
HAL Id: hal-01122475
https://hal.science/hal-01122475

Submitted on 4 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

METAPOD Template META-programming applied to
dynamics: CoP-CoM trajectories filtering

Maximilien Naveau, Justin Carpentier, Sébastien Barthelemy, Olivier Stasse,
Philippe Souères

To cite this version:
Maximilien Naveau, Justin Carpentier, Sébastien Barthelemy, Olivier Stasse, Philippe Souères.
METAPOD Template META-programming applied to dynamics: CoP-CoM trajectories filter-
ing. International Conference on Humanoid Robotics, Nov 2014, Madrid, Spain. �10.1109/HU-
MANOIDS.2014.7041391�. �hal-01122475�

https://hal.science/hal-01122475
https://hal.archives-ouvertes.fr

METAPOD - Template META-PrOgramming applied to Dynamics:
CoP-CoM trajectories filtering.

M. Naveau1, J. Carpentier1, S. Barthelemy2, O. Stasse1, P. Soueres1

Abstract— In this contribution, Metapod, a novel C++ li-
brary computing efficiently dynamic algorithms is presented.
It uses template-programming techniques together with code-
generation. The achieved performances shows some advantage
over the state-of-the art dynamic library RBDL mostly on
ATOM processor and for the inertia matrix computation,
which are relevant for robotics application. On recent desktop
computer, the ratio of the gain is not so obvious and in general
the time achieved by both library is not significantly different
for inverse dynamics. The advantage of this library is that
it is open-source and does not rely on any external symbolic
computational software. A main drawback is the increase
complexity in debugging the code source due to template
programming. Additionnaly we show how it can help in current
control problems for humanoid robots, and more specifically for
dynamic filtering of walking gait trajectories.

I. INTRODUCTION

Computing dynamic state estimate for a complex redun-
dant robot such as humanoid robot is a crucial technique for
controlling it. For instance, Inverse Dynamics control heavily
relies on the computation of the inertia matrix [1], [2].
When considering balance, this matrix is of primary interest.
Indeed most of the real-time approaches relies on the Linear
Inverted Pendulum Model to generate a Center-Of-Mass
reference trajectory which complies with the balance criteria
provided by the Center-Of-Pressure and the contacts on the
ground. Inverse Dynamics is necessary to counteract the
inertial effect involved by the limbs: either by modifying the
center-of-mass (CoM) reference [3], either by following the
momentum reference trajectories. More advanced approaches
are using Model Predictive Control (MPC) [4], [5] and need
to compute the whole robot dynamic over a time horizon.

Since 2006, processor speed is limited to 3∼4 GHz,
because transistors have reached their physical limits mostly
due to heat dissipation [6]. The Moore Law is still valid
because as the chipsets integrate more cores, the transistor
number continues to grow not because of their size, but
because of their density. They are overheating when CPU
clock is increased, and the focus is now more on concurrent
software programming to take advantage of multiple cores.
In the case of MPC, it mainly consists in having multiple
instances starting with different initial solutions. Boosting

*This work was supported by the European project KOROIBOT FP7-
ICT-2013-10/611909, the French National project OSEO ROMEO-2 and by
AIRBUS/Future of the Aircraft Factory.

1are with the CNRS, LAAS,7 av. du Colonel Roche, F-31400,
Toulouse, France, Univ de Toulouse, LAAS, F-31400, Toulouse,
France mnaveau,jcarpent,ostasse,soueres@laas.fr
2 Sébastien Barthelemy is with Aldebaran Robotics
sbarthelemy@aldebaran.com

the code running concurrently will also increase the perfor-
mances. It is now necessary to implement code to compute
dynamics efficiently while taking into account the underlying
computing architecture.

A. Problem formulation

The rigid multibody dynamic model of the robot is as-
sumed to be known and called model. According to [7],
the dynamical equations can be written under the canonical
form:

H(model ,q) q̈ + C(model ,q, q̇) = τ (1)

where q, q̇ et q̈ are respectively the generalized vectors for
positions, velocities and accelerations. H is the generalized
inertia matrix, C is the matrix representing the centrifugal,
gravitational and Coriolis forces.

