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Effect of Polynomial Interpolations on the Estimation

Performance of a Frequency-Selective Rayleigh Channel in

OFDM Systems

Vincent Savaux∗ , Moïse Djoko-Kouam , Yves Louët and Alexandre Skrzypczak

Abstract

In this article, we provide an analytical expression of the mean square error (MSE) and the

bit error rate (BER) lower bound of an orthogonal frequency division multiplexing (OFDM) signal

transmission over a multipath Rayleigh channel considering estimation errors. For some pilot arrange-

ments, an interpolation is required to perform the channel estimation. Due to their low complexity,

polynomial based interpolations are usually applied at the receiver, which induces estimation and

signal errors. Based on a statistical analysis of these errors, the exact MSE expression of the channel

estimation is provided. Furthermore, with a geometrical study of the constellation, an analytical BER

limit is derived. For a given channel, it is shown that the errors are perfectly characterized by the

interpolation method and the frequency gap between the pilot tones. All the steps of the analytical

developments are validated through simulations. The proposed analysis then predicts the performance

of the receiver, thus enabling the latter to a priori select the interpolation method with minimum

complexity, according to a given channel and a BER target.
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Effect of Polynomial Interpolations on the Estimation

Performance of a Frequency-Selective Rayleigh Channel in

OFDM Systems

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has become a very popular modulation scheme,

for its robustness against the frequency selective channels. In order to estimate the channel frequency

response, some pilots are inserted in the OFDM frame. A wide range of pilot-symbol-aided channel

estimation techniques are described in [1]–[4]. Among them, and according to the pilot distribution, an

interpolation may be necessary to estimate the channel over the time-frequency lattice. For instance,

a comb-type pilot scheme or an arrangement in staggered row are adapted to the time and frequency

selective channel, as in the digital radio mondiale (DRM/DRM+) [5] or the digital video broadcasting

(DVB) [6] standard. These arrangements require an interpolation that may lead to estimation errors

causing some decision errors and finally inducing a corrupted signal at the receiver. Consequently,

the system performance, measured in bit error rate (BER) or mean square error (MSE) of estimation,

reaches a lower limit even for a very low noise level.

The effects of the noise and the channel on the system performance have been studied for many

years in the literature. In [7], the outcome of several channel models (e.g. Rayleigh, Rice, Nakagami)

have been covered in order to express the theoretical symbol error rates (SER) of linear modulations

in a single carrier context. The authors of [8] propose a closed-form of the exact BER expression

for hierarchical modulations, and use the repetitive pattern of these kinds of constellations to derive

a recursive algorithm for the exact BER computation [9]. In [10], the effects of the sinc channel

estimation errors on the BER have been studied for a single carrier signal transmitted over a Rayleigh

channel. This study has been extended in [11], in which the spatial diversity is considered at the

receiver.

More recently, in an OFDM context, the authors of [12] study the lower bound reached by the BER

curves due to different interpolation methods and for different constellation sizes. However, it does not

provide any analytical expression of this BER lower bound. In [13], [14], an analytical expression of

the SER and BER for a transmission in presence of channel frequency offset and channel estimation

errors is derived for different modulation schemes. However, the developments are made by using

the probability density functions (pdfs) given in [15], in which the channel coefficients and the error

of estimation are supposed to be uncorrelated, which is not the case in practice.

In this article, we investigate the effect of interpolation methods based on low degrees polynomials,



like the NN, linear or cubic interpolations [1], [2], and that do not need physical or statistical channel

properties as for the linear minimum mean square error (LMMSE) [3], [4] or the maximum likelihood

(ML) [16] techniques. As a matter of fact, these simple polynomial interpolation methods are the

most used in practical receiver implementations, for they are much less complex than LMMSE or

ML, although the latter are more accurate. Consequently, the analysis of their performance limits is

of great interest. To this end, we characterize the system performance not only with a BER value

as usually in the literature [10], [11], [13], [14], but also with the MSE of the channel estimation

performed by means of the least square (LS) method with interpolations, as it is done in [4], [17] for

the LMMSE. As in [10], [11], we use a Rayleigh channel model with correlated interpolation errors,

but we consider the transmission of an OFDM signal over a frequency selective channel. To provide

an analytical BER lower bound expression, we propose to study the statistics of the estimation errors

and the geometry of the constellation. From the statistics of the errors, we then derive an analytical

expression of the MSE for the LS estimation with interpolation. A general expression of the errors

is provided, and is then applied to the nearest neighbor (NN), the linear interpolations and the cubic

interpolation methods.

The contributions of this article are the following ones: firstly, according to the channel parameters,

we give an exact expression of the error statistics (variance, correlation coefficient, distribution) in

function of the interpolation technique and the frequency gap between the pilot tones. Secondly, we

propose an original approach for the exact BER floor calculation, by splitting the study into statistical

and geometrical considerations. Thirdly, in addition to the BER analysis, the exact MSE of the LS

estimation with interpolation is provided. This is an original performance study that highlights some

interpolation properties, in particular regarding the interpolated noise. The proposed analysis can then

be used at the receiver side to choose the less complex interpolation method for a BER target, and

according to the channel.

The article is organized as follows: Section II describes the system model and gives the parameters

used all along the paper. In Section III, the statistics of the errors are exactly expressed in function

of the interpolation technique and the gap between the pilots. From these statistics, the mean square

error of the estimations is analytically derived in Section IV, and then the exact BER floor value is

given in Section V. The simulations results of Section VI validate the theoretical developments, and

we draw conclusions and we give some prospects in Section VII.

