
5_5!

(16)

= ∑
0⩽-$⩽;$, 5=1,...,#

6- (!, 1 − T#)

× #∏
5=1
(! + N5)?$ M

;$−-$
5( 5̂ − N5)! .

(17)

Ye masses of NMDs can be directly obtained from
this theorem. Ye particular cases of bivariate and trivariate
NMDs are considered in the following subsections since
the corresponding masses will be useful in the application
considered in the second part of this paper.

3.1. Bivariate NMDs

(eorem 4. Consider the aVne polynomial of order 2 with
variables z = (%1, %2) deYned by
G2(z) = 1 − ∑

$∈P∗2
M$%$ = 1 − M1%1 − M2%2 − M1,2%1%2. (18)

[e coeVcient of z; in the Taylor expansion of [G2(z)]−!, can
be computed as follows

6; (!, -2) = (!)max(;1,;2)

min(;1,;2)∑
ℓ=0

(! + ℓ)min(;1 ,;2)−ℓ( 1̂ − ℓ)! ( 2̂ − ℓ)!ℓ!
× M;1−ℓ1 M;2−ℓ2 \ℓ1,2.

(19)

Remark 5. Ye result (A.11) was mentioned in [7] without
the factorization leading to (19). If M1 /== 0 and M2 /== 0, an
equivalent formulation of (19) is

6; (!, -2) = M;11 M;22
1̂! 2̂! (!)max(;1,;2)

× min(;1 ,;2)∑
ℓ=0
(! + ℓ)min(;1 ,;2)−ℓ

× ( 1̂ℓ )( 2̂ℓ ) ℓ!( \1,2M1M2)
ℓ.

(20)

3.2. Trivariate NMDs

(eorem 6. Consider the aVne polynomial with the three
variables z = (%1, %2, %3) deYned by

G3 (z) = 1 − ∑
$∈P∗3
M$%$. (21)



[e coeVcient of z; in the Taylor expansion of [G3(z)]−! are

6; (!, -3) = ;1∑
?1=0

;2∑
?2=0

;3∑
?3=0

⌊|;−?|/2⌋∑
E=‖;−?‖(!)E

× \E−;1+?12,3 \E−;2+?21,3 \E−;3+?31,2∏35=1 (b − 5̂ + _5)!
\|;−?|−2E1,2,3(cccc^ − _cccc − 2b)!

× (! + 1̂ − _1)?1_1!
(! + 2̂ − _2)?2_2!

× (! + 3̂ − _3)?3_3! M?11 M?22 M?33 .

(22)

When M5 /== 0, \5,4 /== 0, L /== J, L = 1, 2, 3, J = 1, 2, 3, and\1,2,3 /== 0, an equivalent expression is

6; (!, -3) = M;11 M;22 M;33 ;1∑
?1=0

;2∑
?2=0

;3∑
?3=0

⌊|;−?|/2⌋∑
E=‖;−?‖(!)E

× (\2,3\1,3\1,2/\21,2,3)E(cccc^ − _cccc − 2b)!∏35=1 (b − 5̂ + _5)!
× [ 3∏
5=1

(! + 5̂ − _5)?$_5! ]( \1,2,3M1\2,3)
;1−?1

× ( \1,2,3M2\1,3)
;2−?2( \1,2,3M3\1,2)

;3−?3

(23)

= (!)‖;‖ a;^!
;1∑
-1=0

;2∑
-2=0

;3∑
-3=0

⌊|-|/2⌋∑
E=‖-‖

(! + ‖N‖)E−‖-‖(|N| − 2b)!∏35=1 (b − N5)!
×(\2,3\1,3\1,2\21,2,3 )

EN!(\1,2,3M1\2,3)
-1(\1,2,3M2\1,3)

-2(\1,2,3M3\1,2)
-3

× 3∏
5=1
[(! + N5);$−-$ ( 5̂N5)] .