We should then compute as fast as we can:
• τ by using the Recursive Newton-Euler Algorithm

(RNEA) with the following inputs q, q̇ et q̈.
• H(model ,q) by using the Composite-Rigid-Body Al-

gorithm (CRBA).
To represent position, velocities, acceleration, and forces,
spatial algebra is nowadays one of the most used representa-
tion in robotics. Introduced by Roy Featherstone [7], it allows
a correct mathematically algebra notation to represent the
relationships between quantities of a rigid multibody system.

B. Applications

1) Walking: In the context of humanoid robotics, and
following the method initiated by Nishiwaki et al. [3] for
reactive walking, RNEA can be used to filter dynamically a
Center-of-Mass trajectory. Typically, for a humanoid robot,
the goal is to compute 160 iterations for 30 DOFs robot in
less than 200 µs. This corresponds to a 1.6 s window for an
optimal controller as the one used classically for the HRP-2
robot, with a 200 Hz sampling.

To reach this objective, a RNEA call should last no more
than 1.25 µs. The result achieved by our library is 11.32
µs on a i7-2820QM CPU of 2.3 GHz. This imply to use
a subsampling mechanism such as the one proposed by
Nishiwaki et al. [3].

One may argue that sub-sampling this trajectory can
decrease the overall complexity for walking (Nishiwaki uses
a 20 ms time step). However we anticipate a demand on such
information with the recent increase in work considering
extreme motion involving strong angular moments (such as
the Parkour [8]). In such situation linearization will be only
correct at high frequency.

2) Whole-body control: Staying in the context of hu-
manoid robotics, and by now considering a control archi-
tecture based on the inverse dynamics [9], [1], computing
the inertia matrix at a very high speed may be necessary.
Following the previous remark on sub-sampling, this is
probably not required for motion with a slow dynamic.

C. State of the art

A classical approach is to implement RNEA and CRBA
using instances of classes and structures, and to iterate over
each element of the kinematic tree. RBDL (Rigid Body
Dynamic Library) and KDL (Kinematic Dynamic Library)
are using this approach. RBDL is following specifically
the directives suggested by Featherstone in his book [7]
by implementing the spatial algebra through C++ opera-
tors overloading. A different approach is to use symbolic
computation. One of the first software implementing this
approach is Symoro+ by Khalil et al. [10]. The software
is able to produce reduced models and to generate code
where unnecessary computation are stripped out. SD/FAST is
a commercially available toolbox used by Boston Dynamics
and the MIT leg laboratory [11]. HuMAnS is a toolbox writ-
ten by P.-B. Wieber [12] relying on Maple for manipulating
the robot kinematic tree. ROBOTRAN is a JAVA application
which performs symbolic manipulation and generates code
integrated in MATLAB and the Simulink toolbox [13]. In
each case, the robot model is written in a specific language
to be simplified and finally generated in C++.

In Chapter 10 of his book, Featherstone indicates that a
potential disadvantage of symbolic simplification is that it
does not use vector-based arithmetic of CPUs, and that if the
code is too large then it does not fit the computer’s instruction
cache. In this work the first point is addressed by using
Eigen, a widely known linear algebra library carefully written
to exploit vector-based floating-point units. The second point
is solved by using template programming which allows each
instanciation of the template to invoke common code while
avoiding indirect calls.

More generally, in this work, we propose to use meta-
programming to exploit directly the C++ capabilities to per-
form symbolic computation at compile time without any ad-
ditional library or software other than the BOOST libraries.
The current solution is completed with a C++ program which
is parsing URDF files and generates appropriate structures to
decouple model and instance of robots. The current limitation
of the approach is the case where model modification is
needed. A solution (not yet implemented in the current
software solution) is an abstract layer switching from an op-
timized implementation to a generic implementation (RBDL
or KDL). Another more complex solution is to compile the
new model and link dynamically to this new library.

Our contribution is to have written, to our knowledge, one
of the first meta-programming library aiming at computing
inverse dynamic for the robots. The application targeted in
this paper is humanoid robot walking. By putting together
the power of functional programming with C++ speed, our

library is able to achieve performance necessary for real-time
control.