II. SYSTEM MODEL

A. Background and Signal Model

We consider the transmission of OFDM symbols over a multipath Rayleigh channel. After the

removal of the cyclic prefix (CP) and the Discrete Fourier Transform (DFT) of size M , we express



the received OFDM symbol vector in the frequency domain by

U = CH+W, (1)

where U = [U0, ..., UM−1]T , H = [H0, ...,HM−1]T and W = [W0, ...,WM−1]T denote the M × 1

complex vectors of the received signal, the time and frequency selective channel and the Gaussian

white noise of variance σ2, respectively. The matrix C is theM×M diagonal matrix of the transmitted

signal containing the vector [C0, ..., CM−1]. Each Cm is either a data element or a pilot, whose gain,

phase and position are perfectly known at both transmitter and receiver sides. Since the channel

is time-varying, let us assume OFDM symbols with a comb-type pilot arrangement [18], i.e. the

pilot tones are evenly distributed in each symbol, with a frequency gap noted δp. As reminded in

[19], in order to capture all the channel frequency variations, this frequency gap must respect the

Nyquist sampling theorem δp ≤ 1/(τmax∆(fc)), where τmax is the maximum delay spread and ∆(fc)

the subcarrier spacing. As illustrated in Fig. 1, three values δp ∈ {2, 3, 4} are considered, so as to

generalize the further developments whatever δp. For simulations purposes, each symbol hasM = 241

subcarriers. The reason is that 241 = a × δp + 1, where a is an integer. In order to only focus on

the effect of the interpolation errors, the developments and the simulations are performed without

considering channel coding.

Fig. 1. Illustration of the pilot arrangements for different values of δp, the pilot tones are black and the data carriers are

white.

The frequency positions of the pilot tones are pointed out by the letter p, so as to write f = fp and

m = p in the continuous and in the discrete formalism, respectively. We also define Np the number

of pilot tones per OFDM symbol. In the rest of the article and without loss of generality, the pilot

are supposed to have a normalized power, that is |Cp|
2 = P = 1.

B. Channel Model

Since polynomial-based interpolations methods are usually expressed for continuous functions,

some developments will be made in a continuous formalism. However, it will be shown that the



developments remain valid in the discrete formalism. Thus, the Rayleigh channel frequency response

will be equivalently expressed by

H(f) =

L−1
∑

l=0

hle
−2jπfτl ⇐⇒ Hm =

L−1
∑

l=0

hle
−2jπ βlm

M , (2)

where βl = τl/τs are the sampled path delays, m = fMτs the sampled frequency, with τs the

sampling time, L is the number of paths and hl are the zero-mean independent complex Gaussian

path coefficients, according to the wide sense stationary uncorrelated scattering (WSSUS) model

described in [20]. We also define σ2
l = E{|hl|

2} the variance of the lth path.

C. Channel Estimation

According to the pilot positions, the channel estimation is expressed by

Ĥ(f) =















Ĥ(f)LS = H(f) + W (f)
C(f) if f = fp

Ĥ(f)int + (W (f)
C(f) )

int if f 6= fp

⇐⇒ Ĥm =















ĤLS
m = Hm + Wm

Cm
if m = p

Ĥ int
m + (Wm

Cm
)int if m 6= p

,

(3)

in the continuous and discrete formalisms, where Ĥ(f)LS is the usual least square estimation [4],

[21], and the superscipt int denotes the interpolated values of the channel and the noise. Since the

channel and the noise are uncorrelated, the interpolation of the sum of the channel and noise is

the sum of the respective interpolations. Consequently, it is possible to study the statistics of the

interpolation errors Hm− Ĥ int
m independently of the interpolated noise (Wm

Cm
)int. The statistics of the

noise and the channel estimation errors will be then used in order to derive the analytical expressions

of the mean square error (MSE) and the bit error rate (BER) floor.

III. STATISTICS OF THE INTERPOLATION ERRORS

We propose to derive the analytical MSE and BER floor for three frequently used polynomial

interpolations. To this end, the second-order statistics of the interpolation errors are required, in

particular the variance of the error and the joint probability density function (pdf) of the channel and

the error. In this section, we then statistically characterize the interpolation errors without taking into

account the noise. We first give a general formulation of the statistical analysis, and we then apply

it to the NN, the linear and the piecewise cubic interpolation methods.

A. General Formulation

From (3), for a given frequency f 6= fp and without taking into account the noise, the error induced

by the interpolation, noted eh is defined by



eh = Ĥ(f)int −H(fp). (4)

Let us also define ξ = |eh| and the random Rayleigh process r = |H(f)|. Since the error in (4)

is function of the channel, it is assumed that it has the same distributions as this latter, i.e. eh is

a complex Gaussian process and ξ a Rayleigh process, whose variance noted σ2
ξ must be defined.

This assumption will be verified afterward. From (4), we also deduce that the error depends on the

frequency gap f − fp. In the discrete formalism, we denote by k the gap between a pilot p a given

position m = p+ k, as illustrated on Fig. 2.

Fig. 2. Discrete intervals for the nearest neighbor interpolation, for different values of δp.

