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Abstract. Snow avalanches are a threat to many kinds of el-
ements (human beings, communication axes, structures, etc.)
in mountain regions. For risk evaluation, the vulnerability as-
sessment of civil engineering structures such as buildings and
dwellings exposed to avalanches still needs to be improved.
This paper presents an approach to determine the fragility
curves associated with reinforced concrete (RC) structures
loaded by typical avalanche pressures and provides quanti-
tative results for different geometrical configurations. First,
several mechanical limit states of the RC wall are defined us-
ing classical engineering approaches (Eurocode 2), and the
pressure of structure collapse is calculated from the usual
yield line theory. Next, the fragility curve is evaluated as
a function of avalanche loading using a Monte Carlo ap-
proach, and sensitivity studies (Sobol indices) are conducted
to estimate the respective weight of the RC wall model in-
puts. Finally, fragility curves and relevant indicators such a
their mean and fragility range are proposed for the differ-
ent structure boundary conditions analyzed. The influence of
the input distributions on the fragility curves is investigated.
This shows the wider fragility range and/or the slight shift in
the median that has to be considered when a possible slight
change in mean/standard deviation/inter-variable correlation
and/or the non-Gaussian nature of the input distributions is
accounted for.

1 Introduction

The increasing urban development in mountainous areas
means that issues associated with rockfalls, landslides and
avalanches need to be addressed (Naaim et al., 2010).
Prospective human casualties and physical civil engineering
structures damages are of concern for snow avalanche risk
management. Depending on the external loading applied to
the structure, that is to say the natural hazard considered
(rockfall, landslide, earthquake, etc.), the physical vulnera-
bility of civil engineering structures is usually assessed dif-
ferently depending on the nature of the failure modes in-
volved. If a relevant failure criterion is defined that represents
the overall damage level of the structure, the potential failure
of the system can be assessed and even its failure probability
if the calculations are performed within a stochastic frame-
work.

Avalanche risk mapping is often carried out by combin-
ing probabilistic avalanche hazard quantification (e.g.,Key-
lock, 2005; Eckert et al., 2010) and vulnerability (determin-
istic framework) or fragility (probabilistic framework) re-
lations to assess individual risk for people (Arnalds et al.,
2004) and buildings (Cappabianca et al., 2008). For instance,
the Bayesian framework (Eckert et al., 2009, 2008; Pasanisi
et al., 2012) makes it possible to take into account uncertain-
ties in the statistical modeling assumptions and data avail-
ability. On the other hand, a better definition of vulnerability
or fragility relations remains a challenge for the improve-
ment of the integrated framework of avalanche risk assess-
ment (Eckert et al., 2012).
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A review of vulnerability approaches for alpine hazards
(Papathoma-Köhle et al., 2010) mentioned various studies
conducted to derive vulnerability relations. Several defini-
tions have been proposed. One point of view is to define the
vulnerability of a structure by its economic cost and not its
physical damage (Fuchs et al., 2007), which necessitates an
expression for the recovery cost (Mavrouli and Corominas,
2010). Another point of view suggests that human survival
probability inside a building is commonly related to the vul-
nerability of the building itself by empirical relations (Jonas-
son et al., 1999; Barbolini et al., 2004). For instance,Wil-
helm(1998) introduced thresholds to build vulnerability re-
lations for five different construction types impacted by snow
avalanches, andKeylock and Barbolini(2001) proposed re-
lating the vulnerability of buildings with their position in
the avalanche path. More recently,Bertrand et al.(2010)
suggested using a deterministic numerical simulation to as-
sess the structural failure susceptibility of reinforced con-
crete (RC) structures.

To describe the failure probability of civil engineer-
ing structures exposed to snow avalanches and thus derive
fragility curves, reliability approaches can be considered.
For instance, in earthquake engineering (Ellingwood, 2001;
Li and Ellingwood, 2007; Lagaros, 2008) or for RC struc-
tures subjected to blast loading (Low and Hao, 2001), the
latter technique is often used. In hydraulic risk research,
some studies focus on assessing dam safety using reliabil-
ity methods (Peyras et al., 2012). Direct simulations (such as
Monte Carlo methods) give robust results but can be time-
consuming. As an alternative, simulation-based or surface
approximation methods are used to avoid the direct calcu-
lation of the failure probability (Lemaire, 2005), but conver-
gence of the algorithm can be cumbersome.

In the snow avalanche context, vulnerability relations are
often derived from back-analyzed in situ data, which are of-
ten very scarce. These relations give the fraction of destroyed
buildings as a function of the avalanche loading. A reliability
assessment of vulnerability relations (fragility curve deriva-
tion) is therefore a useful complementary tool for examin-
ing the interaction between the avalanche and the structures
at different scales (avalanche path, urban area, individual
house, etc.). This paper attempts to improve risk evaluations
by proposing an innovative way to derive refined fragility
curves that can be used in snow avalanche engineering.

As RC is the most usual material used to build structures
exposed to potential avalanche loadings, herein we focus on
this technology. First of all, the RC structure is described.
Secondly, the mechanical model of the RC wall and the snow
avalanche loading description are exposed. Then, the damage
level definitions opted for in the structure limit state descrip-
tion are presented. The next part deals with statistical distri-
butions of the inputs of the deterministic mechanical model.
Finally, fragility curves are derived and their sensitivity to
input parameters, modeling assumptions and failure criterion
are discussed.
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Fig. 1. Dwelling house impacted by a snow avalanche: loading ap-
plied onto the structure(a); RC wall geometry and orthogonally
distributed reinforcement(b–c).

