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Abstract

We propose a nonlinear mixed-effects framework to jointly model
longitudinal and repeated time-to-event data. A parametric nonlin-
ear mixed-effects model is used for the longitudinal observations and a
parametric mixed-effects hazard model for repeated event times. We
show the importance for parameter estimation of properly calculat-
ing the conditional density of the observations (given the individual
parameters) in the presence of interval and/or right censoring. Pa-
rameters are estimated by maximizing the exact joint likelihood with
the Stochastic Approximation Expectation-Maximization algorithm.
This workflow for joint models is now implemented in the Monolix
software, and illustrated here on five simulated and two real data sets.

Key words: Joint models; Mixed-effects models; Repeated time-to-events;
Maximum likelihood; SAEM algorithm.

1 Introduction

Joint models are a class of statistical methods for bringing together longitu-
dinal data and time-to-event data into a unified framework. In the medical
setting (the most common application of joint models), we often have, for
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a set of patients, time-to-event data of interest, e.g. tumor recurrences,
epileptic seizures, asthma attacks, migraines, infectious episodes, heart at-
tacks, injuries, hospital admissions, or even death. One may be interested
in modeling the process inducing the event(s), using for example a suitable
chosen hazard function to describe the instantaneous chance of an event
occurrence.

Simultaneously, for each patient we may be able to measure a longitudi-
nal outcome (biomarker in the following) and model its progression. Joint
models come into the picture when there is a distinct possibility that a given
longitudinal biomarker has a real influence on the time-to-event process. In
such cases and in the most general way possible, the joint model strategy is
to suggest a relationship between the biomarker and the hazard function,
i.e., have its predicted value influence the instantaneous probability of the
event of interest.

Early attempts to create joint models and apply them to biological set-
tings were introduced in [28] and [6] with applications in AIDS research.
What goes today as the standard joint model was introduced in [11] and [34]
and since that time, developments in the field have continued apace. We now
briefly present joint modeling, then explain the contribution of the present
article to the state of the art. For a more thorough introduction, we point
the reader to the book [24].

Joint modeling tries to characterize the relationship between a longitu-
dinal biomarker’s evolution and the risk of a given event, while also pro-
viding an acceptable model of the biomarker’s evolution itself. First, let
us concentrate on the longitudinal biomarker. Its evolution is often mod-
eled under a linear mixed-effects framework [17, 12, 32] using for instance
splines [26] or B-splines with random effects [25, 2]. This framework takes
into account the correlated nature of the measures for a given individual,
while also allowing inter-individual random variability in key model param-
eters (e.g. slope, intercept). We can thus estimate the mean values of these
parameters, as well as model/plot the evolution of the biomarker for each in-
dividual using their own estimated parameter values. Parameter estimation
is often performed using a maximum likelihood strategy. However, linear-
ity and the associated supposition of normally distributed parameters are
strong hypotheses which are not necessarily representative of what is seen
in real-life situations. For instance, in pharmacometrics and in particular
pharmacokinetic-pharmacodynamic (PKPD) applications, linear models are
usually not sufficient to satisfactorily model data. Consequently, nonlinear
mixed-effects models have been largely adopted [29, 19, 5, 33] even though
they involve computationally taxing calculations when performing maximum
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likelihood, a stumbling block until recently. However, strategies such as the
Stochastic Approximation EM (SAEM) algorithm [16], implemented in the
Monolix software and R [23], have recently led to significantly faster meth-
ods for not only linear mixed-effects but also nonlinear mixed-effects models.

Next let us consider the event risk itself, modeled by a hazard function λ,
which characterizes the distribution of the time-to-event process. The hazard
function may be constant or vary as a function of time. It may or may not
depend on various known or unknown population or individual variables.
For instance, in the frailty framework [21, 20], a random multiplicative effect
called “frailty” is included in the hazard function, with unknown mean and
variance (to be estimated) across the population. Essentially, a more “frail”
individual will have a larger multiplicative effect, and thus higher frequency
of the event in question (recurrence, hospitalization, etc.). More generally,
joint modeling is achieved by also allowing the hazard function at time t
to potentially depend on the value of the longitudinal biomarker variable
predicted at t. Joint modeling then involves the simultaneous estimation
of all the parameters from both parts of the model. Note that under a
general mixed-effects framework, one or several random effects variables can
enter the longitudinal – and thus time-to-events models – in many ways, not
necessarily only multiplicatively as in frailty.

Due to significant complexity in the calculation of likelihoods for joint
models, initial approaches to fit them focused on two-stage methods [28, 31],
with the downside of often producing biased results [4] in simulation studies.
Full likelihood approaches have therefore been introduced to try to eliminate
this bias [34, 13, 14]. Maximization of the log-likelihood function is then often
attempted using the EM algorithm [9], treating random effects as missing
data. In joint modeling using frailty, [21] and [20] use Gaussian quadrature
for parameter estimation. However, Gaussian quadrature is practical only
when there are a small number of random effects to be estimated. The R
package JM [24] provides a set of procedures for solving such problems in
the linear mixed-models framework.

We will show in this article that the SAEM algorithm [16] can be extended
to quickly and efficiently perform joint modeling and parameter estimation
in the general nonlinear framework and in the presence of censored data. To
give an idea of what this means, one of our examples involves repeated events,
censored data and a nonlinear continuous biomarker defined by ordinary
differential equations that requires estimation of 15 parameters including 6
random effects variances. It can be solved in a few seconds.

The current article advances the state of the art in several ways. First,
it presents time-to-events models for repeated events in the presence of cen-
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soring under a general nonlinear mixed-effects framework. Second, it devel-
ops a framework for joint models combining nonlinear mixed-effects models
for continuous covariates/biomarkers with (perhaps repeated) time-to-events
data. Third, for likelihood calculations it presents a rigorous calculation of
the conditional density of the observations given the individual parameters
in a wide variety of situations (right and/or interval censored, single or mul-
tiple events). Fifth, it shows that the Stochastic Approximation Expectation
Maximization (SAEM) algorithm [16] is not only capable, but also extremely
fast, when it comes to performing maximum likelihood estimation for joint
models. And last, it shows that we can also estimate the Fisher informa-
tion matrix, the observed likelihood and the individual parameters under the
same framework.

We have performed several numerical experiments to illustrate properties
of the proposed methods. The experiments show that bias is introduced if
we make the approximation of replacing a censoring interval by its center, or
do not take into account when it is known that there is a maximum number
of events. As mentioned earlier, one experiment is particularly sophisticated
and requires the estimation of 15 parameters including 6 random effects
variances; it takes only a few minutes to run. We then illustrate the use
of these modeling methods in two real data examples: patient survival in
primary biliary cirrhosis and repeated epileptic seizure count data from a
clinical trial.