Thus, for a given position m = p + k in the discrete interval ]]p, p + δp[[, we define the error ξk

whose variance is denoted by σ2
ξk
. From Fig. 2, we observe that, by symmetry, ξk has the same

variance for k = 1 and k = 2 for δp = 3, and in the same way, σ2
ξ1

= σ2
ξ3
for δp = 4. We deduce the

probability density function of the error

pξ(ξ) =















ξ
σ2
ξ1

e
− ξ2

2σ2
ξ1 , if δp ∈ {2, 3}

2
3(

ξ
σ2
ξ1

e
− ξ2

2σ2
ξ1 ) + 1

3(
ξ

σ2
ξ2

e
− ξ2

2σ2
ξ2 ), if δp = 4

. (5)

The weights 2/3 and 1/3 in (5) correspond to the ratio between the symmetrical carriers having the

same variances divided by the number of data-carriers in each discrete interval described in Fig. 2,

for δ = 4. From (5), the general expression of pξ(ξ) can be reasonably extrapolated (with an obvious

recursion) whatever δp > 2:

pξ(ξ) =



















1
δp−1

ξ
σ2
ξδp/2

e
− ξ2

2σ2
ξδp/2 + 2

δp−1
∑δp/2−1

k=1
ξ

σ2
ξk

e
− ξ2

2σ2
ξk , if δp is even

2
δp−1

∑(δp−1)/2
k=1

ξ
σ2
ξk

e
− ξ2

2σ2
ξk , if δp is odd

. (6)



The limit δp/2− 1 and (δp − 1)/2 in the sum are due to the fact that σ2
ξk

= σ2
ξδp−k

.

It is obvious from (4) that the channel frequency response and the interpolation error are correlated.

The model proposed in [15] is then not valid in this context. Since the channel r and the error ξ both

follow a Rayleigh distribution, we know from [10], [22], [23] that the joint pdf of two correlated

Rayleigh variables is

pr,ξ(r, ξ) =
rξ

σ2
rσ

2
ξ (1− ρ2rξ)

exp

(

−
σ2
ξr

2 + σ2
rξ

2

2σ2
rσ

2
ξ (1− ρ2rξ)

)

I0

(

rξρrξ
σrσξ(1− ρ2rξ)

)

, (7)

where ρrξ is the correlation coefficient between the channel and the error of estimation due to the

interpolation, and I0 is the modified Bessel function of first kind with order zero. As for the variance

σ2
ξ , ρrξ depends on the interpolation method, and its expression will derived afterward. From (7),

we also derive the conditional pdf pξ|r,ξk(ξ|r, ξk) defined for a given value k by pξ|r,ξk(ξ|r, ξk) =

pr,ξk
(r,ξk)

pr(r)
. Similarly as ξ, the generalized expression of the conditional pdf is also a weighted sum of

the conditional pdfs for different k values:

pξ|r(ξ|r) =















1
δp−1pξ|r,ξδp/2

(ξ|r, ξδp/2) +
2

δp−1
∑δp/2−1

k=1 pξ|r,ξk(ξ|r, ξk), if δp is even

2
δp−1

∑(δp−1)/2
k=1 pξ|r,ξk(ξ|r, ξk), if δp is odd

. (8)

This general statistics of the estimation errors are applied in the following, to the NN, the linear and

the piecewise cubic interpolations.

B. Nearest Neighbor Interpolation

1) Reminder: Let us consider three consecutive frequency pilot positions fp−δp , fp and fp+δp ,

such as fp is not at the edge of the channel, i.e. p /∈ {0,M − 1}. From that, we denote fp− and

fp+ the centers of the intervals [fp−δp, fp] and [fp, fp+δp] respectively. ∀f ∈ [fp− , fp+], the channel

estimation made by a NN interpolation within this interval is simply written

Ĥ(f) = Ĥ(fp)
LS = H(fp) +

W (fp)

C(fp)
, (9)

where Ĥ(fp)
LS is the LS estimation performed on the position fp. If p = 0 or p = M − 1, the NN

interpolation is limited to the intervals [f0, f0+ ] and [fM−1− , fM−1], respectively, but the expression

(9) remains the same.

2) Variance of the Errors for the NN Interpolation: By replacing H by its value given by (2), it

yields

ξNN = |
L−1
∑

l=0

hle
−2jπfpτl(1− e−2jπ∆fτl)|, (10)



where ∆f = f − fp. As e−2jπfpτl(1 − e−2jπ∆fτl) is deterministic, we conclude that, since |H(f)|

follows a Rayleigh distribution, then ξNN has the same distribution. From (10), whatever p =

0, δp, ..,M − 1 and whatever δp, we now express ξk,NN the discrete version of ξNN in (10):

ξk,NN = |
L−1
∑

l=0

hle
−2jπ pβl

M (1− e−2jπ
kβl
M )|. (11)

The variance of ξk,NN , noted σ2
ξk,NN

, is expressed

σ2
ξk,NN

= E{eh,NNe∗h,NN}

= E

{(

L−1
∑

l1=0

hl1e
−2jπ pβl1

M (1− e−2jπ
kβl1
M )

)(

L−1
∑

l2=0

hl2e
−2jπ pβl2

M (1− e−2jπ
kβl2
M )

)∗}

= E

{

L−1
∑

l=0

|hl|
2(2− e−2jπ

kβl
M − e2jπ

kβl
M )

}

=

L−1
∑

l=0

σ2
l (2− 2 cos(2π

kβl
M

)). (12)

We observe in (12) that, since σ2
ξk,NN

depends on k, it consequently depends on the considered gap

δp. Thus, for δp ∈ {2, 3}, |k| = 1, so σ2
ξk,NN

takes a sole value. For δp = 4, |k| = 1 for two thirds of

the estimated carriers in a discrete interval described in Fig. 2, and |k| = 2 for one third. Thus, we

deduce the variance σ2
ξNN

of the error ξNN (considered for all k):

σ2
ξNN

=































σ2
ξ1,NN

=
∑L−1

l=0 σ2
l (2− 2 cos(2π βl

M )), if δp ∈ {2, 3}

2
3σ

2
ξ1,NN

+ 1
3σ

2
ξ2,NN

= 2
3

∑L−1
l=0 σ2

l (2− 2 cos(2π βl

M )) + 1
3

∑L−1
l=0 σ2

l (2− 2 cos(2π 2βl

M )), if δp = 4,

(13)