(24)

4. Estimating the Polarization Degree of
Low Flux Polarimetric Images Using
Maximum Likelihood Methods

4.1. Low Flux Polarimetric Images. Ye state of the polariza-
tion of the light can be described by the random behavior of a
complex vectorA = (GG, GH), called the Jones vector, whose
covariance matrix, called the polarization matrix, is

Γ = (E [GGG∗G] E [GGG∗H]
E [GHG∗G] E [GHG∗H]) ≜ (

M1 M3 + LM4M3 − LM4 M2 ) ,
(25)

where ∗ denotes the complex conjugate. Ye covariance
matrix Γ is a nonnegative Hermitian matrix whose diagonal
terms are the intensity components in thek andl directions.
Ye cross terms of Γ are the correlations between the Jones
components. If we assume a fully developed speckle, the
Jones vectorA is distributed according to a complexGaussian
distribution whose probability density function (pdf) is [15]:

2 (A) = 1m2 |Γ| exp (−A†Γ−1A) , (26)

where |Γ| is the determinant of the matrix Γ and † denotes
the conjugate transpose operator. As a consequence, the
statistical properties of A are fully characterized by the
covariance matrix Γ. Ye diXerent components of Γ can be
classically estimated by using four intensity images that are
related to the components of the Jones vector as follows (see
[20], for more details):

n1 = ccccGGcccc2,
n2 = ccccGHcccc2,
n3 = 12 ccccGGcccc2 + 12 ccccGHcccc2 + Re (GGG∗H) ,
n4 = 12 ccccGGcccc2 + 12 ccccGHcccc2 + Im (GGG∗H) .

(27)

Ye state of the polarization of the light is classically charac-
terized by the square DoP de_ned by [15, pages 134–136]

-2 = 1 − 4 |Γ|[trace (Γ)]2 = 1 −
4 [M1M2 − (M23 + M24)](M1 + M2)2 , (28)

where trace(Γ) is the trace of the matrix Γ. Ye light is totally
depolarized for - = 0, totally polarized for - = 1, and par-
tially polarized when - ∈ ]0, 1[. As a consequence, estimating
the square DoP of a polarimetric image is important in many

practical applications. DiXerent estimation methods of -2
using several combinations of intensity images were studied
in [20]. Since only one realization of the random vector I =(n1, . . . , n4)$ was available for a given pixel of a polarimetric
image, the image was supposed to be locally stationary and
ergodic. Yese assumptions were used to derive square DoP
estimators using several neighbor pixels belonging to a so-
called estimation window.

Yis paper considers practical applications where the
intensity level of the reMected light is very low (low Mux
assumption), which leads to an additional source of Muctu-
ations on the detected signal. Under the low Mux assumption,
the quantum nature of the light leads to a Poisson-distributed
noise which can become very important relatively to the
mean value of the signal at a low photon level. As a conse-
quence, the observed pixels of the lowMux polarimetric image
are discrete random variables contained in the vector N =(?1, . . . , ?4) such that the conditional distributions of the
random variables?J | nJ, for r = 1, . . . , 4 are independent and
distributed according to Poisson distributions with means nJ,



for r = 1, . . . , 4. Ye resulting joint distribution of N is a
multivariate mixed Poisson distribution [22]:

- (N = k) = ∫ ⋅ ⋅ ⋅(R+)4 ∫
4∏
J=1

n.&J8J! exp (−nJ) u(I) KI, (29)

where k = (81, . . . , 84), 85 ∈ N, and u(I) is the joint pdf of the
intensity vector. Yis section studies estimators of the square

DoP -2 de_ned in (28) based on several vectors N1, . . . ,N#
belonging to the estimation window. Yese estimators are
constructed from estimates of the covariancematrix elementsM5, L = 1, . . . , 4. As explained in the introduction, several
studies have been recently devoted to the estimation of the
square DoP using less than four polarimetric images. Yis
paper goes into this direction by deriving estimators based
on the observation of 2 or 3 polarimetric images.

Ye joint distribution of the intensity vector I is known to
be a multivariate gamma distribution whose Laplace trans-
form is [20]

v[exp( 4∑
.=1
%.n.)] = 1-4 (z) , (30)

where the agne polynomial -4 is
-4 (z) = 1 + z" + 8K [2%1%2 + %3%4 + (%1 + %2) (%3 + %4)]

(31)

with z = (%1, . . . , %4) and
8K = 12 (M1M2 − M23 − M24) ,

" = (M1, M2, M3 + M1 + M22 , M4 + M1 + M22 )
$.