2 Models

2.1 Nonlinear mixed-effects models for the population ap-
proach

Consider first a single subject i of the population. Let yi = (yij , 1 ≤ j ≤ ni)
be the vector of observations for this subject. The model that describes the
observations yi is assumed to be a parametric probabilistic model: let p(yi|ψi)
be the probability distribution of yi, where ψi is a vector of parameters.

In the population framework, the vector of parameters ψi is assumed to
be drawn from a population distribution p(ψi; θ). Then, the probabilistic
model is the joint probability distribution

p(yi, ψi; θ) = p(yi|ψi)p(ψi; θ). (1)

To define a model for the data thus consists in defining precisely these two
terms.
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First, let us present ψi in its most general form: ψi = H(ψpop, β, ci, ηi),
where ψpop is a “typical” value of the parameters in the population, β a set of
coefficients (usually called fixed effects), ci a vector of individual covariates
and ηi the random component (usually called random effects). For example,
in a linear model we assume that, up to some transformation, ψi is a linear
function of the covariates and the normally distributed random effects:

h(ψi) = h(ψpop) + βci + ηi, (2)

where h is some monotonic function (log, logit, probit, etc.) and ηi ∼
N (0,Ω). The set of population parameters that define the population dis-
tribution p(ψi; θ) of the individual parameters ψi is thus θ = (ψpop, β,Ω).

The conditional distribution p(yi|ψi) of the observations depends on the
type of observations (continuous, categorical, count, time-to-event, etc.). We
consider here two situations:

• observations are time-to-events, perhaps repeated (several events per
individual are observed) and perhaps interval or right censored (times
of events are not precisely known).

• observations are a combination of continuous values (some biomarker)
and time-to-events. They are thus characterized by a joint model which
describes the relationship between the two types of data.

2.2 Repeated time-to-event model

In summarizing time-to-event data, there are two main functions of interest,
namely the survival function and the hazard function. The actual event time
t can be regarded as the value taken by a non-negative random variable T .
For the case of a single event process, the survival function S (t) is defined
as S (t) = P(T ≥ t) = e−

∫ t
0 λ(u)du, where λ is the hazard function. In the

case of a repeated events process we have instead a sequence of event times
(Tj) and are now interested in the probability of an event after tj given the
previous event at tj−1:

P(Tj > tj |Tj−1 = tj−1) = e
−

∫ tj
tj−1

λ(u)du
.

Under a population framework, we suppose a parametric hazard function λi
for each individual i: λi(t) = λ(ψi, t). As an example, consider the model
with constant hazard [15] given by λi(t) = λi. Then, the duration between
successive events has an exponential distribution with parameter λi, and the
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number of events in any interval of length ∆ has a Poisson distribution with
parameter ∆λi. Here, the vector of individual parameters reduces to ψi = λi.

In the most simple case, yi is a vector of known event times: yi =
(ti1, ti2, . . . , ti ni). But if we only know that events occur within certain
intervals, then observations are the number of events per interval. Let
(Ii1, . . . , Ii ni) be a set of disjoint time intervals for individual i relevant to
the experimental design. We then can write yi = (ki1, . . . , ki ni), where ki` is
the number of events for individual i that have occurred in interval Ii`. Note
that this includes the interval censored case with finite intervals Ii`, as well
as the right censored case with Ii ni = [tend ,∞).

2.3 Joint models

Besides the parametric form of the model, an essential point of joint modeling
is the type of dependency between the longitudinal data model and the
events. Suppose that we have a continuous biomarker of the form

bij = f
(
tij , ψ

(1)
i

)
+ g

(
tij , ψ

(1)
i

)
εij , 1 ≤ i ≤ N, 1 ≤ j ≤ n1,i, (3)

where εij is a residual error with mean 0 and variance 1. Next, we
connect this with RTTE via the hazard function given in general form:
λi(t) = λ

(
f(t, ψ

(1)
i ), ψ

(2)
i

)
. Observations are therefore a combination

of the n1,i continuous-valued biomarker measurements with the n2,i

event times (if observed): yi = ((bij , 1 ≤ j ≤ n1,i), (ti`, 1 ≤ ` ≤ n2,i),
or with the number of events per interval in the case of censoring:
yi = ((bij , 1 ≤ j ≤ n1,i), (ki`, 1 ≤ ` ≤ n2,i). The vector of individual
parameters ψi = (ψ

(1)
i , ψ

(2)
i ) combines the individual parameters from the

two parts of the joint model.

Example. Suppose that the biomarker measurements can be modeled by

bij = γi + δitij + aiεij , 1 ≤ i ≤ N, 1 ≤ j ≤ n1,i (4)

where εij ∼ N (0, 1), and that they are related to an event process with
hazard function

λi(t) = λ0,ie
αi(γi+δit). (5)

Here, ψi = (γi, δi, ai, λ0,i, αi). Formulas 4 and 5 thus characterize the prob-
ability model p(yi|ψi) of the observations. In the following, we will suppose
certain parameters to be constants (i.e., without inter-individual variability),
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essentially for reasons of identifiability. This is not to do with the distribu-
tion of the observations, but rather with the distributions of the individual
parameters. In effect, building the statistical model for the individual pa-
rameters relies in part on deciding which components of ψi vary or not within
the population.

3 Tasks and methods

There are a variety of tasks that we are interested in performing here,
whether it be estimating population parameters and their variation, esti-
mating individual parameters or estimating the likelihood, the latter useful
for performing likelihood ratio tests and calculating information criteria such
as BIC.

In the following sections, we propose methodology for each of these tasks.
We show that each requires calculation of the joint pdf (1) and in particular
the conditional density p(yi|ψi) as under (2), p(ψi; θ) is straightforward to
compute since it is derived from a Gaussian density.

3.1 Maximum likelihood estimation of the population pa-
rameters

Estimation in mixed-effects models consists of estimating the probability
distribution of the ψi’s in the population from the observations of the N
subjects, i.e., in evaluating both the typical values in the population and
the variability between subjects. More precisely, we aim to compute the
maximum likelihood estimate of θ in (nonlinear) mixed-effects models by
maximizing the observed likelihood p(y; θ). Estimation is complex because
the N random vectors of parameters ψi are not observed and because there
is a nonlinear relashionship between the observations and the random effects
defined in (2). For these reasons the likelihood function can not be explicitly
given and its maximization is far from straightforward.

In a general way, linear and nonlinear mixed-effects models, including
mixed-effects diffusion models, can be seen as incomplete data models in
which the individual parameters π = (ψ1, . . . , ψN ) are the non-observed data
and the population parameters are the parameters of the model that need to
be estimated from the N individual observations vectors y = (y1, . . . , yN ).
The EM algorithm ([9]) iteratively performs parameter estimation in such
models. The algorithm requires computing at each iteration the conditional
expectation E

(
log p(y, ψ; θ)|y, θ(k−1)

)
, where θ(k−1) represents the current

7



estimation of θ. In many situations, especially when dealing with nonlin-
ear mixed-effects models, this conditional expectation has no closed form.
Variants of the algorithm get around this difficulty.