II. TEMPLATE METAPROGRAMMING FOR INVERSE
DYNAMICS

This work takes its root from the fact that code gener-
ated by symbolic formal computation has in general better
performances than generic code for complex robotic models.
This comes for the inner structure of the problem itself. For
instance, the robot inertia matrix is sparse because the sub-
blocks matrices correspond to the kinematic branches. Then
when no coupling exists between some branches, the related
sub-blocks mainly is equal to zero. Formal computation de-
tects such branches and suppresses the related computation.
We are proposing to make the same kind of operations by
exploiting C++ template meta-programming.

The result is a template library able to develop an opti-
mized computational tree to evaluate the inverse dynamics of
a robot class named Robot and to apply it onto the specific
instance named robot, while considering the following com-
plete state (q, q̇, q̈). During execution, the model specificities
are used to update robot internal variables according to
(q, q̇, q̈).

A. Simple example of functional programming using C++

A famous example of functional programming in C++ is
the factorial computation:

template <int n> struct factorial {
enum { value=n*factorial<n-1>::value};};

template <> struct factorial<0> {
enum { value = 1 }; };

At compile time, when the compiler finds

factorial<4>

it directly computes 24 by successive substitutions. The same
type of mechanism is used to develop the RNEA algorithm
from the model Robot. In order to achieve a decoupling
between the model and the robot instances Metapod is
using a template based container proposed by boost::fusion
which allows an array like syntax with templates 1. The
kinematic structure is then embedded through indexes that
are found classically in an array, but here declared through
boost::fusion.

B. Spatial algebra and meta-programming

The spatial algebra can be easily implemented in meta-
programming thanks to static polymorphism. This is allowing
to keep a very generic code quite similar to Oriented Object
programming but without the additional cost induced by
virtual methods. We can also avoid errors by using strongly
typed operators. It has also been possible to implement the
optimization described in Appendix 2 of Featherstone’s book
[7]. This is especially useful to simplify computation when

1 A naive description of the approach is available at https://github.com/

laas/metapod/wiki/Naive-implementation---First-approach

https://github.com/laas/metapod/wiki/Naive-implementation---First-approach
https://github.com/laas/metapod/wiki/Naive-implementation---First-approach

parts of the robot are planar. One of the unitary test used
in the library available through Github is the planar arm
described in [14].

C. Visitor design pattern to compute inverse dynamic

The depth first exploration of the robot structure is per-
formed thanks to the visitor design pattern. This design
pattern has been used in all algorithms where an iterative
exploration of the tree structure is necessary. Finally, thanks
to the design pattern coupled to boost::fusion which make
possible to aggregate different types, it is possible to decou-
ple the model from its instance.

D. Benchmarks

We compared the performances of Metapod with RBDL2

by computing the inertia matrix and the inverse dynamics on
the CPUs listed in Table I. First we would like to emphasize
that the numbers are only a snapshot and are subject to
modifications, since the writing of this paper numerous
improvements have been found. Some are currently tested
for RBDL and for Metapod lead to the writing of a new
library. The reader is invited to look at the link given
in the footnote for further discussion. In each case, the
library was recompiled using the GNU gcc compiler with
the optimization options (-O3 -NDEBUG) trying to generate
the code producing the best performances. The model used
for benchmarking is the sample humanoid model provided
by Tokyo University in OpenHRP. For this specific work we
concentrated in two algorithms which are used in controlling
a humanoid robot, the Composite Rigid Body Algorithm
(CRBA) which computes the inertia matrix, and the Recur-
sive Newton-Euler Algorithm (RNEA) which provides the
torques necessary to counterbalance the gravity.