(32)

As a consequence, the distribution of N is an NMD whose
PGF can be written as (the interested reader is invited to
consult [22] for more details)

@N (z) = 1-4 (%1 − 1, %2 − 1, %3 − 1, %4 − 1) . (33)

Ye results of Section 2 allow us to compute the masses of
N that will be useful for studying the maximum likelihood
estimator (MLE) of the square DoP.

4.2. MLE Using [ree Polarimetric Images. Ye PGF of Ñ =(?1, ?2, ?3) can be computed from (33) by setting %4 = 1.
Ye following result can be obtained:

@
Ñ
(z) = 1-3 (z) (34)

with

-3 (z) = -3 (0) + %1 (z1 − 38K) + %2 (z2 − 38K)
+ %3 (z3 − 28K) + 8K (2%1%2 + %1%3 + %2%3) , (35)

z = (%1, %2, %3), and -3(0) = 1 − ∑35=1 z5 + 48K. Ye results of

Section 3.2 can then be used to express the masses of Ñ as a

function of # = (M1, M2, M3, M24)$.
Ye ML estimator of # based on several vectors Ñ.

belonging to the estimation window (where 8 = 1, . . . , :
and : is the number of pixels of the observation window)
is obtained by maximizing the log-likelihood

r3 (Ñ1, . . . , Ñ2 | #) = 2∑
.=1

log [- (Ñ.)] (36)

with respect to # (note again that -(Ñ.) is the mass of a
trivariate NMD that has been computed in Section 3.2). Ye
practical determination of the ML estimator of # is achieved
by using aNewton-Raphson procedure.YeML estimators of

the vector #, denoted as #̃ = (M̃1, M̃2, M̃3, M̃24)$, are then plugged
into (28) to provide theML estimator of the squareDoPbased
on three polarimetric images:

-̃2 = 1 − 4 [M̃1M̃2 − (M̃23 + M̃24)](M̃1 + M̃2)2 . (37)

4.3. MLE Using Two Polarimetric Images. Ye PGF of N =(?1, ?2) can be computed from (34) by setting %3 = 1. Ye
following result can be obtained:

@N (z) = 1-2(z) (38)

with

-2(z) = -2(0) + %1(z1 − 28K) + %2(z2 − 28K) + 28K%1%2,
(39)

z = (%1, %2) and -2(0) = 1 − ∑25=1 z5 + 28K. Ye results of
Section 3.1 can then be used to express the masses of N as a

function of # = (M1, M2, 8K)$.
Ye MLE of # based on several vectors N. belonging to

the estimation window is obtained by maximizing the log-
likelihood

r2 (N1, . . . ,N2 | #) = 2∑
.=1

log [- (N.)] (40)

with respect to # (note that -(N.) is the mass of a bivariate
NMD that has been computed in Section 3.1). Ye practical
determination of theML estimator of # is achieved by using a
Newton-Raphson procedure.YeML estimators of the vector

# elements, denoted as # = (M1, M2, 8K)$, are then plugged

into (28) to provide the MLE of the square DoP based on two
polarimetric images:

-2 = 1 − 88K(M1 + M2)2 . (41)



Table 1: Covariance matrix elements and square DoP values for the Jones vector.

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10M1 2.00 1.71 2.40 1.82 2.00 2.67 2.40 2.24 2.74 2.00 2.00M2 2.00 2.29 1.60 2.18 2.00 1.33 1.60 1.76 1.26 2.00 2.00M3 0.00 0.40 0.48 0.91 0.89 0.96 1.07 1.05 1.46 0.60 1.41M4 0.00 0.40 0.64 0.58 0.89 0.80 1.05 1.28 0.73 1.80 1.41-2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Table 2: Simulation results for the estimation of -2 using 2 or 3 images, obtained from 1000Monte-Carlo runs (# = 51 × 51).