2 Methods

To protect people against snow avalanches, French legal haz-
ard zoning defines three regions, which correspond to sev-
eral levels of danger. The white zone corresponds to the ge-
ographic zone where the consequences of an avalanche in
terms of structural damage have been estimated negligible.
Hence, no specific recommendations related to the ability
of the structure to resist to an avalanche are needed. In the
red zone, the avalanche return period has been estimated less
than 100 yr and thus no construction is allowed. In the last
zone (blue zone), civil engineering structures, such as build-
ings or houses, can be built only within certain restrictions.
For the wall facing the avalanche, no opening is allowed and
the wall has to resist at least a pressure of 30 kPa. Several
technologies are available. As mentioned byGivry and Per-
fettini (2004), the most common are wooden, masonry, RC
or mixed structures. RC technology appears to provide the
best value for money. Moreover, RC is usually the most fre-
quently encountered material for such structures and in par-
ticular for dwelling houses. The most vulnerable part of a
structure built in an avalanche path is the wall facing the
flow (Fig. 1). Thus, the damage of the entire structure can
be assessed from the wall’s resistance capacity. Indeed, the
pressure applied by the avalanche flow on the structure is bal-
anced almost solely by the wall facing the avalanche. Thus,
as a first approximation, the damage of the entire structure
is reduced to the damage of the structural elements directly
exposed to the load, i.e., a flat vertical RC wall.

2.1 RC wall description

First, the features of the wall considered are presented (ge-
ometry, mechanical properties of reinforced concrete, bound-
ary conditions). Then, the out-of-plane mechanical response
of an RC wall is described. The nature of the damage and the
different damage stages the structure undergoes are presented
as a function of the loading magnitude. From the physical
vulnerability assessment point of view, relevant performance
functions dedicated to quantifying the damage level of the
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RC wall can be proposed. Finally, the wall loading due to a
snow avalanche is presented and discussed.

2.1.1 RC wall features

The RC wall is composed of concrete and steel bars. The bars
are distributed homogeneously along the horizontal and ver-
tical directions in the region of the wall where tensile stresses
can develop (Fig.1b–c). The number of steel bars is cal-
culated from the steel density (ρs) needed to ensure the re-
sistance of the RC wall. The usual sizes of dwelling houses
situated in mountainous regions have been considered. De-
pending on the construction solution chosen, the RC wall
boundary conditions can vary from one dwelling to another.
The modeling of such various technologies of construction
is considered in the boundary conditions of the wall. Three
kinds of boundary conditions are usually encountered. Each
edge of the wall can be considered either simply supported
or clamped or free (e.g., can move without any constraint).
From a mechanical point of view, concrete strength differs
from compressive to tensile regimes. The characteristic com-
pressive strength (fc28) is generally 10 times greater than the
tensile strength (ft). The compressive strength allowable for
calculation is defined asfbc by the Eurocode 2 (Committee,
2004), as a function of the loading time parameter, i.e., the
creep consideration,θ and the safety factorγb described be-
low:

fbc =
0.85fc28

θγb
. (1)

Steel’s behavior exhibits two typical limits. First, the yield
strength (fy) exceeding corresponds to the development of
permanent strain inside steel; secondly, the ultimate tensile
strain (εuk) highlights the ability of steel to undergo more or
less substantial yield strain before failure. The RC behavior
is a combination of the two materials. Figure2 depicts the
typical evolution of an RC member subjected to a monotonic
loading. Four stages can be identified. The first stage repre-
sents the elastic response of the RC wall. The second stage
corresponds to crack appearance and growth in the tensile
zone of concrete. Once the crack distribution is fully devel-
oped (beginning of stage 3), the opening of the cracks contin-
ues. For higher loading and for low reinforced concrete, the
capacity of the RC wall is only controlled by the resistance
of the steel bars. When a steel bar starts to undergo plastic
strain, it is the beginning of the fourth stage. The end of the
stage 4 corresponds to the collapse of the RC wall, where
strains are concentrated through yield lines that can be de-
scribed as macro-cracks. At the scale of the RC member, this
last stage ends when a typical fracture line pattern develops
over the entire RC structure. This failure mechanism induces
the structure’s loss of equilibrium, leading to its collapse.

collapse 

yielding of the steel 

stabilized cracking pattern 

tensile crack growth 

elastic phase 

load 

deformation 

uq

Fig. 2. Typical mechanical response of RC members subjected to a
pushover test (monotonic loading until the collapse of the system),
derived from (Favre et al., 1990, p. 343).

2.1.2 Limit state definitions

The structural failure is assumed to be due to excessive bend-
ing of the wall. The RC wall collapses under a bending fail-
ure mode. The first damage level is defined as when the RC
wall is no longer elastic. See for instance the European stan-
dard dedicated to the design of RC members: the Eurocode
2 provides mechanical design recommendations for several
types of loadings. In this paper, the mechanical states used to
describe the damage level of the structure are inspired from
the Eurocode 2. The second and third damage levels are de-
fined from Eurocode 2 (Mosley et al., 2007), where typical
safety coefficients are proposed. Finally, the collapse of the
RC wall is modeled by yield line theory (Johansen, 1962). It
allows for calculating the ultimate pressure that the structure
can support before collapse. The first three stages are defined
from the local mechanical balance of the cross section where
the highest bending moment arises, whereas stage 4 consid-
ers the whole failure pattern of the wall.

Elastic limit state

The first crack in the concrete defines the upper limit of stage
1. Beyond the first stage upper limit, the RC wall is no longer
elastic. This limit is defined as when the tensile stress inside
the concrete is reached.