For instance, in the SAEM algorithm [8], the E-step is evaluated by a
stochastic approximation procedure. In Web Appendix A, a detailed de-
scription of the SAEM algorithm is presented. SAEM is extremely fast and
has already been used to help treat a large range of real-world problems in-
cluding Hepatitis C treatment outcomes [30], longitudinal data analysis [27],
parameter estimation in HIV models [3, 18], bioequivalence crossover trials
[10], and much more. The Monolix software provides a general implemen-
tation of SAEM that can be easily extended by the user to new modeling
challenges. SAEM has also been implemented in the R package saemix and
the Matlab statistics toolbox as nlmefitsa.m.

It turns out that in this framework, computation of p(yi|ψi) for the var-
ious cases (repeated events with interval censoring, right-censored time-to-
events, joint models, etc.) is a critical modeling step. In the following section,
we therefore explicitly calculate this pdf for a wide range of cases.

3.2 Computing the probability distribution for repeated time-
to-events

The aim of this section is to provide the precise expression of the conditional
distribution p(yi|ψi) for any subject i, when the vector of observations yi only
consists of (possibly repeated and possibly censored) time-to-events. While
some of these results are known, it is useful to restate them here in a “ready-
to-use” form. For a much more expansive treatment, we refer the reader
to the monograph [1]. For the sake of simplicity we only consider a single
subject, and therefore omit the subscript i in notation. Also for simplicity
we denote λ(t) the hazard function at time t and omit the dependence with
respect to the parameter ψ. We assume that the trial starts at time t0 and
ends at time tend. Both t0 and tend are known. Let T = (T1, T2, . . .) be the
(random) event times after t0, and Λ be the cumulative hazard function:

Λ(a, `) :=

∫ `

a
λ(t) dt = Λ(t0, `)− Λ(t0, a).

By definition, recall that

P(Tj > tj |Tj−1 = tj−1) = e−Λ(tj−1,tj). (6)

In the following, we distinguish between exactly observed and interval-censored
events. In each case, we further distinguish between whether the last event
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occurred before the end of the experiment or if it is right censored, as the
value of the conditional distribution turns out to be different for each. For
conciseness, explicit derivations of the following results have been placed in
Web Appendix B.

Let kmax (kmax ≤ +∞) be the maximum number of events that can
occur. kmax can be either bounded (kmax = 1 for events such as death) or
unbounded (kmax = +∞ for seizures, hemorrhaging ,. . . ).

3.2.1 Exactly observed events

i) the last event is observed. Assume that we observe n = kmax

events at times t1, t2, . . . , tn. Here, n = kmax means that no event will occur
after tend. The vector of observations is y = (t1, t2, . . . , tn), and

p(y|ψ) =

n∏
j=1

λ(tj)e
−Λ(tj−1,tj) . (7)

ii) the last event is not observed. Assume that we observe n < kmax

events at times t1, t2, . . . , tn. n < kmax means that an event will to occur
at a certain unknown time Tn+1 > tend. Here, the vector of observations is
y = (t1, t2, . . . , tn, tn+1 > tend), and

p(y|ψ) =

 n∏
j=1

λ(tj)e
−Λ(tj−1,tj)

 e−Λ(tn,tend) .

3.2.2 Interval censored events

Consider first a single interval [0, `] and let kmax (kmax ≤ ∞) be the
maximum number of events that can occur. kmax can either be bounded
(kmax = 1 for events such as death) or unbounded (kmax = ∞ for seizures,
hemorrhaging, etc.). Let K be the number of events in [0, `]. For any
k < kmax, K = k implies that the (k+1)-th event occurs after time `. Then,
for any k < kmax, it is well known that

P(K = k) =
Λ(0, `)k

k!
e−Λ(0,`). (8)
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So, for a bounded number of events (kmax < +∞),

P(K = kmax) = 1−
kmax−1∑
k=0

P(K = k) = 1−
kmax−1∑
k=0

Λ(0, `)k

k!
e−Λ(0,`).

(9)
Consider now n contiguous intervals ([`j−1, `j ]; 1 ≤ j ≤ n), where `0 = t0
and `n = tend. Let Kj be the number of events in interval [`j−1, `j ].

i) the last event is observed.. Let sn−1 =
∑n−1

j=1 kj . Using equations
8 and 9, we can show that

p(y|ψ) =

n−1∏
j=1

Λ(`j−1, `j)
kj

kj !
e−Λ(`j−1,`j)

 (10)

×

1−
kmax−sn−1∑

k=0

Λ(`n−1, `n)k

k!
e−Λ(`n−1,`n)

 . (11)

ii) the last event is not observed. This implies that the first non-
observed event occurs after tend. Using equation (11), it is straightforward
to show that if

∑n
j=1 kj < kmax, then

p(y|ψ) =

n∏
j=1

(
Λ(`j−1, `j)

kj

kj !
e−Λ(`j−1,`j)

)
. (12)

4 Simulations and applications

4.1 Simulations

A series of simulation studies were conducted to evaluate the proposed
methodology for calculating the maximum likelihood estimate of the popu-
lation parameters. The first three consider only time-to-events in order to
illustrate the statistical properties of the maximum likelihood estimator and
to show why censoring needs to be correctly taken into account. The fourth
trial presents joint modeling for the example given in Section 2.3. Due to
space requirements, a further example of sophisticated joint modeling of a
pharmacokinetics problem is left to Web Appendix C. It combines almost ev-
erything we can throw at it: repeated events, censored data, and a nonlinear
continuous biomarker defined by ordinary differential equations that itself
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can be censored (“below limit of quantification”). The model requires esti-
mation of 15 parameters including 6 random effects variances, yet takes only
a few second to converge to systematically accurate parameter estimates. In
Web Appendix C, we also briefly present model diagnotic tools, even though
this is beyond the scope of the present paper.

For each scenario, the SAEM algorithm was used with M = 100 sim-
ulated datasets for computing the parameter estimates (θ̂m, 1 ≤ m ≤ M).
To assess statistical properties of the proposed estimators for each param-
eter, percentage-wise relative estimation errors (REEm, 1 ≤ m ≤ M) were
computed:

REEm =
θ̂m − θ?

| θ? |
× 100.

Using the REEs, the relative bias (RB) and relative root mean square errors
(RRMSE) were computed for each parameter in each scenario:

RB =
1

M

M∑
m=1

REEm

RRMSE =

√√√√ 1

M

M∑
m=1

REE2
m .