2 images MLE 3 images MLE

Bias std MSE avar Bias std MSE avarΓ0 3.57� − 03 1.31� − 02 1.85� − 04 — 4.12� − 03 9.08� − 03 9.93� − 05 —Γ1 4.28� − 04 3.14� − 02 9.83� − 04 9.78� − 04 1.71� − 03 2.57� − 02 6.62� − 04 7.25� − 04Γ2 9.49� − 04 3.23� − 02 1.04� − 03 9.82� − 04 1.20� − 03 2.86� − 02 8.18� − 04 7.83� − 04Γ3 −2.15� − 04 3.13� − 02 9.81� − 04 9.67� − 04 4.84� − 04 2.88� − 02 8.28� − 04 8.07� − 04Γ4 2.49� − 03 3.02� − 02 9.19� − 04 8.91� − 04 1.71� − 03 2.81� − 02 7.91� − 04 7.67� − 04Γ5 2.86� − 04 2.85� − 02 8.10� − 04 7.54� − 04 4.80� − 04 2.65� − 02 7.03� − 04 6.69� − 04Γ6 5.25� − 04 2.59� − 02 6.72� − 04 6.58� − 04 6.32� − 04 2.47� − 02 6.11� − 04 5.95� − 04Γ7 1.05� − 03 2.37� − 02 5.60� − 04 5.43� − 04 1.04� − 03 2.26� − 02 5.11� − 04 4.95� − 04Γ8 1.59� − 04 2.01� − 02 4.03� − 04 4.12� − 04 3.17� − 04 1.90� − 02 3.60� − 04 3.73� − 04Γ9 −2.88� − 04 1.76� − 02 3.10� − 04 3.20� − 04 −4.46� − 04 1.65� − 02 2.73� − 04 2.86� − 04Γ10 −5.98� − 03 8.98� − 03 1.16� − 04 — −5.73� − 03 8.58� − 03 1.06� − 04 —

5. Simulation Results

5.1. Estimation Performance. Ye performance of the ML
estimators of the square DoP based on two or three polari-
metric images has been evaluated via several experiments.
Ye _rst simulations compare the log Mean Square Errors
(MSEs) of the square DoP estimators constructed from two
or three images. Eleven diXerent covariance matrices of the
Jones vector have been considered in order to de_ne typical
values of the DoP. Ye values of M5, for L = 1, . . . , 4, (de_ning
the covariance matrix elements of the Jones vector) and the
corresponding values of the square DoPs are reported in
Table 1. Note that all the covariance matrices Γ4, J = 0, . . . , 10,
have been normalized so that the mean of the total intensity
E[n1 + n2] = E[?1 + ?2] = M1 + M2 is equal to 4. Yus, the
average number of photons collected on each pixel equals
4 for each matrix of the considered set. Yis point is in
agreement with the low Mux assumption.

Figure 1(a) display the empirical log MSEs of the square
DoP estimators for the set of covariance matrices de_ned
in Table 1 as a function of the true square DoP value. Ye
red plus markers + correspond to the estimators obtained
for two polarimetric images (2D MLE), whereas the blue
cross markers × correspond to the MLE obtained for three
polarimetric images (3D MLE). Note that these empirical
MSEs have been computed for a square observation window
of size # = 51 × 51 pixels, based on 1000Monte-Carlo runs.
Ye theoretical asymptotic log MSEs of the MLE are also dis-
played in Figure 1(a) with continuous lines.Yese asymptotic
values correspond to the Cramer-Rao Lower Bound (CRLB)
for the parameter -2.YeMLE is known to be asymptotically
unbiased and egcient under mild regularity conditions (that

are satis_ed for -2). Yus, the MSE of the estimates can be
approximated a for large sample by the CRLB. More details
about the way of computing the square DoP CLRBs can be
found in [23]. Figure 1(a) indicates that the empirical MSEs
are in good agreement with the corresponding CRLBs, except
for the matrices Γ0 and Γ10. Indeed, the CRLBs for these
two matrices cannot be computed since the true value of the
parameters belongs to the boundary of its de_nition domain.
Ye empirical bias, standard deviations (“std”), MSEs, and
asymptotic variances (“avar”) of the estimators of -2 are also
reported in Table 2. It is interesting to note that the MLE
obtained using 3 images is slightly more biased than the
one obtained using 2 images. However, the MLE based on 3
images provides lower MSEs than the estimator based on 2
images, as expected.