Ultimate limit state (ULS)

This mechanical state is defined in the Eurocode 2 regula-
tion and concerns the safety of people inside buildings and
that of the building itself. In this paper, the Eurocode 2 ter-
minology is used, but it can be a bit confusing. Indeed, the
ULS does not correspond to the “real” ultimate resistance of
the RC wall, which is here assessed by the yield line theory
(see Sect.2.1.2). From the Eurocode 2, the ULS is related
to potential loadings that can arise during the “normal” life
of the RC wall. The loadings are either permanent or transi-
tory but not exceptional. Thus, the safety factors associated
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Table 1. Safety coefficients on steel and concrete strength for ULS
and ALS calculations (Committee, 2004).

ULS safety coefficient ALS safety coefficient

Steel γs = 1.15 γs = 1
Concrete γb = 1.5 γb = 1.15

to the ULS loading are calculated based on “normal” life of
the structure. Under bending, the ultimate limit state is ob-
tained when either the concrete reaches its ultimate compres-
sive strain or the steel its ultimate tensile strain.

Accidental limit state (ALS)

When dimensioning, the ALS differs from the ULS only in
the loading description. Loadings are assumed exceptional
(i.e., accidental) and not usual or “normal” as for the ULS.
The probability of occurrence of such loadings is often low
and explains why the safety factors are lower than in the ULS
case and thus the margin to support the loading is lower (Ta-
ble 1). Using ALS as a structural limit state the structure
could reach consists in applying a different multiplicative
safety coefficients on the strength of the two materials com-
paring to those applied in the ULS approach.

Collapse

Finally, the collapse of the structure is characterized by its
failure pattern. Under bending, yield lines develop through
the RC member, leading to the structure’s collapse. In or-
der to obtain the ultimate load, the yield line theory is used,
which is based on limit analysis theory (see for instance
Nielsen and Hoang, 2011). In the literature, some theoretical
and experimental studies have been compared. These studies
proposed collapse failure patterns as a function of boundary
conditions (Sawczuk and Jaeger, 1963). Favre et al.(1990)
provide theoretical solutions for RC slabs under various ge-
ometrical configurations.

2.1.3 Snow avalanche loading

Different types of avalanche flows can be observed in the
Alps, inducing various loadings on the impacted structures.
Spatial and temporal changes in snow avalanche loadings
were experimentally observed and measured. For instance,
small-scale experiments were conducted to reproduce the
granular behavior of snow and study its interaction with ob-
stacles (Faug et al., 2010). Moreover, real-scale experiments
have been conducted to measure the pressure magnitudes
reached by dense avalanche flows (Thibert et al., 2008) and
powder avalanches (Sovilla et al., 2008).

An open question concerning the physical vulnerability as-
sessment of civil engineering structures is whether the prob-
lem should be considered with a dynamical approach or a
quasi-static approach. Various studies (Daudon et al., 2013)
have considered that the dynamic effect has to be taken into
account, whereas others have obtained vulnerability results
assuming quasi-static approaches (Bertrand et al., 2010). In
addition, in some cases (powder avalanches for instance)
negative pressures can arise during the loading and thus can
modify the failure mode of the structure considered. How-
ever, as already suggested, the type of avalanche controls
the type of loading (quasi-static or dynamic), and here the
avalanche type is considered as dense, which cannot gener-
ate negative pressures.

To determine whether a dynamic or a quasi-static approach
has to be considered, a modal analysis has to be performed
to compare avalanche loading and structural natural periods.
In this paper, it is assumed that the duration of the accidental
loadings is not creating dynamical effects. Thus, the pres-
sure of the avalanche is supposed to be quasi-static, as pro-
posed byBertrand et al.(2010). Moreover, a uniform pres-
sure distribution is applied to the wall even if vertical vari-
ations are observed (Baroudi et al., 2011). The pressure is
uniformly distributed on the entire facing wall, alongx and
y axes. Due to the quasi-static assumption, the response of
the RC wall is calculated considering the maximal pressure
reached over time. The time variation is not considered be-
cause only the peak pressure for a quasi-static approach is
relevant. The assumption of uniform pressure distribution is
conservative, since the maximum is applied over the entire
vertical, whereas in reality it decreases with the vertical co-
ordinate.

2.2 Mechanical approaches

Figure3 depicts the transitions between each damage level
(Elas: elastic limit; ULS: ultimate limit state; ALS: acciden-
tal limit state; YLT: yield line theory). For each point, a load-
ing pressure (qElas,qULS,qALS,qYLT ) can be calculated. For
the first three cases, the load is obtained from the mechanical
balance of the cross section, which is subjected to the max-
imal bending moment inside the RC wall (Fig.4). For the
collapse load, yield line theory is used.

2.2.1 RC wall design under bending

Bending moment expression

First, the loss of RC elasticity is related to crack appearance
when the tensile strength of concrete is exceeded. At this
stage, the steel contribution in the overall behavior can be
ignored. The bending moment can thus be expressed as

MElas=
ftlxh

2

6
. (2)
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Fig. 3. Transitions between each damage level (Elas: elastic limit;
ULS: ultimate limit state; ALS: accidental limit state; YLT: yield
line theory).

The second (third) damage limit is attained when the bend-
ing moment defined by the ULS (ALS) is reached. In this
case, the following assumptions are made:

– Sections remain planar during loading.

– No slip can occur between concrete and steel.

– The strain is linear along the thickness.

– Concrete’s tensile strength is ignored (ft = 0).

– The ultimate compressive strain of the concrete (εbc)
and the ultimate tensile strain of the steel (εuk) are lim-
ited to 3.5 ‰ and 10 ‰, respectively.

As functions of the ULS and the ALS, concrete and steel
strengths change with the safety coefficients (γb andγs). As a
consequence, the corresponding maximal bending moments
also change. Figure5 depicts assumed behaviors of the con-
crete and the steel.