Also, for each scenario the Fisher information matrix was estimated and
standard errors (ŝem, 1 ≤ m ≤M) of the estimated parameters derived. Of
course, the true standard errors se? are unknown, but they can be empir-
ically estimated by the root mean square errors (RMSE) of the estimated
parameters:

RMSE =

√√√√ 1

M

M∑
m=1

(θ̂m − θ?)2.

To assess statistical properties of the proposed estimator of the standard
errors, we can then compare them with the RMSE by computing relative
estimation errors (in %) for each replicate:

REEsem =
ŝem −RMSE

| θ? |
× 100.

4.1.1 Example 1

This first example demonstrates that an accurate estimation of the inter-
patient variability of the hazard function requires observation of multiple
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events. We consider a basic RTTE model under the mixed-effects framework
with constant hazard (See [15]) for each individual i = 1, 2, . . . N , expressed
as

λi(t) = λi (13)
log (λi) ∼ N

(
log(λ), ω2

)
. (14)

The goal in mixed-effects modeling is then to estimate the population value
λ and variance ω2. We assume that events are observed between time t0 = 0
and time tend = 12. Furthermore the event times are assumed to be exactly
known. We are thus in the situation described Section 3.2.1 with observed
and right censored events. The conditional distribution of the observations
is given in equation 7. The 100 datasets with 120 individuals in each were
simulated under nine different scenarios with λ ∈ {0.01, 0.1, 1} and ω ∈
{0.1, 0.5, 1}. The distributions of the REEm and REEsem are displayed
in Figures 1 and 2.

Figures 1 and 2 display the relative estimation errors for λ and ω and
for their respective standard errors, obtained with 9 different scenarios (
λ = 0.01, 0.1, 1 and ω = 0.1, 0.5, 1). This figures show that λ and its stan-
dard error are well-estimated generally and that the estimator is essentially
unbiased. We see also that ω and its standard error are poorly estimated
when both λ and ω are small, but as the true value of λ increases (i.e.,
more events happen), estimation of ω significantly improves and becomes
unbiased.

Figure 3 shows a 2-d log-likelihood profile for the parameter combina-
tions (λ?, ω?) = (0.01, 0.5) on the left and (λ?, ω?) = (0.1, 0.5) on the right,
and shows the disparity between the true parameters and the maximum like-
lihood estimates from two simulation runs. We see that the log-likelihood
is much more concentrated around its global maximum when λ = 0.1, and
maximization of the log-likelihood cannot provide an accurate estimation of
ω if λ = 0.01, ı.e. if the number of events is too small.

Note that Gaussian quadrature, efficient for low-dimensional numerical
integration, was used to compute the log-likelihood colormap.

4.1.2 Example 2

The goal of this experiment is to shown that interval censoring should be
properly taken into account in order to avoid estimation bias. Using the same
basic model as the previous example, the simulation scheme is the following:

• M = 100 datasets with N = 1000 subjects in each.
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• The true parameter values are (λ?, ω?) = (0.5, 0.5).

• The event process is single-event (e.g., death).

• Events are interval or right-censored. The intervals are contiguous and
of length ∆.

• Observations occur between t0 = 0 and tend = 24.

Here, the events are interval or right-censored. If we incorrectly take
this information into account, for instance by considering that the event has
happened at the interval midpoint, decreasing estimation quality and bias
are introduced as the length ∆ of the intervals increases. Figure 4 shows
that very little information is lost (with respect to the case where we do
know the exact times) if the correct formula is applied, whereas if the model
is misspecified, the RRMSE and relative bias increase considerably as ∆
increases.

4.1.3 Example 3

The goal of this experiment is to show that the maximum number of possible
events is a piece of information that needs to be taken into account in order
to avoid estimation bias. Here, we take the same interval or right-censored
model as the previous examples but this time, we suppose that there are a
maximum of kmax = 5 events per subject. Note that the kmax = 5 events
are not necessarily observed during the trial period.

If for subject i we have observed kmax = 5 events, the correct formula is
(11), because it takes into account the fact that there are a maximum of 5
events and they have all been observed. If on the other hand the last event
or events have not been observed, then equation (12) should be used when
performing maximum likelihood estimation. Figure 5 shows what happens
when this is not correctly taken into account.

Indeed, as the width ∆ of the intervals increases, the RRMSE and the
(absolute) relative bias increase markedly in the misspecified case with re-
spect to the correct one.

4.1.4 Example 4

The goal of this experiment is to show that SAEM performs very well for
estimating the parameters of a joint model, event when the events are interval
censored and when the continuous data model is nonlinear. The example,
first introduced in Section 2.3, can be seen as an extension of the previous
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ones to joint modeling, or analogously as an RTTE model with a time-
dependent covariate, taken here as a biomarker. We consider thus a joint
model with a biomarker representing disease progress and an event which
can occur several times during the study. The model is:

bij = γi + δitij + aεij , 1 ≤ i ≤ N, 1 ≤ j ≤ n1,i

λi(t) = λeα(γi+δit),

where log(γi) ∼ N (log γpop + βCi, ω2
γ) and log(δi) ∼ N (log δpop, ω

2
δ ). We

suppose that εij ∼ N (0, 1).
Here, the hazard increases exponentially as the disease progresses linearly.

Ci represents the treatment covariate, which takes values 0 (untreated) and
1 (treated). Treatment is associated with an effect which produces an im-
mediate reduction of the slope of the disease progress.

Remark 1. Methods developed for linear models (e.g. [34, 13, 14]) cannot
be used here since the model is not linear with respect to the random effects:
the continuous observations are not normally distributed since γi and δi are
not normally distributed. A more advanced method, such as SAEM for ex-
ample, is therefore required for estimating the population parameters of the
model. Furthermore, the exponential term of the hazard contains several
individual (random) parameters, and is thus more general than frailty-based
methods.

Remark 2. We do not focus on model selection in the present paper. Our
goal is to provide a powerful methodology that can be implemented for a
wide and general range of models chosen by the user. Tools for model diag-
nosis are beyond the scope of the paper, though the interested reader may
refer to the simulations in Web Appendix C for an example of this.

For the model in question, we consider the following design:

• the biomarker (bij) is observed at times 0, 25 and 50 weeks: (ni,1 = 3).

• possibility of repeated interval-censored events until the end of the ex-
periment at tend = 50 weeks. Observations are the number of events in
each 5 week period between t0 = 0 and tend = 50 (so ki,1 is the number
of events between 0 and 5,. . . , ki,10 the number of events between 45
and 50). Thus, ni,2 = 10.

• parameter values are γpop = 1, δpop = 100, β = −0.3, α = 0.02,
λ = 0.01, ωγ = 0.1, ωλ = 0.1, a = 1.
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We suppose the total number of subjects in the trial is N = 1000. Note
that we take a large N here because our fundamental goal is not to show in
detail the performance of the maximum likelihood estimation. Rather, it is
to show that the SAEM algorithm is effective in this framework: non-linear
model, repeated interval-censored events, that it is fast and that it leads to
little or no bias as well as small REEs.