3) Correlation coefficient ρrξ for the NN Interpolation: The correlation coefficient, noted ρrξ,NN

in the case of a NN interpolation, is expressed by

ρrξ,NN =
|E{H(f)e∗h}|

σhσξNN

=
|
∑L−1

l=0 E{|hl|
2(e2jπτl(fp−f) − 1)}|

σhσξNN

=
|
∑L−1

l=0 σ2
l (e

−2jπτl∆f − 1)|

σhσξNN

, (14)

with σh the variance of the channel. In the discrete domain, the error depends on the value of k, so

we obtain:



ρrξk,NN =
|
∑L−1

l=0 σ2
l (e

−2jπ βlk

M − 1)|

σhσξk,NN

. (15)

C. Linear Interpolation

1) Reminder: In this section, as previously, a similar development is performed for the linear

interpolation. We first remind the expression of the linear interpolation, for f ∈ [fp, fp+δp], Ĥ(f) is

obtained by

Ĥ(f) = ĤLS(fp) + (f − fp)
ĤLS(fp+δp)− ĤLS(fp)

fp+δp − fp
, (16)

where ĤLS(fp) is the LS estimation performed on the pth pilot tone. We remind that, in this section,

we are only interested in the interpolation errors, so (16) is rewritten without the noise component:

Ĥ(f)int = H(fp) + (f − fp)
H(fp+δp)−H(fp)

fp+δp − fp
. (17)

2) Variance of the Errors for the Linear Interpolation: For the linear interpolation, it is well known

that the error between a given function g of class C2 and its approximation ĝ by a linear function at

a point x is given by

|g(x)− ĝ(x)| =
1

2
|(xp+δp − x)(xp − x)| × |g′′(y)|, (18)

where xp and xp+δp are two consecutive nodes such as ĝ(xp) = g(xp) and ĝ(xp+δp) = g(xp+δp),

and y ∈ [xp, xp+δp ]. This expression comes from the Taylor’s expansion of g(x) on xp and xp+δp .

It is obvious that the channel frequency response (2) is C2 on [f0, fM−1], so (18) can be used to

determine the error of interpolation noted ξli, on each interval [fp, fp+δp ]:

ξli = |H(f)− Ĥ(f)| =
1

2
|(fp+δp − f)(fp − f)| × |H ′′(α)|, (19)

where α ∈ [fp, fp+δp ] and

H ′′(f) = −4π2
L−1
∑

l=1

hlτ
2
l e
−2jπfτl . (20)

It is straightforward from (20) that if H(f) has a Rayleigh distribution, thenH ′′(f) follows a Rayleigh

distribution as well. For further results, we deduce that, whatever n ∈ N, the nth derivative H(n)(f)

follows a Rayleigh distribution. We then deduce the variance of H ′′(f):



σ2
H′′ = E{H ′′(f)H ′′(f)∗}

=

L−1
∑

l=1

E{|4π2hlτ
2
l |

2}

= 16π4
L−1
∑

l=1

τ4l σ
2
l , (21)

and by inserting (21) into (19), we deduce the variance of ξli:

σ2
ξli =

1

4
|(fp+δp − f)(fp − f)|2σ2

H′′

= |(fp+δp − f)(fp − f)|24π4
L−1
∑

l=1

τ4l σ
2
l . (22)

In the discrete formalism, σ2
ξli

depends on the value k, and we note σ2
ξk,li

the variance given by

σ2
ξk,li

= |
(δp − k)k

M2
|24π4

L−1
∑

l=1

β4
l σ

2
l , (23)

for k = 1, .., δp−1. One can notice if the channel tends to have flat fading (i.e. βl tends to zero), then

σ2
ξk,li

logically tends to zero. Indeed, the linear interpolation of a constant function leads to an error

equal to zero. The pdf of the error of the linear interpolation is denoted by pξli(ξ). It has exactly the

same formulation than the NN interpolation given in (5), by replacing σ2
ξk,NN

by σ2
ξk,li

.

3) Correlation coefficient ρrξ for the Linear Interpolation: Since |H
′′(f)| in (20) follows a Rayleigh

distribution, the joint pdf pξ,r(ξ, r) of the channel and the linear interpolation follows the distribution

given by (7). We now express the correlation coefficient ρrξ,li between the channel and its linear

interpolation error:

ρrξ,li =
|E{H(f)e∗h}|

σhσξli

=
|(fp+δp − f)(fp − f)|2π2

∑L−1
l=1 τ2l σ

2
l

σhσξli
. (24)

Like in the NN case, we notice from (24) that ρrξ,li depends on f . We directly derive the discrete

expression of the correlation coefficient depending on k and noted ρrξk,li:

ρrξk,li =
| (δp−k)kM2 |2π2

∑L−1
l=1 β2

l σ
2
l

σrσξk,li

. (25)



D. Piecewise Cubic Interpolation

1) Reminder: We now consider the piecewise cubic polynomial interpolation made with the

Lagrange basis polynomials {Lp} defined by



















































Lp(f) =
f−fp+δp

fp−fp+δp
×

f−fp+2δp

fp−fp+2δp
×

f−fp+3δp

fp−fp+3δp

Lp+δp(f) =
f−fp

fp+δp−fp ×
f−fp+2δp

fp+δp−fp+2δp
×

f−fp+3δp

fp+δp−fp+3δp

Lp+2δp(f) =
f−fp

fp+2δp−fp ×
f−fp+δp

fp+2δp−fp+δp
×

f−fp+3δp

fp+2δp−fp+3δp

Lp+3δp(f) =
f−fp

fp+3δp−fp ×
f−fp+δp

fp+3δp−fp+δp
×

f−fp+2δp

fp+3δp−fp+2δp
.