The RC wall design consists in attaining the maximum
strengths in concrete and in the steel at the same time. The
compressive strength of concretefbc (Eq.1) is estimated: no
creep effect is taken into account (θ = 0.85), and the safety
coefficientγb = 1.15. According to assumptions previously
made, the Eurocode 2 supplies the coefficientµAB = 0.186.
Thus, knowing the effective depth of the RC cross sectiond,
the corresponding moment per linear meter developed in the
section can be calculated:

MAB = µABd2fbc. (3)

Next, by knowing the lever armz ≈ 0.9d, the amount of
steel (i.e., the percentage of steel inside concrete if normal-
ized by the section area) needs to ensure that the balance of
the bending moment is equal to

As =
MAB

z
fy

γs

, (4)

whereγs = 1.15 for ULS. Finally, the ULS and ALS (γs =

1.0) bending moments are expressed as

MULS = MAB, (5)

MALS = Asz
fy

γs
. (6)

Boundary conditions

When the RC wall is subjected to a uniform pressure, the spa-
tial distribution of bending moments depends on the bound-
ary conditions of each wall edge. Many combinations can
be considered (free edge, clamped edge or simply supported
edge).Bares(1969) proposed a useful abacus that gives the
maximal bending moments developed in elastic rectangular
plates for numerous configurations of boundary conditions.

In this paper, the derivation of vulnerability relations is
carried out within a reliability framework. Thus, to calculate
the failure probability of the RC wall, many runs are needed.
By using the abacus to assess the RC wall’s resistance ca-
pacity, the computational time to perform a single run is very
low, which makes it possible to use robust but computation-
ally intensive reliability methods such as Monte Carlo sim-
ulations. Ten boundary conditions were implemented (1 to
10, cf. Table2). A linear spline is fitted to extrapolate coeffi-
cients from available coefficients (βx andβy) provided by the
abacus. Knowing the limit bending moment for each damage
stage, the corresponding pressure is deduced for each direc-
tion x andy:

qx
=

M

βx l2x
, (7)

qy
=

M

βy l2y
. (8)

2.2.2 RC wall collapse (yield line theory)

The ultimate resistance of RC slabs under uniformly dis-
tributed pressure can be derived from the classical yield line
theory (Johansen, 1962). This theory provides the collapse
mechanism of the RC wall. Under an external loading, cracks
will develop to form a pattern of “yield lines” until a mecha-
nism is formed. A yield line corresponds to a nearly straight
line along which a plastic hinge has developed. To perform
the yield line theory algorithm, the bending moment along
yield lines needs to be calculated. The bending moment per
unit length along those lines remained constant and equal to
the moment calculated in Eq. (6). Indeed, as we are consider-
ing a uniform and equal reinforcement along the horizontal
and vertical directions, the steadiness is verified. Then the
energy balance between external and internal forces is calcu-
lated. According to the assumed yield line pattern, each adja-
cent plate can rotate. The plates rotate around axes defined by
the edges of the slab and the yield lines. During the rotation,
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energy is dissipated inside the material by yielding. The dis-
sipated energy is calculated asM i

pθiLi , whereM i
p is the plas-

tic moment of the yield line consideredi, θi the magnitude
of the angle of rotation, andLi the length of the yield line.

The ultimate load is calculated from the equality between
the external energy (Wext) and the internal energy (Wint). In
order to find the most likely collapse pattern, the kinematic
theorem is used. It consists in determining the failure pattern
minimizing the collapse load. Thus, the following equations
are derived:{

Wint =
∑nL

i=1M i
p.θ i .Li

Wext = q
∫∫

δ(x,y)dxdy
, (9)

wherenL is the number of yield lines,δ(x,y) is the displace-
ment field of the slab andq is the uniform load applied on the
slab. Various failure patterns were considered as functions of
the boundary conditions (Fig.6). For each boundary condi-
tion, two failure patterns are mainly observed (Fig.6, col. 2
and 3). Each pattern depends on an angleα1 or α2 calculated
in order to minimize the energy.

2.3 Reliability framework

The structure’s safety cannot be assessed from a determin-
istic point of view because several properties of the system
are uncertain. Thus, the study is performed in a reliability
framework.

2.3.1 Failure probability definition

The failure probabilityPf is defined as the probability for the
resistance of the structurer to be less than or equal to an
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Table 2. Maximum bending moment coefficients(βx ,βy) for a rectangular plate subjected to an uniform load. The Poisson’s ratioν = 0.15

and lx
ly

= 0.5.

Boundary conditions βx βy

(1) four simply supported edges 0.0991 0.0079

(2) simply supported on the two large edges 0.0835 0.0088
clamped on the two small edges

(3) simply supported on one large edge 0.0550 0.0045
clamped on the three other edges

(4) one free large edge −ν × βy 0.0268
clamped on the three other edges

(5) one free large edge −ν × βy 0.0575
simply supported on the three other edges

(6) clamped on one small edge 0.0908 0.0084
simply supported on the three other edges

(7) simply supported side by side 0.0570 0.0040
clamped on the two other edges

(8) four clamped edges 0.0405 0.0024

(9) one free large edge/one clamped large edge −ν × βy 0.0288
simply supported on the two small edges

(10) one free large edge/one simply supported large edge−ν × βy 0.0361
clamped on the two small edges

event sizes:

Pf = P [r ≤ s] =

s∫
−∞

fR(r)dr. (10)

To solve Eq. (10), the probability density function of the re-
sistancefR(r) needs to be known. The Monte Carlo algo-
rithm is used to generate data samples. It is robust but a
time-consuming method. By randomly generatingN vari-
ables from the input probability distributions,N mechanical
runs can be performed. Thus, the probability density func-
tion of the response can be approximated by the Monte Carlo
integral: P̂f . The central limit theorem provides a(1− α)
asymptotic confidence interval reflecting a significance level
of α:

P̂f

1− z1−α/2

√
P̂f (1− P̂f )

√
N

 ≤ Pf

≤ P̂f

1+ z1−α/2

√
P̂f (1− P̂f )

√
N

 , (11)

wherez1−α/2 is theα quantile of the normal distribution.

