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ABSTRACT 

 

This study aimed at assessing the potential of combining 

synchronous SPOT4 and ENVISAT/ASAR images for 

mapping tillage practices of bare agricultural fields over a 

220 km²- peri-urban area located in the western suburbs of 

Paris (France). The approach relied on topsoil roughness 

measurements combined with information about tillage 

operations: 28 reference zones demarcated according to soil 

map information, the visual interpretation of the SPOT4 

infrared coloured image and their standard deviation of 

surface height were related to the backscattering coefficient 

of the ASAR image (R² 0.70). They were then used for 

training/validating neural networks on co-registered 20 m-

SPOT/ASAR 6 bands with 15 bootstrapping iterations. The 

overall mean validation accuracy was 94.9%, while the 

producer’s and user’s mean validation accuracies were 91.6-

81.5% and 61.8-75.4% for smooth and rough surfaces 

respectively. The SPOT/ASAR synergy thus enabled to map 

soil tillage operations with reasonable accuracy. 

 

Index Terms— SPOT/ASAR synergy, tillage practices, 

bare agricultural soils, mapping, soil roughness 

 

1. INTRODUCTION 

 

Many studies aiming at assessing soil surface characteristics 

or soil properties for cultivated fields have used either 

multispectral satellite images (e.g. [1] to [5]) or radar 

sensors (e.g. [6] to [8]) and combination of both data 

sources were seldom explored with the exception of urban 

impervious surfaces [10]. While multispectral images enable 

to assess some topsoil properties such as organic carbon 

content [3] [11]&[12], they only indirectly deliver 

information on soil surface roughness. Now the mapping of 

soil surface roughness could be useful for the spatial 

assessment of agricultural systems through soil management 

practices. As a matter of fact, although topsoil roughness 

may be influenced by soil types through particles and 

aggregates sizes and shapes, it is likely to be even more 

strongly related to soil tillage operations and the developing 

of ridge and furrow patterns. This study aimed at assessing 

the potential of combining synchronous SPOT4 and 

ENVISAT/ASAR images for mapping tillage practices of 

bare agricultural fields over a 220 km²- peri-urban area 

located in the western suburbs of Paris (France). The 

approach relied on topsoil roughness measurements 

combined to the description of tillage operations: reference 

zones relying on both soil map information, the visual 

interpretation of the SPOT4 infrared coloured image and 

their standard of surface height at 28 sites were related to the 

backscattering coefficient of the ASAR image, then used for 

training/validating artificial neural networks (ANN) with 15 

bootstrapping iterations. 

 

2. MATERIALS AND METHODS 

 

2.1. Study area 

The study zone is the Versailles plain and the Alluets plateau 

area (48°46’-48°56’ N; 1°50’-2°07’ E, WGS, 1984) 

extending over 22 145 ha in the western Paris suburbs (Fig. 

1). Located about 30 km West from Paris, this small 

agricultural peri-urban region has slender topographic 

contrasts, and controlled urban spread because its main NW-

SE axis is in the view of the Versailles castle and dedicated 

to crop cultivation. Quaternary loess deposits and Holocene 

loessic colluvium leave a mark on all landforms, particularly 

plateaus where they have transformed into hortic or glossic 

luvisols according to the FAO classification [11], while 

calcaric, rendzic cambisols develop on plateau flanks, from 

limestones or calcareous colluvium. In addition to contrasted 

soils, agricultural system are devoted to cereal cropping. The 

main crop successions are composed of rapeseed/winter 

wheat/spring barley and sometimes corn or lucern, and 

managed with conventional tillage practices: late fall  
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ploughing, followed by chisel and seedbed preparation for 

spring cereals. 

 

2.2. Satellite imagery  

A SPOT4/ASAR image pair was acquired over the study 

area on 16 March 2012 under perfectly clear sky conditions. 

The SPOT4 image had a near-nadir viewing and was 

orthorectified by Spot Image® as a Level 3 SPOTview® 

orthoimage with nearest neighbor resampling. The ASAR 

image (C band) had a high 41° incidence angle which is 

likely to better extract surface roughness [7]. It  was 

georeferenced using the SPOT4 image as reference.  

 

2.3. Field observations  

A total of 78 squared sites with 2.70 m-size were observed 

over bare agricultural soils between 11 March and 6 April 

2012. Field reflectance spectra were recorded at each site in 

the 350-1000 nm region with the FieldSpec® 3 portable 

spectroradiometer (Analytical Spectral Devices Inc., 

Boulder Co) then simulated into SPOT spectral bands [12]. 

The geographical position of each sub-square was recorded 

with a Trimble Pathfinder® DGPS with a 50 cm-precision. 

Soil roughness was estimated from the processing of 

stereoscopic photographs at each of the 2012 sites [13]. Soil 

samples were collected between 0 and 8 cm depth and soil 

moisture was determined gravimetrically at each site. 