Table II provides a quick view on the performance
difference between Metapod and RBDL on various CPUs.
The next section will detail some aspects related to the CPUs
which will try to explain that the values provided here are to
be taken cautiously and are likely to highly vary according
to the CPU, the context of its overload, the compiler and
the operating system. For this reason, we provide in Table
II a ratio according to the CPU between the time provided
by Metapod and RBDL. Note that CPU-2 corresponds to
the HRP-2 real chipset with its real-time operating system.
The interested user should perform an identical comparison
for its own robot to have accurate time measurement. Here
we have put the most favorable time measurements for both
algorithms. Despite this high variability, Metapod is almost
always better in performances than RBDL.

We have started some comparisons with symbolic com-
putation libraries, but they usually imply the use of a
costly third-part software. A comparison with HuManS on
a structure similar to the model used here gives 8.35µs for
the CRBA algorithm on CPU-1. To achieve this result on
Metapod with CPU-1 it was necessary to use the compiler
options given in the remainder of the paper. They changed

2The benchmark programs for rbdl evaluation are available at https://

github.com/laas/metapod/wiki/Tests-realized-in-comparison-with-RBDL.

nothing for HuManS. As the later one does not use Eigen,
this implies that, as mentionned by Featherstone, the use of
vector-based arithmetic has a strong impact when computing
the inertia matrix. Thanks to the authors of Symoro+, and if
the paper is accepted, we hope to augment the comparison
with this software.

E. CPUs

The Intel company divides its chipsets into 3 categories:
Core, Xeon and Atom. With its low power consumption
and low heat dissipation the Atom processor is aimed for
embedded systems. The first and second families are used
respectively for desktop applications and high power com-
putation. The Xeon Phi category is targeted for many cores
applications.

1) TurboBoost: To speed up the performance of the Core
and Xeon families their coprocessors embed a technology
that Intel names TurboBoost. It consists in increasing the
CPU speed while respecting safety rules regarding heat
dissipation and voltage. The maximum speed that can be
reached is called the maximum turbo frequency. For instance
regarding Table II CPU-1 and CPU-3 can reach respectively
3.4 GHz (from 2.3 GHz) and 3.8 Ghz (from 3.6 GHz).
There is no guarantee that the maximum frequency is always
reached as it depends on the current status on the chipsets.
The Atom chipsets do not have the TurboBoost technology
as well as the Core2 Duo E7500 (CPU-2) currently inside
the HRP-2 humanoid robot. This is reflected by the numbers
given in Table II, where the raw times are 10 times faster
on Xeon chipsets than on Atom. Interestingly one would
have expected that CPU-1 with the turbo-boost would be
at best near 0.9 the speed of CPU-3, as it is the ratio of
their respective Turbo-Boost frequency. This relationship is
not verified between CPU-1 and CPU-3. In addition the de-
scription of the TurboBoost technology in the Sandy Bridge
micro architecture [15] shows a complex pattern depending
on the current overall status of the CPU. It is worth noting
that the operating system can also request TurboBoost by
sending a signal (P-state request) if it detects an overloading
status.

2) Branch prediction: Performances depend on another
key technology: branch prediction. The chipset maintains
counters to predict the branches behavior. Depending on the
statistics of the branch, the predictor tries to guess what
will we be the most probable code to be executed by the
CPU. The code and its data are then prefetched from the
memory while the CPU is decoding the current operation.
Branch predictors can also detect cycles and save in cache
intermediate variables to avoid costly access memory. Branch
predictors is also able to indirect branch where multiple
address are possible targets. The interest of the symbolic
approach is to avoid as much as possible to make branches
in the code. It facilitates the work of the branch predictor
as well as the memory pre-fetching mechanism. This may
explain why in Table II Metapod provides a 25-30 %
increase in efficiency on the CRBA algorithm. Unfortunately
chipsets providers, in general, do not give a detailed de-

https://github.com/laas/metapod/wiki/Tests-realized-in-comparison-with-RBDL
https://github.com/laas/metapod/wiki/Tests-realized-in-comparison-with-RBDL

Nickname CPU name Frequency Core number Cache size Distribution
CPU-1 Intel(R) Core(TM) i7-2820QM CPU 2.3 GHz 8 8 Mb Ubuntu 12.04 LTS
CPU-2 Intel(R) Core2(TM) Duo E7500 2.8 GHz 1 3 Mb Ubuntu 10.04 LTS
CPU-3 Intel(R) Xeon(R) CPU E3-1240 v3 3.4 GHz 8 8 Mb Ubuntu 12.04 LTS
CPU-4 Intel(R) Atom(TM) CPU N720 1.6 Ghz 1 512 Kb Ubuntu 12.04 LTS