2.3.2 Sobol’s index

Sobol’s index provides the contribution of inputs to model
outputs. It consists in quantifying the contribution of each
input variable to the entire system’s variability. It is based
on a variance sensitivity analysis (Sobol, 2001). Saltelli et al.
(2010) provide different numerical estimates and a compari-
son between their efficiency. For independent input variables,
Sobol’s first-order sensitivity coefficientSi is equal to the to-
tal effect indexSTi . ConsideringY as the model output and
X as the vector of inputs, Sobol’s indices are defined as

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
, (12)

ST i = 1−
VX∼i

(EXi
(Y |X∼i))

V (Y )
, (13)

whereV is the variance and more particularlyVXi
is the vari-

ance of the argument taken overXi , VXi
(EX∼i

(Y |Xi)) is the
expected reduction in variance that would be obtained ifXi

could be fixed.
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Boundary Conditions Possible Collapse Schemes 

(1) 4 simply supported edges 
 

(2) simply supported on the 2 large edges 
and clamped on the 2 small edges 

(3) simply supported on one large edge 
and clamped on the 3 other edges 

(4) one free large edge / clamped on the 3 
other edges 

(5) one free large edge / simply supported 
on the 3 other edges 

(6) clamped on one small edge / simply 
supported on the 3 other edges 

(7) simply supported side by side / 
clamped on the 2 other edges 

(8) 4 clamped edges 

(9) one free large edge / one clamped large 
edge / simply supported on the 2 
small edges 

(10) one free large edge / one simply 
supported large edge / clamped on the 2 
small edges 

α1 α2 

clamped 

simply  

supported 

Fig. 6. Failure patterns according to several boundary conditions when considering yield line theory.

According toSaltelli et al.(2010), Jansen(1999) provides
the most efficient estimator of Eq. (13) through the approxi-
mation

ˆST i =
1

2N

N∑
j=1

(f (A)j − f (A(i)
B )j )

2, (14)

whereY = f (X1,X2, . . . ,Xk), A andB are anN × k matrix
of input factors andA(i)

B is a matrix where columni comes
from matrixB and all otherk − 1 columns from matrixA.

2.4 Vulnerability assessment

Statistical distributions of inputs need to be defined. Here,
six input variables were chosen and their distributions were
determined:lx , ly , h, fc28, fy andft. Different sets of dis-
tributions are used: a set of normal independent distribu-
tions, a more realistic distribution provided by theJoint Com-
mittee on Structural Safety(2001) (JCSS) and intermedi-
ate cases. Thus, building cumulative distribution functions of
mechanical capacity load outputs allows for fragility curves
to be assessed.

2.4.1 Statistical description of inputs

Normal distributions

First, to analyze the effect of each variable separately, a
normal distribution describes each variable.Low and Hao

Table 3.Distribution parameters of material inputs.

Variable Mean Standard deviation

lx (m) 8.0 0.4
ly (m) 4.0 0.2
h (m) 0.2 0.01
fc28 (MPa) 30 1.5
fy (MPa) 500× 106 25× 106

ft (MPa) 2 0.1

(2001) provided several references identifying distributions
for material inputs involved in a reinforced concrete slab
problem.Mirza and MacGregor(1979) assumed normal dis-
tributions to model the variability/uncertainty regarding the
sizes of slabs. After in situ experiments, a coefficient of vari-
ation of 0.05 is suggested and the designed value is adopted
as the mean distribution value. To carry out a first statistical
description of the proposed model, a coefficient of variation
of 0.05 is assumed for all the inputs considered, leading to
the means and standard deviations provided in Table3.

JCSS distributions

As reported by the JCSS, correlations between input vari-
ables can be taken into account. Steel’s yield strength is still
independent and follows a normal distribution. On the other
hand, the tensile strength (ft) and the compressive strength
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Table 4.Table presenting the marginal distributions of independent
material inputs for the JCSS distribution case. Other inputs are com-
puted according to Eqs. (15), (16) and (17) of Sect.2.4.1.

Variable Mean Standard deviation

lx (m) 8.0 0.4
ly (m) 4.0 0.2
h (m) 0.2 0.01
fy (MPa) 560× 106 30× 106

of the concrete (fbc) distributions are deduced from the ba-
sic concrete compression strength (fc28) distributions. For
a ready-mixed concrete type with aC25 concrete grade,
based on the given parameters, the values ofm,v,s,n are
m = 3.65, v = 3.0, s = 0.12 andn = 10, andtv is a random
variable from a Student distribution forv degrees of freedom:

fc28 = exp(m + tvs(1+
1

n
)0.5). (15)

Then,ft andfbc are calculated withλ,Y1 and,Y2. λ is a
factor taking into account the systematic variation of in situ
compressive strength and the strength from standard tests.
Finally, (Yi)i=1,2 are lognormal variables representing addi-
tional variations due to special placing, curing, and hardening
of the concrete. In our case,αc is considered equal to0.85

θγb
:

fbc = αcf
λ
c28Y1, (16)

ft = 0.3f
2/3
bc Y2. (17)

For all parameters, the marginal mean and standard deviation
were set according to the JCSS recommendation (Table4).
Difference with the previous case (Table3) concerns (fc28)
for which they are higher in this case.