(26)

The interpolated channel Ĥ(f) build thanks to the Lagrange basis (26) and defined on [fp, fp+3δp] is

then given by

Ĥ(f) =

3
∑

n=0

H(fp + nδp)Lp+nδp(f). (27)

The whole estimated channel is then obtained by performing (27) on each interval [f0, f3δp ], [f3δp , f6δp ],

... , [fM−1−3δp , fM−1] extracted from [f0, fM−1].

2) Variance of the Errors for the Piecewise Cubic Interpolation: In the same way as the linear

interpolation, it is known that, thanks to a Taylor’s expansion of a function g of class C4, the error

of interpolation in the case of a Lagrange cubic interpolation is given by

|g(x) − ĝ(x)| =
1

24
|

3
∏

n=0

(x− xp+nδp)| × |g
(4)(y)|, (28)

where g(4) is the fourth derivative of g and y is in [xp, xp+nδp ]. As we notice that the channel

frequency response (2) is C4, we replace g(x) by H(f) in (28) to get the expression of the error:

ξcu =
1

24
|

3
∏

n=0

(f − fp+nδp)| × |H
(4)(α)|. (29)

From (29), we deduce that ξcu follows a Rayleigh distribution and, by using the same development

as from (19) to (22), we obtain the variance of the error σ2
ξcu

in the continuous formalism:

σ2
ξ,cu =

1

242
|

3
∏

n=0

(f − fp+nδp)|
2 × 28π8

L−1
∑

l=1

σ2
l τ

8
l . (30)

The discrete formalism slightly differs from the one described on Fig. 2 in the case of the piecewise

cubic interpolation, since each interval of interpolation is composed of four pilots instead of two.

Thus, let us now consider frequency positions m = p + k in the discrete interval [[p, p + 3δp]], as

described on Fig. for δp = 2.



Fig. 3. Discrete representation of an interval for the piecewise cubic interpolation, with δp = 2.

The discrete expression of the error variance is written

σ2
ξk,cu

=
1

242
|

∏3
n=0(nδp − k)

M4
|2 × 28π8

L−1
∑

l=1

σ2
l β

8
l . (31)

We observe on Fig. 3 that the interval [[p, p + 3δp]] has a central symmetry, hence we deduce the

general expression of the probability density of ξcu as a sum of weighted Rayleigh distributions, by

following the same reasoning leading to (6):

pξcu(ξcu) =































1
3(δp−1)

ξcu
σ2
ξδp+δp/2,cu

e
− ξ2cu

2σ2
ξδp+δp/2,cu + 2

3(δp−1)

(δp+δp/2)−1
∑

k=1
k 6=δp

ξcu
σ2
ξk,cu

e
− ξ2cu

2σ2
ξk,cu , if δp is even

2
3(δp−1)

δp+(δp−1)/2
∑

k=1
k 6=δp

ξcu
σ2
ξk,cu

e
− ξ2cu

2σ2
ξk,cu , if δp is odd

.

(32)

For each value k, the weight 2
3(δp−1) is the ratio between the number of symmetrical subcarriers on

the number of interpolated subcarriers in [[p, p + 3δp]].

3) Correlation coefficient ρrξ for the Piecewise Cubic Interpolation: Since |H(4)(f)| follows a

Rayleigh distribution, and by analogy with (25), we directly deduce the expression of the correlation

coefficient in the case of the cubic interpolation:

ρrξk,cu
=
|
∏3

n=0(nδp − k)|24π4
∑L−1

l=1 σ2
l β

4
l

24M4σrσξcu,k

. (33)

Finally, the generalized expression of the conditional pdf pξk,cu|r(ξk,cu|r) for the cubic interpolation

is the one of (8) in which the weights are those of (32).

In this section, it has been shown that a general expression of the interpolation errors statistics can

be analytically derived. We then applied the analysis to three interpolation methods. By extrapolation,

we deduce that it is possible to express the statistical properties of the interpolation errors as soon

as the interpolation has an analytical expression of its error. In the following, we use these results to

predict the mean square error of the LS estimator when performed with an interpolation.



IV. MEAN SQUARE ERROR OF LS ESTIMATION WITH INTERPOLATION

In [24], it is assumed that the mean square error of the estimations performed by LS with

interpolations cannot be analytically expressed. Thus, the different methods are compared by means of

simulations. In this section, thanks to the previous results concerning the statistics of the interpolations

errors, we show that a theoretical expression of the MSE can be derived. To this end, since the

interpolation of the channel is independent from the one of the noise, we now study the statistics of

(Wm

Cm
)int (3) separately. It is assumed that |Cm| = 1, so (Wm

Cm
)int has the same statistics as Wm, and

we simply note Ŵ int
m = (Wm

Cm
)int in the following.

A. Statistics of the Interpolated Noise

1) NN-Interpolated Noise: Whatever the values of δp and k, and for a fixed value p, the interpolated

noise sample Ŵ int
m such as with m = p+ k, is expressed by

Ŵ int
m = Wp/Cp. (34)

From (34), we simply deduce that the NN-interpolated noise has exactly the same statistics as the

initial noise Ŵm, i.e. Ŵ
int
m ∼ N (0, σ2).

