A Fokker-Planck model of the Boltzmann equation with correct Prandtl number - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2016

A Fokker-Planck model of the Boltzmann equation with correct Prandtl number

Résumé

We propose an extension of the Fokker-Planck model of the Boltzmann equation to get a correct Prandtl number in the Compressible Navier-Stokes asymptotics. This is obtained by replacing the diffusion coefficient (which is the equilibrium temperature) by a non diagonal temperature tensor, like the Ellipsoidal-Statistical model (ES) is obtained from the Bathnagar-Gross-Krook model (BGK) of the Boltzmann equation. Our model is proved to satisfy the properties of conservation and a H-theorem. A Chapman-Enskog analysis and two numerical tests show that a correct Prandtl number of 2/3 can be obtained.
Fichier principal
Vignette du fichier
ESFP.pdf (273.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01122440 , version 1 (03-03-2015)

Identifiants

Citer

Julien Mathiaud, Luc Mieussens. A Fokker-Planck model of the Boltzmann equation with correct Prandtl number. Journal of Statistical Physics, 2016, 162 (2), pp.397-414. ⟨10.1007/s10955-015-1404-9⟩. ⟨hal-01122440⟩
196 Consultations
284 Téléchargements

Altmetric

Partager

More