Intermediate distributions

To bridge the gap between the realistic JCSS distributions
case and the normal independent choice, seven intermediate
distributions were considered, differing from each other in
terms of distribution type and/or covariance matrix:

– A lognormal distribution for three multiplicative vari-
ables: the tensile strength and the compressive strength
of concrete, and the steel yield strength with parame-
ters of Table5. Means and standard deviations are the
same as for the normal case.

– A lognormal distribution for the tensile strength and
the compressive strength of concrete, and the steel
yield strength with parameters of Table6. Means and
standard deviations are the same as for the JCSS case.

Table 5.Table presenting the marginal lognormal distributions used
for the tensile strength and the compressive strength of concrete,
as well as the steel yield strength. Means and standard deviations
are the same as in Table3. The parametersµLN andσLN are the
resulting parameters of the lognormal distributions.

Variable Mean Standard µLN σLN
deviation

ft (MPa) 2 0.1 0.69 0.05
fc28 (MPa) 30 1.5 3.40 0.05
fy (MPa) 500× 106 25× 106 20.03 0.05

Table 6. Marginal JCSS-based lognormal distributions used for the
tensile strength and the compressive strength of concrete, as well as
the steel yield strength.

Variable Mean Standard µLN σLN
deviation

ft (MPa) 2.38 0.76 0.82 0.31
fc28 (MPa) 38.9 6.11 3.65 0.16
fy (MPa) 560× 106 30× 106 20.14 0.053

– A lognormal distribution for the tensile strength and
the compressive strength of concrete, and the steel
yield strength. According to the Table6, standard de-
viations are multiplied by 2 to emphasize lognormal
distributions asymmetry.

– A normal joint distributions for all the variables with
variance–covariance matrix deduced from the JCSS
distributions and the means from Table3.

– A normal joint distribution for the six parameterslx ,
ly , h, fc28, fy andft using mean and standard devia-
tion from Table3 and correlation coefficients (covari-
ance) of the JCSS case. The main correlation is the re-
lation betweenfc28 andft: ρ(fc28,ft) = 0.31; others
are lower than 0:01, i.e., close to independence.

– A normal joint distribution for the six parameterslx ,
ly , h, fc28, fy andft using mean, standard deviation
and correlation coefficients (covariance) of the JCSS
case.

– Uncorrelated JCSS distributions: to assess the effect of
correlation on the JCSS case, each modeled variable
was selected independently to break down dependen-
cies.

2.4.2 Fragility curves derivation

A fragility curveF(x) is a monotonic curve providing a fail-
ure probability as a function of the magnitude of a loading,
here a pressure applied, hence the cumulative distribution
function F(x) of the failure probability for the loadx. The
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Fig. 7. Output histogram of the ULS case for a rectangular wall
with one free edge and three clamped edges with normal indepen-
dent inputs(a), and the cumulative distribution function associated
(b).

usual way to compute fragility curves is to set a pressure and
vary the inputs from their statistical distributions. Thus, for
each pressure a failure probability is obtained to build the
fragility curve. In this paper, the approach is somewhat orig-
inal because failure probabilities are derived from an inverse
resolution. First, the structure capacity of resistance is found;
then, by abacus inversion, a load distribution is assessed. Fi-
nally, the cumulative distribution function of the latter dis-
tribution makes it possible to link a failure probability to a
pressure. As an example, Fig.7 depicts an output histogram
of the ULS case for a rectangular wall with one free edge and
three clamped edges with normal independent inputs and the
fragility curve associated through its cumulative distribution
function.

3 Results

3.1 Fragility curves with uncorrelated normally
distributed inputs

3.1.1 Overview of all configurations

Using 10 000 runs per curve, smooth fragility curves are ob-
tained. Figure8depicts fragility curves according to explored
boundary conditions. They are sorted by the four failure cri-
teria. Two visual groups are formed. First, all the curves rep-
resenting the elastic limit state are gathered at low pressure
loads. By considering the minimum 2.5 % quantile and their
maximum 97.5 % quantile, their fragility range is[2.8,27.2]

(kPa). They do not interfere with fragility curves of the
other failure criteria. On the other hand, the ULS, ALS and
YLT fragility curves are defined on a range from 22.7 kPa
to 218.6 kPa. It is interesting to note that the ALS fragility
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Fig. 8. Fragility curves according to boundary conditions sorted by
failure criterion:(a) linear frame and(b) semi-log frame.

curves are scaled from the ULS curves by the safety factor
1.15. This is easily explained by the definition itself of the
ALS failure criterion.

Another point of view can be taken by plotting the same
data according to the description of their boundary conditions
(Fig. 9). Sets of fragility curves can be deduced. The four
weakest structures present free edges. Rectangular walls with
one free edge are sorted from the weakest by their bound-
ary conditions as below: (1) one free edge and three sup-
ported edges; (2) one supported edge, two clamped edges
and one free; (3) one clamped edge, two supported edges and
one free*; and (4) one free edge and three clamped edges
(*exception for the YLT limit state where 3 and 4 are ex-
changed). Then the second set of curves gathers the rectan-
gular wall with supported edges ((5) four supported edges,
(6) one clamped edge and three supported ones, (7) two sup-
ported edges and two clamped ones, (8) two supported edges
and two clamped edges side by side, and (9) one supported
edge and three clamped ones). Finally, the less vulnerable
rectangular wall has four clamped edges.