In order to appreciate the inMuence of the Poisson noise
due to the low Mux assumption, experiments have been
conducted using the high Mux assumption. In this case, the
intensity vector I is assumed to be known.Yus, the high Mux
MLEs using two and three images can be derived from the

intensity vectors I. = (n.1 , n.2 )$ and Ĩ. = (n.1 , n.2 , n.3 )$ [20].
Ye results are depicted in Figure 1(b). A comparison between
Figures 1(a) and 1(b) allows one to appreciate a similar global
behaviour for all the estimators, with a maximum MSE near-2 = 1/3 and decreasing MSEs as -2 goes to 0 or 1. Ye
degradation of the estimation performance due to the pres-
ence of Poisson noise (due to the low Mux assumption) can
also be clearly noticed.

Ye next set of simulations studies the performance of
the diXerent estimators as a function of the sample size #.
Figures 2(a) and 2(b) show the log MSEs of the square DoP
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Figure 1: log MSEs of the square DoP estimates using 2 and 3
images versus -2 for the set of polarization matrices de_ned in
Table 1 under (a) low Mux and (b) high Mux assumptions (# = 51 ×51, ML: maximum likelihood estimators, and Asympt.: theoretical
asymptotic value of the log MSE for a given estimator).

estimates obtained for 2 and 3 images (for the two particular
matrices Γ2 and Γ8). Ye empirical bias, standard deviations
(“std”), MSEs, and asymptotic variances (“avar”) are also
reported in Tables 3 and 4. One can see that the empirical
MSEs are in good agreementwith their theoretical asymptotic
values for a large enough sample size, that is, # > 25 × 25.
Moreover, the gain of a performance using 3 images instead

of 2 is more signi_cant for small values of -2 (indeed, the
diXerence between the diXerent curves is more pronounced
in the ley _gure corresponding to -2 = 0.2 than in the right

_gure corresponding to -2 = 0.8.)
Figures 3(a) and 3(b) display the MSEs of the MLE under

the high Mux assumption. By comparing Figures 2 and 3,
one can observe that the gain of performance using 3 images
instead of 2 is more important in the high Mux scenario than
under a low Mux assumption.
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Figure 2: log MSE of the estimated square DoP -2 using 2 or 3
intensity images versus the logarithm of the sample size for the
matrices (a) Γ2 and (b) Γ8 (ML: maximum likelihood estimators,
and Asympt. theoretical asymptotic value of the log MSE for a given
estimator).

5.2. Application to Synthetic Polarimetric Images. In order
to appreciate the estimation performance on polarimetric
images, we consider a synthetic polarimetric image of size512 × 512 composed of three distinct objects located on
a homogeneous background depicted in Figure 4 (see also
[20]). Ye polarimetric properties of these objects and back-
ground (i.e., the covariance matrix of the Jones vector and
the square DoPs) are reported in Table 5. Ye polarimetric
low Mux images generated according to this model are also
represented in Figure 5 in negative colors (bright pixels corre-
spond to a small number of photons, dark ones correspond to
a large number of photons). Note that these images represent

the values of the vectorN = (?1, ?2, ?3, ?4)$ for each pixel.

Ye square DoP of each pixel x(5,4) (for L, J = 1, . . . , 512) has
been estimated from vectors belonging to windows of size# = 15 × 15 centered around the pixel of coordinates (L, J) in
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Figure 3: log MSE of the estimated square DoP -2 using 2 or 3 intensity images versus the logarithm of the sample size for the matrices (a)Γ2 and (b) Γ8 under high Mux assumption (ML: maximum likelihood estimators, Asympt.: theoretical asymptotic value of the log MSE for a
given estimator).