SAEM performed well with the given model and experimental design.
First, it was fast, taking 82 seconds on an Intel(R) Core(TM) i7-2760QM
laptop with a 2.4 GHz processor. Figure 6 shows the convergence of the
parameter estimates in a typical run, requiring less than 100 iterations for
all parameters. Figure 7 shows that there is little or no bias in the parameter
estimation, and consistently small REEs across the trials.

4.1.5 Example 5

This example from pharmacokinetics, described in detail in Web Appendix
C, shows that it is possible to perform joint modeling when the model for
the longitudinal variable depends on a set of differential equations and the
hazard function is dependent on both time and several (random) individual
parameters.

4.2 Applications

4.2.1 Primary Biliary Cirrhosis Data

This well known dataset comes from a study conducted by the Mayo Clinic
from 1974 to 1984. The study includes 158 patients who received D-
penicillamine and 154 who received a placebo. Patient survival is the out-
come of main interest. By the end of the study, 140 patients had died and
172 were still alive. Several biomarkers, including serum bilirubin, were mea-
sured during the study. A total of 1945 measurements of serum bilirubin were
made available.

Various joint models for this data are proposed in [24]. All of these as-
sume a linear mixed-effects model for the longitudinal data. We will show
that our approach provides a straightforward extension to more general non-
linear mixed-effects models.

Following [24], we used the following model for the serum bilirubin:
mi(t) = c0,i + c1,it + c2,it

2, with log bij = mi(tij) + aεij . Here, mi(t) is
the predicted concentration of bilirubin for patient i at time t and bij its
measured concentration at time tij . We used a simple proportional hazard
model for the survival data: λi(t) = λ0,ie

αimi(t).
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The vector of individual parameters for patient i is given by
ψi = (c0,i, c1,i, c2,i, λ0,i, αi). Different statistical models for the ψi’s were
compared initially assuming Gaussian distributions for the c`,i and fixed
parameters λ0,i = λ0 and αi = α.

We then considered a latent class model for the longitudinal data, as-
suming that the population is heterogeneous and constituted of two subpop-
ulations that cannot be clearly identified by any of the available covariates.
In other words, we assumed a mixture of two Gaussian distributions for the
c`,i. Note again that this example is for illustrating the general methodology,
and not model selection (i.e., selecting the “best” number of subpopulations),
which is beyond the scope of the paper.

Let (zi) be a sequence of latent variables such that zi = 0 if patient i
belongs to subpopulation 1 and zi = 1 if they belong to subpopulation 2.
We also introduce the treatment (D-penicillamine/placebo) as a categorical
covariate: let (di) be a sequence of observed variables such that di = 0 if
patient i receives the placebo and di = 1 if the patient receives the active
treatment. The statistical model for the individual parameters can therefore
be described as follows:

c0,i = c0 + β0,zzi + β0,ddi + η0,i, η0,i ∼ N (0, ω2
0)

c1,i = c1 + β1,zzi + β1,ddi + η1,i, η1,i ∼ N (0, ω2
1)

c2,i = c2 + β2,zzi + β2,ddi + η2,i, η2,i ∼ N (0, ω2
2)

λ0,i = λ0 + βλ,ddi

αi = α+ βα,ddi.

A diagonal variance-covariance matrix is assumed for the random effects.
Extensions of the SAEM algorithm for mixtures of mixed-effects mod-

els have been developed and implemented in Monolix. We combined this
method for mixture models with the proposed methods for joint models in
order to simultaneously fit the longitudinal and survival data. Table 1 pro-
vides parameter estimates for the model. We see that there is no significant
effect of the treatment on serum bilirubin or the survival probability. Also,
two different typical profiles appear to describe the serum bilirubin kinetics
because the distribution of (c0, c2) is well characterized by a mixture of two
Gaussian distributions.

4.2.2 Epileptic seizure counts

In this study, all recruited patients were on standard anti-epileptic therapy
and completed a 12 week baseline screening phase. Thereafter, patients
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were randomized to parallel treatment groups receiving placebo or active
treatment (gabapentin 0.45, 0.6, 0.9, 1.2 and 1.8g). Overall, time profiles
from 788 patients were included in the database. Data consisted of baseline
daily counts of epileptic seizures measured over 12 weeks followed by 12
weeks of active treatment.

Several count data models have been proposed, including a mixture of
two Poisson models [22] and a hidden Markov model [7]. Such models assume
that the probability function of the number of seizures is piecewise-constant
over time. We propose to extend this approach by considering seizures as
interval-censored events. Then, following section 3.2.2, it is equivalent to
consider the seizure count as a nonhomogenous Poisson process whose inten-
sity is a continuous function of time. The hazard function is then modeled
assuming a constant hazard in both phases and a smooth transition between
the two phases:

λi(t) =

{
ai if t ≤ t0
bi + (ai − bi)e−ci(t−t0) if t > t0,

where t0 is the time when the active treatment starts. We used the follow-
ing statistical model for describing inter-patient variability of the individual
parameters ai, bi and ci:

log(ai) = log(a) + ηa,i, ηa,i ∼ N (0, ω2
a)

log(bi) = log(b) + βb log(1 +Di) + ηb,i, ηb,i ∼ N (0, ω2
b )

log(ci) = log(c) + βc log(1 +Di),

where Di is the amount of gabapentin administered to patient i.
The estimated parameters are displayed Table 2 and the distributions of

the hazard functions associated to different doses of gabapentin are displayed
Figure 8. Even though the inter-patient variability of the hazard function is
large, we can see a slight placebo effect and a mild effect of gabapentin on
the seizure rate.

5 Discussion

Joint modeling of longitudinal biomarkers and time-to-events data is an im-
portant step in the improvement in understanding of the connection between
biological changes in time and the arrival of a (perhaps critical) event to the
patient. In recent years, linear mixed-effects models have been coupled with
time-to-single event processes and parameter estimation has been performed,
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often using maximum likelihood coupled with the EM algorithm. When there
are more than a negligible number of random effects in the model, likelihood
calculations are a huge bottleneck, discouraging use of these methods.

Here, we have shown that the SAEM algorithm is extremely capable in
performing parameter estimation for joint models where the mixed-effects
can be nonlinear, the events can be repeated, and all of this in the pres-
ence of right and/or interval censoring. To be able to implement SAEM
for joint models in the afore-mentioned range of cases, we have for each de-
rived precise expressions for the conditional likelihood of the observations
given the individual parameters. In a series of simulation studies, we have
shown that the SAEM algorithm converges for joint models in a matter of
seconds or minutes rather than hours or days. As a consequence, we can also
quickly estimate the Fisher information matrix, the observed likelihood and
the individual parameters.