Equation (18) provides thep quantile of each vulnerability
curve:

F(x) = Pr(X ≤ x) = p. (18)

The previous equation allows considering a more quantita-
tive approach. Table7 sums up the 50 % quantiles and similar
conclusions as described above are set up. The fragility range
is defined as an interval: the lower bound is the 2.5 % quan-
tile and the upper bound is the 97.5 % quantile of the fragility
curve, which could be considered as very useful quantitative
thresholds for engineering applications.

3.1.2 An example: one free edge and three
clamped edges

To investigate Monte Carlo confidence interval quantifica-
tion, a focus on a particular case was required. The selected
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Table 7. The 50 % quantile of the CDF fragility curves according to boundary conditions and failure criterion, and(2.5 %,97.5 %) quantile
defining a fragility range (kPa).

Boundary conditions Elas ULS ALS YLT

(1) four simply supported edges 8.4 60.2 69.3 97.0
(6.5,10.9) (52.3,69.1) (60.2,79.5) (85.5,109.5)

(2) simply supported on the two large edges 10.0 71.6 82.4 121.0
clamped on the two small edges (7.7,13.0) (59.4,87.6) (68.3,100.7) (104.8,139.1)

(3) simply supported on one large edge 15.2 108.6 124.9 158.5
clamped on the three other edges (11.6,19.7) (95.0,124.2) (109.3,142.8) (138.8,180.2)

(4) one free large edge 7.8 56.0 64.4 80.5
clamped on the three other edges (6.0,10.3) (49.9,63.7) (57.4,73.2) (66.6,96.7)

(5) one free large edge 3.6 26.0 29.9 38.1
simply supported on the three other edges (2.8,4.7) (22.7,29.6) (26.1,34.1) (30.9,46.7)

(6) clamped on one small edge 9.2 65.8 75.7 109.5
simply supported on the three other edges (7.1,11.9) (56.0,77.6) (64.4,89.2) (95.6,124.7)

(7) simply supported side by side 14.6 104.7 120.4 145.5
clamped on the two other edges (11.2,19.2) (93.1,117.6) (107.1,135.3) (128.3,164.4)

(8) four clamped edges 20.7 147.9 170.0 194.0
(15.6,27.5) (133.3,163.4) (153.3,187.9) (171.1,219.2)

(9) one free large edge / one clamped large edge 7.2 51.9 59.7 55.9
simply supported on the two small edges (5.3,10.3) (43.2,58.9) (53.2,67.8) (47.2,65.8)

(10) one free large edge / one simply supported large edge 5.8 41.4 47.6 60.9
clamped on the two small edges (4.4,7.5) (33.5,50.8) (38.5,58.5) (48.9,74.1)

0 50 100 150 200 250
0

0.5

1

x (kPa)

F
(x

)

 

 

10
0

10
1

10
20

0.5

1

F
(x

)

 

 

x (kPa)

4 supported

2 supported
2 clamped  

1 supported
3 clamped  

1 free     
3 supported

1 free   
3 clamped

1 clamped  
3 supported

2 supported       
2 clamped s. by s.

4 clamped

1 clamped     
2 supp./1 free

1 supp./2 clamped
1 free           

(a)

(b)

Fig. 9. Fragility curves according to boundary conditions sorted by
boundary conditions:(a) linear frame and(b) semi-log frame.

case is the rectangular wall with one free edge and three
clamped edges (Fig.10). The four limit state fragility curves
can be distinguished together with Monte Carlo confidence
intervals. As mechanical runs are not time-consuming, the
number of callsN can be high enough to make numerical un-
certainty negligible. Thus 10 000 runs induce thin confidence

intervals near the curve, giving confidence in all the numeri-
cal results provided.

3.2 Parametric study

This section is devoted to the analysis of total Sobol in-
dices. As each of the input variables is independent, their
sum is equal to 1. Sensitivity pie charts of outputs accord-
ing to the input distribution can be plotted (Fig.11). Four
input parameters influence the fragility assessment based on
the elastic failure criterion:ft, lx , ly andh. The variableh is
the predominant variable affecting the elastic-based failure
probability. The ULS and ALS have the same sensitivity pie
charts. Three input parameters are involved in the variability
of ULS- and ALS-based failure probabilities:lx , ly andfc28.
fc28 seems to be the variable influenced the most by these
outputs. This indicates which variables should be considered
with the greatest care while designing a structure in practice,
depending on the chosen failure criterion.

3.3 Sensitivity to input distributions choice

Fragility curves are highly dependent on the input dis-
tributions used. Outcomes were obtained from the two
first distributions previously described (Fig.12). As a gen-
eral overview, more elaborated distributions induce greater
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Table 8.Quantiles of fragility curves illustrated in Fig.13.

Approach Q2.5 % Q50 % Q97.5 % Q97.5 %–Q2.5 %

Deterministic 55.5 0
JCSS 44.9 62.4 86.8 41.9
JCSS independent 45.3 62.6 86.8 41.6
Normal independent 50.2 56.3 64.3 14.1
Correlated normal 50.3 56.3 64.0 13.6
Normal, correlation and variance from JCSS case 33.7 56.6 79.4 45.7
Lognormal, mean and variance from normal case 51.3 56.2 63.6 12.3
Normal, correlation, variance and mean from JCSS case 42.8 63.3 84.5 41.7
Lognormal, mean and variance from JCSS case 45.2 62.4 86.2 41.0
Lognormal, mean and variance (×4) from JCSS case 32.0 60.3 114.6 82.6

Fig. 10. Vulnerability curves and their 95 % confidence intervals
from Monte Carlo simulations of a slab with one free edge and three
clamped edges.

spread in fragility curves. Their fragility ranges have a higher
amplitude than the range derived from independent normal
approaches. One explanation is that taking into account cor-
relations makes certain “extreme” combinations of inputs
more likely than in the independent case. Another explana-
tion lies in the number of variables considered: the more nu-
merous they are, the more uncertainties are taken into ac-
count, and also the larger the fragility range of the fragility
curves is.