Qualitative information about soil surface condition (crusted 

or not, ploughed, recently harrowed or rolled, 

presence/absence of sparse vegetation), the presence of 

coarse fragments, crop debris or organic manure, crop 

rotations and ploughing depth and frequency, was also 

collected. All field observations and measurements were 

made within ± 2 h of the solar noon. 

 

2.4. Mapping approach with ANN  

2.4.1. Delineation of training/validating areas  

In order for training ANN then validating classified 

images, the infrared-coloured SPOT4 image was visually 

interpreted in order to delineate homogeneous zones based 

on both soil polygons and radiometric properties around 

each field site. These homogeneous areas were defined 

within a given agricultural field, that is to say were aimed at 

accounting for intrafield soil variability in combination with 

tillage operations.  

 

2.4.2.Relationship between soil roughness and other topsoil 

properties 

Although relationships between soil roughness 

characterized through the standard deviation of root mean 

square height (HRMS) and other topsoil properties such as 

reflectance and organic carbon content were investigated, 

they will not be detailed here. The relationships were studied 

between HRMS and the mean dB backscattering coefficient 

choosing a limited set of reference zones amongst the 78 

sites. The criteria for reducing the dataset were the 

following: i) observations close to the imaging date between 

-6 days/+7 days with no rainfall event; ii) no field work 

and/or limited vegetation growth between field observation 

and imaging date. From the dB-HRMS curve, threshold 

values for HRMS were inferred. Reference zones were 

assigned to bare soil roughness classes according to these 

thresholds. Other reference zones were defined according to 

the topographical 1/25000 map of the French National 

Geographic Institute and/or based on field knowledge: 

forests, crops and grasslands, urban areas, water bodies. 

 

2.4.3.Constructing ANNs and performance assessment 

We used the ‘Neural Net’ layered feed-forward neural 

network classification implemented in ENVI v4.8. Each 

ANN was computed on the coregistered SPOT4 and ASAR 

images at 20 m resolution (i.e a total of 6 bands: the 4 SPOT 

bands and the HH and HV bands) specifying one hidden 

layers and 2000 iterations. We performed 15 bootstrap 

selections of training/validating sets amongst the chosen set 

of reference zones, and therefore obtained 15 classified 

images. These 15 classified images were stacked into a 

“hyperclassified image” and at each pixel, the spectra of the 

final assigned classes were calculated using the Hyperstat 

procedure developed by [16]. The final map was that of the 

first mode class, while the map of the first mode assignment 

frequency revealed classification uncertainty. The mean 

producer’s, user’s validation accuracy were computed from 

the 15 confusion matrices between validation zones and their 

corresponding pixels on classified images. 

 

3. RESULTS & DISCUSSION 

According to the selection criteria defined for reference 

zones for tillage practices, only 28 out of 78 reference zones 

were chosen (Figure 1). They were composed of 44 pixels in 

average (median: 41, min: 9, max: 99) i.e covered 1.76 ha. 
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Figure 1. Colour-composite SPOT/ASAR image (red, HH 

band; green, near infrared b3 band; blue, green b1 band) 

over the study zone (black boundary) and locations of 

reference zones for tillage practices (yellow zones)  

 

3.1. Sensitivity of radar signal to surface roughness 

Following former results on the effect of incidence angles 

[7], the HH polarization (Figure 2) appeared to be better 

related to soil roughness compared to the HV one (not 

shown). 

 
Figure 2. Dependance of radar signal in C-band (~5.6 GHz) 

with the surface roughness in HH polarization 

 

As previously observed by [7] for similar soils, it is difficult 

to discriminate between roughnesses greater than around 15 

mm. We therefore choose to map soil roughness according 

to two classes only: smooth and moderately rough surfaces 

(HRMS<15 mm) and rough surfaces (HRMS>15 mm). This 

15 mm-threshold discriminates between soils freshly 

harrowed or in seedbed conditions (smooth surfaces) and 

soils still showing patterns of late winter plough (rough 

surfaces). 

 

 

 

 

 

3.2. Map of tillage practices and land use - validation 

 
Figure 3. Final map of tillage practices (1rst mode) 

 
Figure 4. Map of assignment frequency 

 

The final map of tillage practices and that of assignment 

frequency are shown in Figures 3 and 4. 

The overall mean validation accuracy was 94.9%, while the 

producer’s and user’s mean validation accuracies were 91.6-

81.5% and 61.8-75.4% for smooth and rough surfaces 

respectively. Even if these accuracies are encouraging, 

rough surfaces are less accurately mapped than smooth ones. 

However, less than 5.5% of the image pixels had an 

assignment frequency lower than 50%. Most bare soils had a 

higher assignment frequency comprised 50 and 75% while it 

was even higher for forests and urban areas.  

 

 

4. CONCLUSION 

These results show promises for further monitoring of tillage 

operations within a crop production campaign, in the 

perspective of the Sentinel-2 time series, but the recovering 

of contact with ASAR sensor which has been lost since last 

May 2012 is needed. Such knowledge of agricultural 

practices at consecutive dates is likely to facilitate the 

mapping of agricultural systems which otherwise proceed 

from time-consuming surveys to farmers. 
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