2

3

1

Background

(a) Scene (b) Yeoretical squared DoP

Figure 4: Composition of the scene used to generate synthetic polarimetric low Mux images and associated theoretical squared DoP.

the analyzed image. Ye estimated square DoPs are depicted
in Figures 6(a) and 6(b) for the MLEs using 2 and 3 images,
respectively. One can see that the ML method for 3 images
gives more homogeneous results on each object than the ML
method derived for 2 images. Yis result con_rms that the
MLE using 3 images performs better than theMLE using only
2 images. However, the polarimetric properties of a scene can
be clearly recovered with 2 or 3 low Mux images.

5.3. Estimation Results on Real-Word Polarimetric Images.
Finally, the ML estimator based on three images is applied
on real polarimetric data.Yese images are acquired by using
a laser as a coherent illumination source. Ye scene consists
of two disks. Ye _rst one, intended to provide low DoP, is
a grey diXuse material (ley object in Figure 7). Ye second

one is made of sand blasted aluminium providing high DoP
(right object in Figure 7).Due to the experimental conditions,
the measured intensities are quite low. As a consequence,
these intensities are assumed to be distributed according to an
NMD.Ye intensity images corresponding to?1,?2,?3, and?4 are depicted in Figure 7. Ye interested reader is invited
to read [20] for more details on these data. It is important
to note that the two disks exhibit the similar level of total
reMectivity?1 + ?2 and can hardly be distinguished without
a polarimetric processing.

Figure 8 shows the ML estimates of the square DoPs -2
for 3 images and an estimationwindow of size # = 9×9 pixels.
As expected, the values of the estimates are quite diXerent
on each disk: quite higher on the metal than on the plastic
disk. Yis result is in good agreement with the theoretical



Table 3: Simulation results for the estimation of -2 using 2 or 3 images, obtained from 1000Monte-Carlo runs (matrix Γ2).
# 2 images MLE 3 images MLE

Bias std MSE avar Bias std MSE avar52 9.03� − 02 2.49� − 01 7.01� − 02 1.02� − 01 1.20� − 01 2.20� − 01 6.27� − 02 8.15� − 0272 5.10� − 02 1.97� − 01 4.13� − 02 5.21� − 02 7.04� − 02 1.69� − 01 3.36� − 02 4.16� − 02112 2.60� − 02 1.39� − 01 2.01� − 02 2.11� − 02 3.22� − 02 1.14� − 01 1.39� − 02 1.68� − 02152 7.68� − 03 1.02� − 01 1.04� − 02 1.14� − 02 1.59� − 02 8.48� − 02 7.43� − 03 9.05� − 03252 −7.42� − 04 6.25� − 02 3.90� − 03 4.09� − 03 2.16� − 03 5.36� − 02 2.87� − 03 3.26� − 03372 −5.19� − 04 4.32� − 02 1.87� − 03 1.87� − 03 6.87� − 05 3.79� − 02 1.44� − 03 1.49� − 03512 9.49� − 04 3.23� − 02 1.04� − 03 9.82� − 04 1.20� − 03 2.86� − 02 8.18� − 04 7.83� − 04
Table 4: Simulation results for the estimation of -2 using 2 or 3 images, obtained from 1000Monte-Carlo runs (matrix Γ8).

# 2 images MLE 3 images MLE

Bias std MSE avar Bias std MSE avar52 −3.91� − 03 2.08� − 01 4.31� − 02 4.29� − 02 2.80� − 02 1.61� − 01 2.67� − 02 3.88� − 0272 4.04� − 03 1.44� − 01 2.08� − 02 2.19� − 02 1.89� − 02 1.24� − 01 1.56� − 02 1.98� − 02112 2.14� − 03 9.38� − 02 8.80� − 03 8.86� − 03 8.70� − 03 8.47� − 02 7.24� − 03 8.01� − 03152 −1.27� − 03 7.14� − 02 5.10� − 03 4.76� − 03 2.70� − 03 6.63� − 02 4.39� − 03 4.31� − 03252 5.23� − 04 3.98� − 02 1.58� − 03 1.71� − 03 6.87� − 04 3.75� − 02 1.40� − 03 1.55� − 03372 2.24� − 03 2.89� − 02 8.42� − 04 7.83� − 04 2.54� − 03 2.75� − 02 7.61� − 04 7.08� − 04512 1.59� − 04 2.01� − 02 4.03� − 04 4.12� − 04 3.17� − 04 1.90� − 02 3.60� − 04 3.73� − 04

properties of the considered material. Yis emphasizes the
interest in considering egcient estimators based on NMDs
for polarimetric images.