TABLE I
CPUS USED FOR THE BENCHMARKING. CPU-1 IS A LAPTOP, CPU-2 IS ONE USED IN HRP-2, CPU-3 IS A DESKTOP, AND CPU-4 IS A NETPC. CPU-2

IS USING ONLY ONE CORE DUE TO THE REAL-TIME OPERATING SYSTEM RECOGNIZING ONLY ONE CORE.

Library Algorithms CPU-1 CPU-2 CPU-3 CPU-4
µs ratio µs ratio µs ratio µs ratio

Metapod
CRBA 7.89 0.77 12.97 0.69 5.08 0.76 61.06 0.76
RNEA 9.28 0.97 13.85 0.75 4.93 0.82 60.98 0.90

RBDL
CRBA 10.16 18.59 6.60 79.68
RNEA 9.5 18.66 5.99 67.68

TABLE II
PROCESSING TIME FOR THREE BASIC ALGORITHMS USED IN CONTROL OF HUMANOID ROBOT: INERTIA MATRIX COMPUTATION (CRBA), INVERSE

DYNAMICS (RNEA). THE COMPUTATION HAVE BEEN TESTED ON 4 CPUS.

Library Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
RBDL 8,295,618,744 39,643 3,995 3,447,245,971 2,936,723 7,322 1,617,919,310 607,848 3,447

Metapod 4,529,574,180 69,802,287 2,722 2,154,169,130 9,709,886 5,040 1,034,216,699 27,501,390 1,136

TABLE III
Ir: NUMBER OF EXECUTED INSTRUCTIONS, I1m1r: INSTRUCTION READ MISSES FOR CACHE L1, ILmr: INSTRUCTION READ MISSES FOR LAST LEVEL

CACHE, Dr: NUMBER OF CACHE READ, D1mr: DATA READ MISSES FOR CACHE L1, DLmr: DATA READ MISSES FOR LAST LEVEL CACHE, Dw:
NUMBER OF CACHE WRITE, D1mw: DATA WRITE MISSES FOR CACHE L1, DLmw: DATA WRITE MISSES FOR LAST LEVEL CACHE. TESTS REALIZED

ON CPU-1

Library Bc Bcm Bi Bim
RBDL 245,662,040 7,604,170 45,177,857 269,654

Metapod 98,901,411 977,079 14,105,063 726

TABLE IV
Bc: CONDITIONAL BRANCHES EXECUTED, Bcm: CONDITIONAL

BRANCHES MISPREDICTED, Bi: INDIRECT BRANCHES EXECUTED Bim:
INDIRECT BRANCHES MISPREDICTED. TESTS REALIZED ON CPU-1

scription of their branch predictors. For this reason, users
have usually to reverse engineer the behavior of the chipset
in order to create branch predictor aware compilers [16],
[17]. We used Valgrind framework to analyse cache access
and branch prediction. The result is compiled in Table III
and in Table IV. From Table III Metapod is doing more
misprediction than RBDL for the Level 1 cache both for
instruction and data, but less for the last level cache. As a
last level misprediction implies a memory access, with the
slower bus frequency it is the most costly. Therefore this
result is in favor of Metapod. In addition Table IV shows
clearly that branch misprediction is far lower for Metapod
than for RBDL.

3) Compiler: The importance of the compiling options
differs according to the library and the CPUs. It was partic-
ularly strong on the Atom chipset with a gain of 20µs for
Metapod and RBDL. On RBDL, the impact of compiling

option was null on CPU-1 and CPU-3 whereas it is improved
by 10 % on Metapod. The compiler options used to exploit
vector-based arithmetic and loop optimizations are 3: -msse
-msse2 -msse3 -march=corei7 -mfpmath=sse -fivopts -ftree-
loop-im -fipa-pta. In addition during the linking phase it
is possible to strip out useless code and perform whole-
program optimization with the following option: -fwhole-
program. Again the static structure of the code generated
through Metapod simplifies the work of optimization strate-
gies applied by the compiler (here gcc).