SAEM for joint models is intuitively implemented in the Monolix soft-
ware: in order to pass from nonlinear mixed effects modeling to joint mod-
eling, all that is required of the modeler is to provide the parametric form of
the hazard function. We have illustrated this by performing joint modeling
in two real examples: survival data and repeated time-to-event data. Note
that several diagnostic tools are also implemented in Monolix based on
Kaplan-Meier plots; further details are beyond the scope of the article.

In conclusion, now that there exists a simple, fast and high-performance
tool for joint modeling, we believe these methods should now be used more
in everyday statistical practice.

6 Supplementary material

Web Appendices for Sections 3.1, 3.2 and 4.1 are online at http://TBA
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Figure 1: Relative estimation errors (in %) for λ and ω obtained with 9
different scenarios.

Figure 2: Relative estimation errors (in %) for the standard errors of λ̂ and
ω̂ obtained with 9 different scenarios.
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Figure 3: Observed log-likelihood as a function of λ and ω obtained with 2
different scenarios. Left: (λ?, ω?) = (0.01, 0.5), right: (λ?, ω?) = (0.1, 0.5).

Parameter Estimates Standard error P (|β| > |βobs|)
c0 0.846 0.042
β0,d -0.092 0.056 0.10
β0,z 1.26 0.067 <10−4

c1 0.068 0.021
β1,d 0.002 0.027 0.94
β1,z 0.009 0.040 0.81
c2 0.0054 0.0022
β2,d -0.0009 0.003 0.77
β2,z 0.069 0.007 <10−4

λ0 0.0039 0.0011
βλ,d 0.002 0.42 0.999
α 1.64 0.11
βα,d -0.004 0.15 0.999
ω0 0.431 0.022
ω1 0.196 0.011
ω2 0.0135 0.0015
a 0.209 0.004

Table 1: Primary biliary cirrhosis data: estimation of the population param-
eters.
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Figure 4: Relative bias and relative root mean square errors for λ and ω as
a function of the width ∆ of the censoring interval. Blue: using the exact
event times; Red: taking correctly into account that the event is interval
or right-censored; Green: taking incorrectly into account that the event is
interval or right-censored.

Parameter Estimates Standard error P (|β| > |βobs|)
a 0.491 0.019
b 0.463 0.022
βb -0.239 0.054 <0.0001
c 0.097 0.013
βc 0.605 0.230 0.0076
ωa 1.05 0.027
ωb 1.1 0.029
ρa,b 0.889 0.009

Table 2: Epileptic daily seizures count: estimation of the population param-
eters.
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Figure 5: Relative bias and relative root mean square errors for λ and ω as a
function of the width ∆ of the censoring interval. Blue: taking into account
the fact that the number of events is bounded (kmax = 5); Green: ignoring
the fact that the number of events is bounded.
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Figure 6: Convergence of the SAEM algorithm.
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Figure 7: Relative estimation errors (in %) for the joint model.
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Figure 8: Hazard function for epileptic seizures count data. Hazard functions
associated to different doses of gabapentin are displayed; blue: 0g (placebo);
green: 0.6g; red: 1.5g. The median hazard functions are displayed with solid
lines, the 90% prediction intervals with dotted lines.
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1 Web Appendix A

General description of the SAEM algorithm.

Let θ(k−1) denote the current estimate for the population parameters. Iter-
ation k of the SAEM algorithm involves three steps [1, 2]:

• In the simulation step, θ(k−1) is used to simulate the missing data ψ(k)
i

under the conditional distribution p(ψi|yi, θ(k−1)), i = 1, . . . , N .

• In the stochastic approximation step, the simulated data ψ(k) and the
observations y are used together to update the stochastic approxima-
tion Qk(θ) of the conditional expectation E

(
log p(y, ψ; θ)|y, θ(k−1)

)
ac-

cording to:

Qk(θ) = Qk−1(θ) + νk

(
log p(y, φ(k); θ)−Qk−1(θ)

)
, (1)

where (νk)k>0 is a sequence of positive step sizes decreasing to 0 and
starting with ν1 = 1.

• In the maximization step, an updated value of the estimate θ(k) is
obtained by maximization of Qk(θ) with respect to θ:

θ(k) = argmax
θ

Qk(θ).

This procedure is iterated until numerical convergence of the sequence(
θ(k)
)
k>0

to some estimate θ̂ is achieved. Convergence results can be found
in [1].

When an estimate θ̂ has been obtained, estimates of the standard errors
of its components can be derived by estimating the Fisher information ma-
trix I(θ̂) = −∂2 log(p(y; θ))/∂θ∂θ′|θ=θ̂ following the stochastic approxima-
tion procedure suggested in [2], which requires simulation of the ψi’s under
p(·|y, θ̂) via a Metropolis-Hastings algorithm.

Estimates of the ψi’s can also be derived from the conditional distribution
p(ψi|yi, θ̂) such as the conditional mode or the conditional mean. Whatever
the estimate chosen, simulating this conditional distribution via Metropolis-
Hastings, or maximizing it, requires computing the conditional distribution
of the observations p(yi|ψi).
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Standard model selection criteria such as BIC require calculation of the ob-
served log-likelihood log(p(y; θ̂)). As the log-likelihood cannot be computed
in a closed form here, it is approximated using an importance sampling pro-
cedure. This consists of drawing ψ(1), ψ(2), . . . , ψ(M) under a given sampling
distribution π̃, and approximating the likelihood with:

p(y; θ) ≈ 1

M

M∑
k=1

p(y|ψ(k))
π(ψ(k), θ)

π̃(ψ(k))
.

Here also, we see that computation of p(yi|ψi) is required.
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2 Web Appendix B

Computing the probability distribution for repeated time-to-
events.

Exactly observed events

i) the last event is observed. Assume that we observe n events at times
t1, t2, . . . , tn and that no event occurs after tend. The vector of observations
is y = (t1, t2, . . . , tn) and

p(y|ψ) = p(t1, t2, . . . , tn)

= p(t1|t0)p(t2|t1)p(t3|t2) . . . p(tn|tn−1).

By definition, p(tj |tj−1) = λ(tj)e
−Λ(tj−1,tj). Thus,

p(y|ψ) =
n∏
j=1

p(tj |tj−1) (2)

=

n∏
j=1

λ(tj)e
−Λ(tj−1,tj) . (3)

ii) the last event is not observed. Assume that we observe n events at
times t1, t2, . . . , tn and that an event is known to occur at time Tn+1 > tend.
Here, the vector of observations is y = (t1, t2, . . . , tn, tn+1 > tend) and

p(y|ψ) = p(t1, t2, . . . , tn)P(Tn+1 > tend|Tn = tn)

= p(t1|t0)p(t2|t1)p(t3|t2) . . . p(tn|tn−1)P(Tn+1 > tend|Tn = tn)

=

 n∏
j=1

λ(tj)e
−Λ(tj−1,tj)

 e−Λ(tn,tend) .