2) Linear-Interpolated Noise: Using the linear interpolation (16) in the discrete formalism and

without taking the channel into account, the expression of Ŵ int
m with m = p+ k is derived as:

Ŵ int
m = Wp/Cp + k

Wp+1/Cp+δp −Wp/Cp

δp
. (35)

As whatever p = 0, δp, ..,M − 1, we have E{Wp} = 0, we directly deduce that E{Ŵ int
m } = 0. Since

k appears in (35), the variance of the linear interpolated noise, noted σ2
li,k, is a function of k such as

σ2
li,k = E{|Ŵ int

m |2}

= E{|
Wp/Cp(δp − k) + kWp+1/Cp+δp

δp
|2}. (36)

Reminding that the noise samples have the same variance and are uncorrelated, we get

σ2
li,k =

(δp − k)2 + k2

δ2p
σ2. (37)

The total variance of Ŵ int
m , noted σ2

li is the weighted sum of σ2
li,k:

σ2
li =















1
δp−1σ

2
li,δp/2

+ 2
δp−1

∑δp/2−1
k=1 σ2

li,k, if δp is even

2
δp−1

∑(δp−1)/2
k=1 σ2

li,k, if δp is odd

. (38)



3) Piecewise Cubic-Interpolated Noise: By using the Lagrange cubic interpolation (27) applied to

the noise samples, we obtain the variance of the interpolated noise σ2
li,k as a function of k:

σ2
cu,k = E{|Ŵ int

m |2}

= E{|
3
∑

n=0

W (p+ nδp)Lp+nδp(p + k)|2}

=

3
∑

n=0

Lp+nδp(p+ k)2σ2. (39)

The total variance of Ŵ int
m , noted σ2

cu is the weighted sum of σ2
cu,k:

σ2
cu =



























1
3(δp−1)σ

2
cu,δp+δp/2

+ 2
3(δp−1)

(δp+δp/2)−1
∑

k=1
k 6=δp

σ2
cu,k, if δp is even

2
3(δp−1)

(δp+δp/2)−1
∑

k=1
k 6=δp

σ2
cu,k, if δp is odd

. (40)

In this first part, the interpolation errors and the interpolated noise have been statistically charac-

terized. This can now be used to express the MSE of the LS with interpolations estimation.

B. Analytical Expression of the MSE of the LS Estimations Performed with Interpolation

The mean square error of a given interpolation is noted MSEint and is written

MSEint =
1

M
E{||Ĥ −H||2}. (41)

Each OFDM symbol being composed of pilot tones and data carriers, we split the development into

two parts. On each pilot tone, the MSE has already been expressed in [21], [24]. In that case, the

MSE, denoted by MSEp, is given by

MSEp =
σ2

P
, (42)

with P the pilots power. Although in this article, it is assumed that P = 1, we keep the notation P

in the further developments to provide a general expression of the MSE. On the data carriers m 6= p,

the MSE is noted MSEd, and from (3), we obtain

MSEd = E
{

|Ĥ int
m +

(Wm

Cm

)int
−Hm|

2
}

, (43)

and as the noise and the channel are uncorrelated, it yields



MSEd = E
{

|Ĥ int
m −Hm|

2
}

+ E
{

|
(Wm

Cm

)int
|2
}

= σ2
ξ +

σ2
int

P
, (44)

where σ2
int is equal to σ2, σ2

li (38) and σ2
cu (40) for the NN, the linear and the piecewise cubic

interpolations, respectively. Finally, the MSE is obtained by inserting (44) and (42) in (41):

MSEint =
Np

M

σ2

P
+

M −Np

M
(σ2

ξ +
σ2
int

P
), (45)

where Np is the number of pilot tones in an OFDM symbol. When performed on a preamble, we

know from [21] that the MSE of LS tends to zero for high SNR values. We notice in (45) that

MSEint tends to
M−Np

M σ2
ξ for high SNR values. This is the result of the residual error due to the

interpolations.

Fig. 4 displays the pdfs of the interpolated noise for the three considered methods, assuming a

frequency gap δp = 2. The original noise has a variance σ2 = 1, as depicted by its pdf. As expected,

we observe that the NN-interpolated noise has the same variance as the original one, whereas the linear

and cubic interpolations reduce the noise variance. We should also notice that the linear-interpolated

noise has a lower variance than the cubic. Consequently, we deduce that the former interpolator makes

the LS estimation less sensitive to the noise than the latter one. This observation will be confirmed

in terms of performance in Section VI.
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Fig. 4. Pdfs of the interpolated noise, for three interpolations methods, and for δp = 2, and σ2
= 1.



V. BIT ERROR RATE FLOOR OF LS ESTIMATION WITH INTERPOLATION

A. Geometrical Considerations

1) Reminder: In this section, the error floor reached by the BER curves for high SNR values is

analytically evaluated when interpolation errors occur. In order to only consider the residual errors

due to the interpolations, it is assumed high SNR values, so the noise is then neglected in this

section. Since we focus on the effects of the interpolations errors on the BER, the geometry of the

constellation has to be taken into account. In the following, a BPSK (C ∈ {−1,+1}) and a 4-QAM

(C ∈ {+−d
+
−jd}) mapped with a Gray encoding are considered, with C a transmitted symbol and d

a normalization coefficient.

At the receiver side, the channel is estimated by means of LS with interpolations. Then, the

received symbol is estimated by a simple zero forcing equalizer. As the noise is supposed to be null,

the estimated symbol Ĉ is written as follows

Ĉ =
H(f)

H(f) + eh
C. (46)

For a BPSK, the decision domains are exactly symmetric for C =+
− 1. Let us then set C = +1 in

the following developments. The probability of detection error, noted PBPSK
e is then given by

PBPSK
e = Pr

(

Re{Ĉ} < 0|C = 1
)

. (47)

In the same way for a 4-QAM, and as mentioned in [14], the decision domains are exactly symmetric

with regard to the Q and I axes for the most significant bit (MSB) and for the least significant bit

(LSB), respectively. Thus, let us set C = +d + jd in the following developments. In that case, the

probability of error of detection, noted P 4QAM
e is then given by

P 4QAM
e = Pr

(

Re{Ĉ} < 0|C = d+ jd
)

. (48)

For a given value |H(f)| = r, we denote the complex expressions of the channel H(f) = rejΘH and

the error eh = ξejΘξ , and we define Θ = ΘH − Θξ . Let us now derive the analytical expression of

(47) and (48).