III. DYNAMIC FILTERING FOR WALKING

To illustrate the use of Metapod on a humanoid robot, we
consider an application where the robot has to evolve in a
factory. AIRBUS/Future of the Aircraft factory is currently
evaluating the potential of humanoid robots in such context.
The use case considered here is the HRP-2 humanoid robot
bringing an electric screw driver to an assembly line. On the
other hand, in the context of the Koroibot project aiming at
studying human walking to improve humanoid robot motion,
we have created a stair climbing motion primitive. The be-
havior consisting in bringing a tool while climbing the stairs
is then a combination of the two motion primitives. We show

3We kindly invite the interested reader to follow the gcc manual for a
more detailed explanation of the options

next that, thanks to Metapod, the dynamical consistency can
be realized in real time.

A. Dynamic filtering on a sub-sampled walking pattern
generator

This work is based upon the real time walking control
system described by Nishiwaki in [3]. One key ingredient is
to generate real-time dynamically stable CoM and Center-of-
Pressure (CoP) trajectories using the cart-table model [18].
Then to correct the inertial effects induced by the legs
movement Nishiwaki uses a subsampled dynamical filter.
Indeed, the results tested on HRP-2 have shown that the CoP
trajectory followed by the robot are not the desired one, the
difference can be as big as 15 mm. To avoid this problem,
the solutions consist in designing a controller regulating the
linear and angular momentum [19] in addition to a dynamical
filter aiming at correcting the CoM trajectory in order to take
into account the dynamics of the robot. The first kind of
solution is mostly used to reject instantaneous perturbations.
However, it uses additional degrees of freedom that could
have been used for manipulation tasks for example. For
this reason, in our specific case, we have only implemented
the dynamical filter as the commercially available stabilizer
integrate already a perturbation rejection strategy. In the
following the dynamic filter depicted by Nishiwaki and
implemented in this paper is described in details:

• The walking pattern generator (WPG) defines a trajec-
tory for the CoM, the feet and the CoP. The desired
CoP trajectory is noted CoP∗.

• The dynamic filter starts by computing the joint tra-
jectories using the analytical inverse kinematics. We
make the assumption that the CoM and the free flyer
are rigidly connected.

(q, q̇, q̈) = IK(ponctual model, c, ċ, c̈,Xf)

with c, ċ, c̈ et Xf being respectively the position, the
velocity, the acceleration of the CoM and the feet
position.

• With the joint trajectory, it is possible to compute the
inverse dynamics and to find the CoP matching up to
the real robot motion. We call it the multi-body CoP
noted CoPMB .

(f, τ) = ID(model complet,q, q̇, q̈)
CoPMB

x = − τy
mg

CoPMB
y = τx

mg

CoPMB
z = 0

∆CoP = CoP∗ − CoPMB

• This provides an error between CoP∗ and CoPMB .
This error is computed over a time window and is
injected in a preview control (PC) in the shape of an
LQR described by Kajita and al. [18]. The result of this
step is an error for the CoM in position, velocity and
acceleration.

∆CoM = PC(∆CoP)

-0.1
-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0 1 2 3 4 5 6 7

Y
 a

x
is

 (
m

)

time (s)

Action of the dynamic filter on the ZMP

zmp ref
zmp multi-body

zmpmb corrected

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6 7

X
 a

x
is

 (
m

)

time (s)

Action of the dynamic filter on the ZMP

zmp ref
zmp multi-body
zmp corrected

Fig. 1. Results obtained on the Morisawa offline WPG

• We can then sum this error on the reference CoM
(CoM∗) to correct the trajectory.

CoM = CoM∗ + ∆CoM

With CoM =
[
c ċ c̈

]T
• Finally, the new CoM trajectory is used to compute the

joint trajectory using the Inverse Kinematics.
This dynamic filter is based on the Newton-Raphson algo-
rithm using the CoM trajectory as free variables. This method
does not guarantee the convergence. However during tests on
HRP-2 with other WPG, we observed that the CoP trajectory
is corrected in one iteration. The goal is to implement this
method on the WPG of Andrei Herdt [20] and Morisawa’s
[21].