Appendix

Proofs of the Theorems

Proof of [eorem 1. Ye set of agne polynomials with real
coegcients and variables (%1, . . . , %#) is a vector space of

dimension 2# spanned by the basis (z$)$∈P! . Ye set of

polynomials (z$∏%∈[#]\$(1 − M%%%))$∈P! is another basis of

this vector space. Ye proof of the theorem is obtained
by expressing the coegcients of G# in this latter basis.
Considering the expansion

G# (%1, . . . , %#) = K#0∏
5∈[#]
(1 − M5%5)

− ∑
$∈P∗!
K#$z$ ∏
5∈[#]\$
(1 − M5%5) , (A.1)

the following results can be obtained.

(1) Substituting z = 0 in (A.1) leads to K#0 = 1.
(2) Substituting z5 = (�5(1), . . . , �5(#)) in (A.1), where�5(J) = 1 if L = J and �5(J) = 0 else leads to

1 − M5 = 1 − M5 − K#{5}, (A.2)

or equivalently

K#{5} = 0, L ∈ [#] . (A.3)

(3) Without loss of generality, if |*| = 8 > 1, the
coegcients K#$ can be computed for * = {1, . . . , 8}.
Indeed, consider a permutation � such that * ={�(1), . . . , �(8)}. If K#{1,...,.} = u({M9}9∈P∗# ), we haveK#$ = u({MS(9)}9∈P∗# ). Using the relation
1 − G# (%1, . . . , %#−1, 0) = ∑

$∈P∗!−1
M$%$

= 1 − G#−1 (%1, . . . , %#−1) ,
(A.4)

the expansion

G# (%1, . . . , %#) = ∏
5∈[#]
(1 − M5%5)
− ∑
$∈P∗! ,|$|⩾2

K#$z$ ∏
5∈[#]\$
(1 − M5%5) , (A.5)

yields for any 8 < #,
K#[.] = K#−1[.] . (A.6)

In order to determine K#[#], we can assume M5 /== 0, L ∈[#] and substitute %5 = 1/M5, L ∈ [#] in (A.5). Ye
following result is obtained

1 − # − ∑
$∈P∗! ,|$|⩾2

M$M$ = − K
#
$M[#] , (A.7)



Table 5: Polarimetric properties of elements that compose the scene displayed in Figure 4.

Object Polarization matrix Γ -2 Remarks

Background (0.79 00 0.98) 0.0115 Very depolarizing and dark background

1 (3.6 00 0.22) 0.783 Very bright and weakly depolarizing object (typically steel)

2 ( 3 0.10.1 0.6) 0.447 Bright object quite depolarizing

3 ( 0.7 0.5 + 0.2 L0.5 − 0.2 L 1.07 ) 0.414 Dark object whose mean total intensity is the same as the
background

(a) Low Mux intensity31 (b) Low Mux intensity32

(c) Low Mux intensity33 (d) Low Mux intensity34

Figure 5: Synthetic intensity images (negative colors) for the scene depicted in Figure 4 and described in Table 5.

hence

K#[#] = [[(# − 1) + ∑$∈P∗! ,|$|⩾2
M$M$]]M

[#]

= ∑
$∈P∗! ,|$|⩾2

M$M[#]\$ + (# − 1) M[#].
(A.8)

Proof of [eorem 3. Ye relation (10) leads to

[G# (z)]−! = (1 − T# ( %11 − M1%1 , . . . ,
%#1 − M#%#))

−!

× [ #∏
5=1
(1 − M5%5)]

−!