To ascertain and detail this conclusion, Fig.13 focuses on
the ULS example for the same boundary conditions. It ap-
pears clearly that, from the deterministic point of view (a
simple 0–1 response if the fragility limit is attained or is not
attained) to the JCSS-based approach, fragility curves have
wider fragility ranges. Quantiles at 2.5 %, 50 % and 97.5 %
support these results (Table8). Note, however, that the more
complex case (i.e., the JCSS case), despite its wider spread,
shows higher (and thus “safer”) modal values, and therefore

simpler approaches (normal or lognormal inputs) can be used
in practice, at least as first approximations.

The 50 % quantile depends nearly only on the means of the
three material parametersfy , fc28 andft. Indeed, the 50 %
quantile remains fully constant to∼ 56 kPa regardless of the
covariance matrix for Gaussian inputs withfy , fc28 andft
centered on their nominal values 500.106, 30 and 2 MPa,
respectively. Switching to the JCSS leads to a higher 50%
quantile∼ 62 kPa independent of the correlation structure. In
addition, the 50 % quantile remains nearly unchanged with
independent lognormally distributed inputs with the same
mean even if these, by definition, introduce non-symmetry
into the problem. This asymmetry effect is, however, visible
when the standard deviation is multiplied by 2. By the way,
the fragility range is logically also increased (Table8).

All in all, the fragility range and fragility curves shape
changes mainly according to the marginal variances, much
higher in the different JCSS cases, with covariance between
the different inputs and marginal distribution types having
less influence.

4 Conclusions

The proposed approach can be considered as a comprehen-
sive framework providing fragility curves for RC walls ex-
posed to a snow avalanche pressure load. It could be consid-
ered with benefits for other sorts of problems and in particu-
lar for other types of civil engineering structures (structures
with different materials, structures built using another tech-
nology, etc.) or natural hazards.

In detail, the influence of the boundary conditions and of
the stochastic input distributions were systematically inves-
tigated, so as to provide robust fragility curves for various
building types. Their most useful application may be individ-
ual risk assessment, including sensitivity analyses, for which
the main concern is to evaluate the survival probability as a
function of space for a hypothetical individual within differ-
ent building types.
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Fig. 11. Sensitivity pie charts for the elastic, ULS (ALS) and YLT failure criteria.
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Fig. 13.Comparison between a deterministic approach and fragility
curves computed with different input distributions. Fragility curves
are here calculated for a slab with one free edge and three clamped
edges under ULS considerations.

Four limit states based on the RC wall’s mechanical re-
sponse were considered: three local (cross-section scale) and
one global (wall scale). For instance, the distinction between
the ULS, concerning the safety of people, and the real col-
lapse, where the structure is no longer standing, could lead
to considering different thresholds for risk boundary assess-
ment, leading to refined risk maps taking into account the
winter usage of each building.

It has also been shown that, from a statistical point of view,
stochastic input distributions strongly influence the shape of
the fragility curves. Hence, mean and standard deviation of
each variable, independent or correlated variables as well
as the number of variables considered, constitute important
factors in the variability of fragility curves. This sensitivity
to the input parameter distributions highlights that it seems
important to consider and describe precisely the uncertainty
sources for each application.

The deterministic simulations were carried out through
simplified and effective mechanical models in terms of CPU
time. This allowed using the Monte Carlo method, which
gave robust results for the failure probability assessment.
Probabilistic input distributions are provided by the litera-
ture, but no statistical inference has been performed. Future
work should therefore take real data into consideration and
a Bayesian approach could then be appropriate to update
the information conveyed by numerical simulations (Eckert
et al., 2009).

Finally, it should be noted that more sophisticated mechan-
ical models for civil engineering structures exist, based on
the finite-element (FE) method, which can simulate the struc-
ture in greater detail and in particular describe how the dam-
age field evolves when material nonlinearities develop inside
the concrete and the steel reinforcement. However, these FE
models are often more complex (i.e., in term of convergence)
and time-consuming. Hence, they may be less well adapted
to a generic individual risk base approach, but more useful
for studies deriving refined fragility curves for specific struc-
tures included in precise engineering projects.
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Appendix A

Table A1. Nomenclature.

ρs density of steel
lx length of the slab
ly height of the slab
h thickness of the slab
fc28 cylinder characteristic compressive strength of concrete (age, 28 days)
fbc compressive strength of concrete
ft tensile strength of concrete
fy steel yield strength
εuk ultimate tensile strain of the steel
γb, γs safety coefficients on concrete and steel strength
qULS,qALS,qElas,qYLT characteristic loading at the ultimate limit state, at the accidental limit state, at the first cracks of the concrete

in the tensile zone and at the collapse
εbc ultimate compressive strain of the concrete
θ loading time parameter
MAB rational dimensioning moment
µAB ULS rational dimensioning coefficient
d effective depth of the RC cross section
z lever arm in the section
βy , βx Bares coefficient
ν Poisson coefficient
Wint internal virtual work
Wext external virtual work
nL number of yield lines
M i

p unitary plastic moment along theith line
Li length of theith line
θi rotation angle of theith element
δ(x,y) displacement matrix
q uniform load
α1,α2 angles of YLT patterns
Pf failure probability
r resistance of the structure
s solicitation
α significance level of confidence interval
fR(r) probability density function of the resistance
Si first-order Sobol sensitivity coefficient
STi total Sobol sensitivity coefficient
αc coefficient from the JCSS distribution
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