B. Application on HRP-2

We propose to use this filter on the WPG proposed by
Morisawa and al. in [21]. This algorithm uses an analytical
form of the CoM and CoP trajectories assuming that the later
is a third order polynomial. The Morisawa’s WPG can either
define off line the whole trajectory at once, or change online
the foot steps given as reference.

To use the filter with its full potential on the online
Morisawa’s WPG we need to compute the trajectory over
1.6 s in advance, i.e. two steps forward. The computation of
the trajectory is done every 5 ms including the control, so the
remaining time for the WPG is 3 ms. Moreover, because the
robot HRP-2 is controlled at 200 Hz, we need to compute
320 RNEA to use the whole preview. Our implementation,
as fast as it is, does not allow this kind of computation,
hence we used a strategy proposed by Nishiwaki, i.e. we
sub sampled the preview window at a period of 0.05 s which
leads to 32 RNEA every 0.1 s. We rather compute the whole
dynamic filter for the offline WPG of Morisawa.

This study is based on the offline WPG. We computed
1.6 s more than the initial trajectory and we computed the
multi-body CoP for each sampling time.

The results obtained are illustrated in the Fig. 1. The
graphs here contains each :

• the trajectories of the reference CoP,
• the multi-body CoP computed with RNEA,
• and the corrected CoP obtained with the RNEA using

the corrected CoM
The upper graph depicts the evolution on the axis X in
function of the time and the lower graph shows the evolution
of the Y axis in function of the time. This data are extracted
from a straight walking using the offline WPG of Morisawa.

We can here easily see the influence of the filter, i.e. the
corrected multi-body CoP is almost fused with the reference
one. In terms of distance, the maximum error between the
reference CoP and the multi-body CoP is 15.3 mm while the
maximum distance after correction is 1.7 mm. In average the
error before correction is 5.7 mm and after it is 0.7 mm.

In term of computation time, we executed the algorithm
that creates a straight flat walking on the HRP-2 robot. The
results are 15.0 us for the average time used to compute
the RNEA during the whole trajectory and 342.0 us for
the maximum duration of one iteration of RNEA. This
peak corresponds to the first iterations of the algorithm,
corresponding to memory allocation.

We have done a series of experiments using the dynamic
filter including the straight walking and climbing stairs. For
the climbing we had four scenarios: one simple walk, a walk
while swinging the arm and holding a lightweight tool in
one hand, another one holding the tool with 2 hands. In
the last one the tool is hold with the hands lifted over the
head. HRP-2 went through all the pattern has depicted in
the companion video. We also succeded to make the robot
going down the stairs with the lightweight in two hands,
however we did not manage to make HRP-2 perform the
rest of the scenario while going down. One of the raisons
that explain this behaviour is that the dynamic filter places
the CoM in a way such that the CoP is inside the support
foot. To compensate for the arms being in front, the CoM is
send slightly backward. The leg is then stretched and create a
singularity. This shows the limit of this approach which calls
for a more advanced development such as optimal control,
whole-body predictive control or planning.

In this section we have shown that one iteration of a
Newton-Raphson algorithm can make the CoP converge to-
wards its reference and it could be applied to WPG focusing
on the under-actuated part of the robot.

IV. CONCLUSION

We have presented a C++ library for efficient humanoid
dynamic computation without relying on any particular sym-
bolic computational tool. The achieved performances shows
some advantage over the state-of-the art dynamic library
RBDL mostly on ATOM processor and for the inertia matrix
computation, which are relevant for robotics application. On
recent desktop computer, the ratio of the gain is not so
obvious and in general the time achieved by both library
is not significantly different for inverse dynamics. Some
preliminary results show that we have a computational speed
similar to symbolic computation. This is achieved through a
mix of code generation and C++ meta-programming. Its use

is established in the context of dynamic filtering for real-time
walking gait generation, and more specifically applied to the
humanoid robot HRP-2. The library is available under GPL-
license at the following url: https://github.com/
laas/metapod.