= ( ∑
-∈N!
6- (!, 1 − T#) ( z

1 − az)
-)
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Figure 6: Estimates of -2 using 2 or 3 low Mux intensity images for
the synthetic polarimetric images for an estimation window of size# = 15 × 15. MLE: maximum likelihood estimator.

× [ #∏
5=1
(1 − M5%5)]

−!

= ( ∑
-∈N!
6- (!, 1 − T#) z-(1 − az)−(!1+-))

= ∑
-∈N!
6- (!, 1 − T#) z-( ∑

?∈N!
(!1 + N)? a?z?_! )

= ∑
-∈N!
∑
?∈N!
6- (!, 1 − T#) ((!1 + N)? a?_!) z-+?

= ∑
;∈N!
( ∑
-+?=;
6- (!, 1 − T#) (!1 + N)? a?_!) z;

(A.9)

which proves (15). Straightforward computations allow us to
obtain the equalities (16) and (17) from (15).

(a) Low Mux intensity31

(b) Low Mux intensity32

(c) Low Mux intensity33

(d) Low Mux intensity34

Figure 7: Real-world polarimetric intensity images of a scene
composed of a plastic disk (ley) and a steel disk (right).

Figure 8: Estimates of -2 using the 3 low Mux intensity images?1, ?2, and ?3 for the real polarimetric images for an estimation
window of size # = 9 × 9. “MLE”: maximum likelihood estimator.

Proof of [eorem 4. Denote ‖N‖ = max5=1,...,#(N5), |N| =∑#5=1 N5 and introduce the notation of [6]

6- (!, -#) = ∑
.∈2"
(!)|.| a.8! , (A.10)



where (!). = !(!+1) ⋅ ⋅ ⋅ (!+8−1) = Γ(!+8)/Γ(!). By using
Yeorem 3, the following results can be obtained

6; (!, -2) = ∑
-+?=;
6- (!, 1 − T2) (!1 + N)? a?_!

= min(;1,;2)∑
ℓ=0
(!)ℓ(! + ℓ);1−ℓ(! + ℓ);2−ℓ

× M;1−ℓ1 M;2−ℓ2 \ℓ1,2( 1̂ − ℓ)! ( 2̂ − ℓ)!ℓ!
= min(;1,;2)∑
ℓ=0

Γ (! + ℓ)Γ (!) Γ (! + 1̂)Γ (! + ℓ) Γ (! + 2̂)Γ (! + ℓ)
× M;1−ℓ1 M;2−ℓ2 \ℓ1,2( 1̂ − ℓ)! ( 2̂ − ℓ)!ℓ!
= Γ (! +max ( 1̂, 2̂))Γ (!)

min(;1,;2)∑
ℓ=0

Γ (! +min ( 1̂, 2̂))Γ (!)
× Γ (!)Γ (! + ℓ) \

ℓ
1,2r! (

2∏
5=1

M;$−ℓ5( 5̂ − ℓ)!)

= (!)max(;1 ,;2)

min(;1,;2)∑
ℓ=0

(! + ℓ)min(;1,;2)−ℓ( 1̂ − ℓ)! ( 2̂ − ℓ)!ℓ!
× M;1−ℓ1 M;2−ℓ2 \ℓ1,2.

(A.11)

Proof of [eorem 6. Ye relation (16) with T3(z) = \1,2%1%2 +\1,3%1%3 + \2,3%2%3 + \1,2,3%1%2%3 leads to (22). By using the
trivial equality

\E−;1+?12,3 \E−;2+?21,3 \E−;3+?31,2 \|;−?|−2E1,2,3 M?11 M?22 M?33
= (\2,3\1,3\1,2\21,2,3 )

E( 3∏
5=1
M;$5 )( \1,2,3M1\2,3)

;1−?1

× ( \1,2,3M2\1,3)
;2−?2( \1,2,3M3\1,2)

;3−?3

(A.12)

we easily obtain (23). Note that for ‖N‖ ⩽ b ⩽ ⌊|N|/2⌋, we
have (!)E = (!)‖-‖(! + ‖N‖)E−‖-‖. By substituting N5 = 5̂ − _5,L = 1, 2, 3 in (23), the last result (24) can be obtained.
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