Single interval-censored events

Assume that n events occur between t0 and tend but that we only know that
t1 ∈ [a1, `1], t2 ∈ [a2, `2], . . . , tn ∈ [an, `n].
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i) the last event is observed. Here, no event occurs after tend. The
vector of observations is y = (t1 ∈ [a1, `1], t2 ∈ [a2, `2], . . . , tn ∈ [an, `n]) and
its joint probability distribution is:

p(y|ψ) = P(T1 ∈ [a1, `1], T2 ∈ [a2, `2], . . . , Tn ∈ [an, `n])

=

∫ `1

a1

∫ `2

a2

. . .

∫ `n

an

p(t1, t2, . . . , tn) dt1 dt2, . . . , dtn.

Using equations 2-3,

p(t1, t2, . . . , tn) =

n∏
j=1

λ(tj)e
−Λ(tj−1,tj)

=

 n∏
j=1

λ(tj)

 e−
∑n

j=1 Λ(tj−1,tj)

=

n−1∏
j=1

λ(tj)

λ(tn)e−Λ(t0,tn)

=

n−1∏
j=1

λ(tj)

 p(tn|t0).

Thus, the multiple integral can be computed:

p(y|ψ) =

n−1∏
j=1

Λ(aj , `j)

P(Tn ∈ [an, `n]|Tn−1 = t0)

=

n−1∏
j=1

Λ(aj , `j)

(e−Λ(t0,an) − e−Λ(t0,`n)
)
. (4)

ii) the last event is not observed. Here, at least one event is known to
occur after tend. Thus, y = (t1 ∈ [a1, `1], t2 ∈ [a2, `2], . . . , tn ∈ [an, `n], tn+1 >
tend). The previous result (see equation 4) holds with an+1 = tend and
`n+1 = +∞:

p(y|ψ) = P(T1 ∈ [a1, `1], T2 ∈ [a2, `2], . . . , Tn ∈ [an, `n], Tn+1 > tend)

=

 n∏
j=1

Λ(aj , `j)

 e−Λ(t0,tend). (5)
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Multiple events per interval

Consider first a single interval [0, `] and let kmax (kmax ≤ +∞) be the max-
imum number of events. Let K be the number of events in [0, `]. For any
k < kmax, K = k implies that the (k+1)-th event occurs after time `. Then,
for any k < kmax,

P(K = k) = P(T1 ∈ [0, `], . . . , Tk ∈ [0, `], Tk+1 > `; T1 < . . . < Tk < Tk+1)

=

∫ `

0

∫ `

t1

. . .

∫ `

tk−1

∫ +∞

`
p(t1, t2, . . . , tk, tk+1) dt1 dt2 . . . dtk dtk+1

=

∫ `

0

∫ `

t1

. . .

∫ `

tk−1

∫ +∞

`

 k∏
j=1

λ(tj)

p(tk+1|t0) dt1 dt2 . . . dtk dtk+1

=
Λ(0, `)k

k!
e−Λ(0,`). (6)

Remark. In the case of a constant hazard function λ(t) = λ, the inter-
event times follow the exponential distribution with parameter λ. Then, the
number of events in any interval of length ` follows a Poisson distribution
with parameter Λ(0, `) = λ`. For any k < kmax,

P(K = k) =
(λ`)k

k!
e−λ`. (7)

Equation 6 thus shows that this type of property still holds for non-constant
hazard functions λ(t).

So, for a bounded number of events (kmax < +∞),

P(K = kmax) = 1−
kmax−1∑
k=0

P(K = k)

= 1−
kmax−1∑
k=0

Λ(0, `)k

k!
e−Λ(0,`). (8)

Consider now n contiguous intervals ([`j−1, `j ]; 1 ≤ j ≤ n), where `0 = t0
and `n = tend. Let Kj be the number of events in interval [`j−1, `j ].
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i) the last event is observed.. Let sn−1 =
∑n−1

j=1 kj . Using equations 6
and 8, we can show that

p(y|ψ) = P(K1 = k1,K2 = k2, . . . ,Kn = kmax − sn−1)

=

n−1∏
j=1

P(Kj = kj)

1−
kmax−sn−1∑

k=0

P(Kn = k)


=

n−1∏
j=1

Λ(`j−1, `j)
kj

kj !
e−Λ(`j−1,`j)


×

1−
kmax−sn−1∑

k=0

Λ(`n−1, `n)k

k!
e−Λ(`n−1,`n)

 .

ii) the last event is not observed. This implies that the first non-observed
event occurs after tend. Using the above equation, it is straightforward to
show that if

∑n
j=1 kj < kmax, then

p(y|ψ) = P(K1 = k1,K2 = k2, . . . ,Kn = kn)

=
n∏
j=1

(
Λ(`j−1, `j)

kj

kj !
e−Λ(`j−1,`j)

)
. (9)
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3 Web Appendix C

Joint modeling of PK and time-to-event data

The model. An anticoagulant is administrated to N = 100 patients during
7 days by combining oral and intravenous administrations. Adverse effects of
this anticoagulant include hemorrhaging. We then measure for each patient
the plasmatic concentration of the drug and the time of hemorrhages.

For the PK component of the model, we use a one compartment model and
assume nonlinear elimination as given by the Michaelis-Menten equations:

Ȧd(t) = −kaAd(t)

Ȧc(t) = kaAd(t)−
VmAc(t)

Km V +Ac(t)

C(t) =
Ac(t)

V
,

where Ad (resp. Ac) is the amount in the depot (resp. central) compart-
ment and C the concentration in the central compartment. The target
compartments for the doses are Ad for oral administration and Ac for in-
travenous administration. The vector of PK parameters of the model is
φ = (ka, V, Vm,Km).

The residual error model for the observed concentrations wij is a combination
of a constant and a proportional error model:

wij = C(tij , φi) + (a+ bC(tij , φi))ε̃ij , ε̃ij ∼i.i.d. N (0, 1).

We furthermore introduce a limit of quantification (LOQ) of 0.04 mg/l (this
value was chosen in order to have about 10% of the concentrations left-
censored, i.e. below the LOQ).

Considering hemorrhages as repeated events, we propose a model for the time
to these events which assumes that the hazard depends on the concentration
(risk of bleeding increases with concentration). We also assume that patients
develop drug tolerance with time. We therefore propose a hazard model
which combines a decreasing Weibull baseline and an increasing function of
the predicted concentration:

λi(t) =
βi
γi

(
t

γi

)βi−1

eαi C(t,φi).
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Hemorrhages are reported until t = 200 hours. Further events are treated as
right-censored events.