REFERENCES

[1] N. Mansard, “A dedicated solver for fast operational-space inverse
dynamics,” in ICRA, 2012, pp. 4943 –4949.

[2] A. D. Prete, F. Romano, L. Natale, G. Metta, G. Sandini, and F. Nori,
“Prioritized optimal control,” in ICRA, 2014.

[3] K. Nishiwaki and S. Kagami, “Online walking control system for
humanoids with short cycle pattern generation,” The International
Journal of Robotics Research, vol. 28, no. 6, pp. 729–742, 2009.

[4] S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking
based on online optimization,” in ICHR, 2013, pp. 21–27.

[5] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in ICRA, 2014, pp. 1168–1175.

[6] V. Zhirnoz, R. K. C. III, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scalinga gedanken model,” Proceedings of the
IEEE, vol. 91, pp. 1935–1939, 2003.

[7] R. Featherstone, Rigid Body Dynamics Algorithms. Springer Science,
2008.

[8] C. M. Dellin and S. S. Srinivasa, “A framework for extreme locomo-
tion planning,” in ICRA, 2012, pp. 989–996.

[9] L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human environments,” in ICRA, 2006.

[10] W. Khalil and D. Creusot, “Symoro+: A system for the symbolic
modelling of robots,” Robotica, vol. 15, no. 2, pp. 153–161, 1997.

[11] P. Inc., “Sd/fast.” [Online]. Available: http://www.ptc.com/support/
sdfast/index.html

[12] P.-B. Wieber, F. Billet, L. Boissieux, and R. Pissard-Gibollet, “The
humans toolbox, a homogeneous framework for motion capture,
analysis and simulation,” in Ninth ISB Symposium on 3D analysis
of human movement, 2006.

[13] ROBOTRAN: Symbolic generator of multibody systems. [Online].
Available: http://www.robotran.be/

[14] M. Spong, S. Hutchinson, and V. M., Robot Modeling and Control.
John Wiley and Sons, 2006.

[15] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power-management architecture of the intel microarchitecture
code-named sandy bridge,” Micro, IEEE, vol. 32, no. 2, pp. 20–27,
March 2012.

[16] Z. Wang and D. A. Jiménez, “Program interferometry,” in Interna-
tional IEEE International Symposium on Workload Characterization
(IISWC), 2011, pp. 172–183.

[17] V. Uzelac and A. Milenkovic, “Experiment flows and microbench-
marks for reverse engineering of branch predictor structures,” in IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2009, pp. 207–217.

[18] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in ICRA, September 2003, pp. 1620–
1626.

[19] ——, “Resolved momentum control: Humanoid motion planning
based on the linear and angular momentum,” 2003.

[20] A. Herdt, H. Diedam, P. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, 24, vol. 5, no. 6, pp. 719–737, 2010.

[21] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kane-
hiro, K. Kaneko, and H. Hirukawa, “Experimentation of Humanoid
Walking Allowing Immediate Modification of Foot Place Based on
Analytical Solution,” in ICRA, 2007, pp. 3989–3994.

ACKNOWLEDGMENT

The Metapod library was made possible thanks to the work
of Maxime REIS. Antonio EL-KHOURY took an active part
in the improvement of Metapod. We warmly thank them.

https://github.com/laas/metapod
https://github.com/laas/metapod
http://www.ptc.com/support/sdfast/index.html
http://www.ptc.com/support/sdfast/index.html
http://www.robotran.be/

	Introduction
	Problem formulation
	Applications
	Walking
	Whole-body control

	State of the art

	Template metaprogramming for Inverse Dynamics
	Simple example of functional programming using C++
	Spatial algebra and meta-programming
	Visitor design pattern to compute inverse dynamic
	Benchmarks
	CPUs
	TurboBoost
	Branch prediction
	Compiler

	Dynamic filtering for walking
	Dynamic filtering on a sub-sampled walking pattern generator
	Application on HRP-2

	Conclusion
	References