2) BPSK: After some straightforward developments, the inequality in (47) yields

Re{Ĉ} < 0 with C = 1

⇔ Re{
H(f)

H(f) + eh
× 1} < 0

⇔
r2 + rξ cos(Θ)

|H(f) + eh|2
< 0. (49)



Since |H(f) + eh|
2 > 0, we limit the study to the numerator of (49). It can be seen that if ξ ≤ r,

then ∀ Θ ∈ [0, 2π] the inequality cannot be valid because −1 ≤ cos(Θ) ≤ 1. Thus, PBPSK
e = 0 as

long as ξ ≤ r. For ξ ≥ r, the inequality (49) is valid for

Θ ∈ [− arccos(−
r

ξ
), arccos(−

r

ξ
)]. (50)

As Θ is defined in [0, 2π], we then express PBPSK
e for ξ ≥ r as a function of r and ξ

PBPSK
e =

arccos(− r
ξ )− (− arccos(− r

ξ ))

2π

= 1−
arccos(− r

ξ )

π
, (51)

and then, finally, PBPSK
e is expressed by

PBPSK
e =















0 if ξ ≤ r

1−
arccos(− r

ξ
)

π if ξ ≥ r

. (52)

As
arccos(1)

π = 1, then PBPSK
e is a continuous function on R

+. From the conditional pdf pξ|r(ξ|r),

we extract the conditional pdf of errors of estimation causing a wrong decision on the bits for a

BPSK, that we denote Φξ|r,BPSK(ξ|r,Re{Ĉ} 6= Re{C}):

Φξ|r,BPSK(ξ|r,Re{Ĉ} 6= Re{C}) = PBPSK
e pξ|r(ξ|r). (53)

Fig. 5 (a) displays the Rayleigh density pξ|r(ξ|r) for r = 1, σ2
ξ = 1, ρrξ = 0 (i.e. pξ(ξ)) and the

extracted function Φξ|r,BPSK(ξ|r,Re{Ĉ} 6= Re{C}), drawn by simulations and by means of (53).

The curves are obtained after the transmission of 106 bits.

It is verified that Φξ|r,BPSK(ξ|r,Re{Ĉ} 6= Re{C}) = 0 for ξ ≤ r, with r = 1 in the simulation.

Furthermore, the theoretical curve and the one drawn by simulations exactly match, which validates

the previous developments.

3) 4-QAM Constellation: After some developments, the inequality Re{Ĉ} < 0 in (48) yields

Re{Ĉ} < 0

⇔ Re{H(f)(H(f) + eh)
∗(1 + j)} < 0

⇔ Re{(r2 + rξej(ΘH−Θξ))(1 + j)} < 0

⇔ r + ξ(cos(Θ)− sin(Θ)) < 0 (54)

If we set t = tan(Θ2 ), we then get cos(Θ) = 1−t2
1+t2 and sin(Θ) = 2t

1+t2 , and (54) yields



r(1 + t2) + ξ(1− t2 − 2t)

1 + t2
< 0. (55)

Since 1+ t2 > 0 whatever the value of t, we study the sign of the numerator in (55), and we denote

Q the polynomial:

Q(t) = t2(r − ξ)− 2ξt+ r + ξ. (56)

The solving of the inequality (55) is made by studying the convexity or concavity of Q and by looking

for its roots. We finally obtain:

P 4QAM
e =































0, if 0 ≤ ξ ≤ r√
2

arctan(t+2 )−arctan(t−2 )
π , if r√

2
≤ ξ ≤ r

1 + arctan(t−3 )−arctan(t+3 )
π , if r ≤ ξ

, (57)

where t±2 and t±3 are expressed by

t±2 =
2ξ+−

√

∆p

2(r − ξ)
, and

t±3 =
2ξ−+

√

∆p

2(r − ξ)
, (58)

with ∆p = 4ξ2 − 4(r2 − ξ2) the discriminant of Q. It is straightforward to show that P 4QAM
e is

continuous on R
+ by means of a Taylor’s expansion on r = ξ. From the conditional pdf pξ|r(ξ|r),

we extract the pdf of errors of estimation causing wrong decision on the bits for a 4-QAM, that we

denote Φξ,4QAM(ξ|r,Re{Ĉ} 6= Re{C}). Since the I and Q components of the 4-QAM constellation

are symmetric, we simply get

Φξ,4QAM(ξ|r,Re{Ĉ} 6= Re{C}) = P 4QAM
e pξ|r(ξ|r). (59)

Fig. 5 (b) depicts the Rayleigh density pξ|r(ξ|r) and the function Φξ|r,4QAM(ξ|r,Re{Ĉ} 6= Re{C})

drawn with the same parameters as previously. Once more, it is verified that the theoretical curve and

the one drawn by simulation perfectly match.

B. Analytical Expression of the BER Floor

The bit error rate floor, notedBERfloor, is the double integral of the conditional pdf Φξ|r,const(ξ|r,Re{Ĉ} 6=

Re{C}) multiplied by pr(r). Some simplifications lead to:
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Fig. 5. Extracted conditional pdfs, (a) for a BPSK and (b) for a 4-QAM.

BERfloor =

∫ +∞

0
pr(r)

∫ +∞

0
Φξ|r,const(ξ|r,Re{Ĉ} 6= Re{C})dξdr (60)

=

∫ +∞

0
pr(r)

∫ +∞

0
P const
e pξ|r(ξ|r)dξdr (61)

=

∫ +∞

0

∫ +∞

0
P const
e pr,ξ(r, ξ)dξdr, (62)

where P const
e depends on the constellation (it is defined in (52) for the BPSK and in (57) for the

4-QAM).