The individual parameters (kai, Vi, V mi,Kmi, αi, βi) are assumed to be log-
normally distributed and mutually independent. Parameter γi and the resid-
ual error parameters a and b are constant.

parameter population parameter standard deviation
ψ ψpop ωψ
ka 0.5 0.3
V 70 0.2
Vm 6 0.1
Km 0.2 0.2
α 1 0.1
β 0.5 0.1
γ 15 0
a 0.05 0
b 0.05 0

A log-normal distribution for a parameter ψ means here that for any i =
1, 2, . . . N ,

log(ψi) ∼i.i.d. N
(
log(ψpop), ω2

ψ

)
.

The design. We consider four arms which receive four different treatments,
each treatment combining oral and intravenous (iv) delivery:

arm size amount (mg) amount (mg)
oral iv

1 25 100 50
2 25 100 25
3 25 50 50
4 25 50 25

The N = 100 patients receive an oral dose at the start of each of the first
seven 7 days (t = 0, 24, . . . , 144) and an iv dose at the midpoint of the day for
6 days, starting on day 2 (t = 36, 70, . . . , 156). Concentrations are measured
on day 1 at times 0.5, 4, 8, 12, 16, 20, 24, then only at the midpoint of the
day for the next 5 days (t = 36, 70, . . . , 132); then every four hours during
day 7 (t = 144, 148, 152, 156, 160) and at times t = 164, 168, 172 during day
8.
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Implemation of the model using MLXtran. Below is the MLXtran
file used to encode the model for the observations, i.e. the structural model
and the residual error model for the PK data and the hazard function for
the time-to-events data. This file is used both for simulation and estimation
using Monolix.

�
INPUT:
parameter = {ka , V, Vm, Km, alpha , beta , gamma}

PK:
depot(type=1, target=Ad)
depot(type=2, target=Ac)

EQUATION:
ddt_Ad = -ka*Ad
ddt_Ac = ka*Ad - Vm/(V*Km+Ac)*Ac
C=Ac/V
if t<0

lambda =0
else

lambda =(beta/gamma )*(t/gamma )^(beta -1)* exp(alpha*C)
end

OBSERVATION:
Concentration = {type=continuous ,prediction=C,error=combined1}
Hemorrhaging = {type=event , hazard=lambda}
� �
The predicted PK profile and hazard given by the model for one patient are
displayed Figure 1, together with the simulated concentrations and events.
Estimation of the population parameters. Estimation of the popula-
tion parameters is performed using SAEM in Monolix. Figure 2 displays
the sequence of estimates (θ̂k) provided by SAEM.

Table 1 displays the true, initial and estimated values for each population pa-
rameter. Parameter estimation took 8 seconds, and Fisher matrix estimation
1 second.

Diagnostic plots. We briefly present in this section some basic diagnostic
plots that can be used for model assessment. Obviously, it is expected here
that we will obtain “very good” diagnostic plots since the data have been
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Figure 1: top: predicted and observed concentrations; bottom: hazard func-
tion and observed events. The individual model (computed with the indi-
vidual parameters) is displayed in green, the population model (computed
with the population parameters) is displayed in red, and observations are
displayed in blue.

Figure 2: Sequence of estimates obtained with the SAEM algorithm. A
constant stepsize νk = 1 is used for 200 iterations (before the vertical red
line), then νk decreases as 1/k.
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parameter true value initial value estimated value
θ θ? θ0 θ̂ (s.e.)

kapop 0.5 0.25 0.517 (0.018)
Vpop 70 150 71.3 (1.7)
V mpop 6 10 6.06 (0.09)
Kmpop 0.2 0.1 0.215 (0.009)
αpop 1 3 0.928 (0.075)
βpop 0.5 0.25 0.523 (0.038)
γpop 15 30 15.2 (1.4)
ωka 0.3 1 0.259 (0.029)
ωV 0.2 1 0.225 (0.017)
ωV m 0.1 1 0.104 (0.008)
ωKm 0.2 1 0.208 (0.036)
ωα 0.1 1 0.159 (0.044)
ωβ 0.1 1 0.077 (0.091)
a 0.05 0.1 0.042 (0.002)
b 0.05 0.1 0.059 (0.003)

Table 1: true values θ?, initial values θ0 used by SAEM, and estimated values
θ̂ provided by SAEM.

simulated with the model we want to validate. All of these graphics are
automatically produced by Monolix.

The graphs of observations vs. predictions (Figure 3) and of the individual
weighted residuals (residuals obtained from the individual models, standard-
ized, Figure 4) show that both the structural model and the residual error
model properly fit the data.

Visual predictive checks (VPC) for the PK model and for the number of
events are displayed Figures 5 and 6. The VPCs are stratified by arm (i.e.
by treatment). These figures confirm that the joint model (including its
statistical component) is able to reproduce the observed data.

A Monte-Carlo study. All these results so far have been obtained with
only one simulated dataset. We now present a Monte-Carlo study to give
stronger evidence that the SAEM algorithm is very efficient for estimating
the population parameters in this complex joint model. We simulated 100
replicates of the same trial, using the same design and the same population
parameters, and estimated the populations parameters for each simulated
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Figure 3: Observations vs predictions. Left: predictions given by the popu-
lation model; right: predictions given by the individual models. Data below
the limit of quantification are displayed in red.

trial. Initial values were randomly chosen around the true values. Figure 7
displays the distribution of the 15 estimated population parameters obtained
with SAEM. We see that the PK parameters and the residual errors param-
eters can be estimated very accurately with this design. Estimation of the
hazard model is less precise, mainly because the variability of the parameters
α and β is difficult to estimate. Of course, it is not possible here to guess
if the estimation errors are related to a purely statistical issue (statistical
properties of the MLE are limited with a limited amount of information)
or an issue with the algorithm (i.e. if SAEM does not converge properly to
the MLE). Nevertheless, it is quite comforting to see that there is almost no
bias and that most estimation errors are relatively small: we can reasonably
conclude that SAEM “works quite well” in this complex situation.
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Figure 4: Individual weighted residuals (residuals obtained from the individ-
ual models and standardized). Top: residuals vs time; middle: residuals vs
predictions; bottom: pdf of the estimated residuals (green) and pdf of the
standardized normal distribution (black).
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Figure 5: VPC for the PK model: for each arm of the trial, the empirical
quantiles of order 10%, 50% and 90% of the PK data are compared with the
90% prediction intervals derived from the model for these quantiles.

Figure 6: VPC for the number of events: for each arm of the trial, the em-
pirical number of events is compared with the predicted distribution derived
from the model for these quantiles.
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Figure 7: Empirical distribution of the relative estimation errors (in %)
obtained from 100 simulated replicates of the trial. 1: kapop, 2: Vpop, 3:
V mpop, 4: Kmpop, 5: αpop, 6: βpop, 7: γpop, 8: ωka, 9: ωV , 10: ωV m, 11:
ωKm, 12: ωα, 13: ωβ , 14: a, 15: b.
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