VI. SIMULATIONS AND DISCUSSION

A. Simulations Parameters

In order to validate the previous developments by simulations, we do not limit us to a given

standard, but we define two different general channels noted H(1) and H(2). Their parameters (the

delay and variance of each non-null path) are summed up in Tables I and II. It can be seen that the

number of paths, the maximum delay and the variance of the channels differ from H(1) to H(2).

TABLE I

CHANNEL H(1) PARAMETERS.

Channel H(1)

paths l 0 1 2 3

delays βl 0 6 13 16

variance σ2
l 1 0.5 0.4 0.2



TABLE II

CHANNEL H(2) PARAMETERS.

Channel H(2)

paths l 0 1 2 3 4 5 6

delays βl 0 4 9 14 16 18 21

variance σ2
l 1 0.5 0.4 0.3 0.3 0.2 0.1

B. Mean Square Error

Fig. 6 displays the MSE of the channel estimations performed with the NN, the linear (Figs. (a) and

(b)) and the cubic (subfigures (c) and (d)) interpolations versus the SNR given in dB. The theoretical

curves given by (45) are compared to the ones drawn by simulation. The curves are obtained by

means of 2400 simulations runs.
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Fig. 6. MSE of the channel estimation performed with NN, linear and cubic interpolations, for δp ∈ {2, 4}, and for the

channels H(1) and H(2).



Firstly, we observe that the theoretical curves and the ones drawn by simulations perfectly match,

which validates the theoretical results derived in this article. As expected, the MSE reaches an error

floor that decreases when the polynomial order increases. Furthermore, these errors floors are higher

for the channel H(2) (Figs. (b) and (d)) than for the channel H(1) (Figs. (a) and (c)). This is in

accordance with the theory, since H(2) is more frequency selective than H(1).

Secondly, from Figs. (c) and (d), we observe that the linear interpolation has a lower MSE than

the cubic one for low SNR values, whereas the cubic interpolator has a better performance than

linear one for higher SNR values. It is explained by the aforementioned observation in regard to the

variance of the interpolated noise made in Section IV. Indeed, at low SNR values, the noise effect

prevails on the interpolation errors, and since the linear-interpolated noise has a lower variance than

the cubic-interpolated noise, linear interpolation has a lower MSE. On the contrary, for higher SNR,

interpolation errors effect prevails on the noise, and since the cubic interpolation is more accurate

than the linear one, then the former has a lower MSE than the latter. These results will be discussed

in Section VI-D.

C. Bit Error Rate Low Bound

Fig. 7 shows the simulated BER curves and the theoretical BER low bound values versus the SNR

given in dB. Figs. 7 (a) - (b) display the BER curves versus the SNR for the NN interpolation, Figs.

7 (c) - (d) for the linear interpolation and Figs. 7 (e) - (f) for the cubic interpolation. In order to

validate the proposed developments, the simulations are made for both channels H(1) and H(2), and

for δp ∈ {2, 4}. The curves are obtained with 2× 107 bits.

It can be seen on Fig. 7 that, whatever the chosen set of parameters, the simulated curves reach

a BER floor matching the analytical values. The very slight differences can be explained by the fact

that the integral (62) is computed in a discrete formalism. However, we clearly observe that the BER

lower bound decreases when the degree of the polynomial interpolator increases. Furthermore, the

performance is more degraded in H(2) compared to H(1), due to H(2) is more frequency selective

than H(1). These results then allow to validate the theoretical developments proposed in this article.

D. Discussion

In addition to be a theoretical analysis of the LS estimator performance in a frequency selective

Rayleigh channel by means of polynomial interpolations, we can deduce a practical implementation

from the proposed method. Indeed, an adaptive receiver (in terms of estimation technique) can be

implemented, according to the trade-off between performance and complexity. It is known that the

NN, the linear and the cubic interpolations require zero, two and four multiplications per interpolated

value, respectively. Thus, for a given BER target, and given the frequency selectivity, the proposed
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Fig. 7. BER of the channel estimation performed with (a) - (b) NN interpolation, (c) - (d) linear interpolation and (e) - (f)

cubic interpolation, for δp ∈ {2, 4}, and for the channels H(1) and H(2).



method enables the receiver to choose the interpolation technique with minimum computation cost.

Moreover, as it has been noticed for low SNR values, it may appear advantageous to perform the

estimation by means of the linear interpolation instead of the cubic one, while it is not a priori

intuitive. Besides, this study can be applied in other domains, for which interpolations of random

functions are required, as in image processing for instance.

VII. CONCLUSION

In this article, a theoretical study of the interpolation errors applied to the channel estimation has

been presented. Firstly, a characterization of the errors statistics has been performed, and a geometrical

analysis of the error effect on the constellation has been proposed. Then, an analytical expression of

the MSE of the LS estimation performed with interpolation has been derived, just as the expression of

the BER floor. For a given channel, we have shown that these values are functions of the frequency gap

between the pilot tones δp, the interpolation technique and the constellation size. The developments

have been made for the polynomials of degree zero, one and three, and for the BPSK and the 4-QAM

constellations as well. It has been shown that the theoretical results perfectly match the simulations.

This analysis can then be used to a priori predict the performance of the system. It differs from the

existing works of the literature, because the errors and the channel are correlated, and the MSE and

BER can be exactly characterized. Beyond the theoretical performance analysis, we have proposed

a possible practical implementation, in which the method is used to adapt the receiver according to

the trade-off between the expected performance and the complexity of the interpolation technique.
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