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Abstract 

Leaf nitrogen content (LNC) is one of the most important limiting key nutrients in sugar beet 
crops, so plant nitrogen status has to be carefully monitored throughout the plant life. In this 
study, close-range hyperspectral imaging was used to infer LNC from reflectance spectra in 
a non-destructive way and under in-field conditions.  
First, after acquisition, images were preprocessed in order to remove some sources of varia-
bility that were not correlated to LNC, such as specular reflection and spectral noise. For 
every hyperspectral image, the mean leaf spectrum was then evaluated and associated to 
the actual average LNC value measured on the same plants. Partial Least Square regression 
was used to calibrate a regression model.  
With six latent variables, LNC was accurately predicted with a low error and a high coefficient 
of determination (RMSECV = 1.72 g/kg; R² = 0.86). When applied to individual spectra of 
hyperspectral images, this model led to a consistent LNC map of sugar beet leaves, i.e., LNC 
was low in old nitrogen-deficient leaves and it was high in young wide leaves. Such a map-
ping is therefore a valuable non-destructive evaluation tool to better understand how LNC is 
distributed within plants and to identify LNC-deficient zones. 

Keywords: Hyperspectral, leaf nitrogen content, remote sensing, sugar beet. 

1. Introduction 

Over the last few years, sugar beet (Beta Vulgaris L.) has received much attention either for 
sugar or biofuel productions. It is a credible alternative to sugarcane and therefore, increas-
ing crop yield by creating new varieties consuming less water, pesticides or nitrogen, is cur-
rently investigated. Variety selection requires a deep understanding of interactions between 
genotypes and phenotypes, i.e., how the genes express themselves in a given environment. 
In particular, how plants assimilate nitrogen, one of the most important limiting key nutrients, 
is of primary importance and has to be deeply understood in order to optimize nitrogen use. 
Phenotypes must be characterized over time and therefore, non-destructive techniques have 
to be developed. To do so, using leaf optical properties has proven to be a powerful way to 
infer leaf nitrogen content (LNC), since the latter may strongly affect the leaf spectral trans-
mittance, absorbance and reflectance through the leaf absorption. Usually, LNC is retrieved 
either by using regression on spectral indices (Wang, et al., 2012) or chemometrics tools 
such as Partial Least Square regression (PLS) (Vigneau, Ecarnot, Rabatel, & Roumet, 
2011). 
In this study, we used hyperspectral (HS) imaging because it combines spectral and spatial 
information into a single multivariate image, thus allowing both the LNC retrieval and LNC 
mapping within the imaged plants.  
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Section 2 describes the data acquisition and methods that were used to infer LNC, while 
Section 3 presents the prediction results and estimated LNC map. 

2. Materials and methods 

2.1. Data acquisition 

HS images were acquired in sugar beet fields in Vimy (northern France) within the framework 
of AKER project (see Acknowledgements). Two sugar beet varieties (Python and Eleonora) 
submitted to four different nitrogen fertilizations were studied at two growth stages in June 
and July 2013. For each of these sixteen combinations, three rows were considered (i.e., 48 
combinations), and about five successive plants per row were imaged. 
To do so, we used the Becam phenotyping platform presented in Fig. 1. A Hyspex push-
broom hyperspectral camera (Norsk Elektro Optikk, Norway) was set up on a translation 
stage at one meter above the crop row, and was facing towards nadir as seen in Fig. 1b. It 
acquired successive lines of 1600 pixels and 160 spectral bands ranging from 410 to 
1000 nm with a 3.7 nm spectral sampling interval. As the acquired radiance images de-
pended on lighting conditions, they were converted into reflectance images by using the pro-
cedure described by Vigneau, Ecarnot, Rabatel, & Roumet (2011), i.e., by introducing a gray 
reference plate into the scene as observed in Fig. 1.b. 

 

Figure 1: Becam phenotyping platform: (a) Overall setup, and (b) Hyperspectral camera mounted on 
the translation stage. 
 

For each crop row, after image acquisition, the limbs of imaged plants were harvested and 
sent to the laboratory for destructive measurements. The mean LNC of these five plants was 
then measured using the Kjeldahl method. The LNC ranges (expressed in g/kg dry matter) 
for the two varieties are reported in Table 1. Note that one sample was discarded because of 
mishandling. The overall data set was finally made of 47 samples, i.e., 47 images and LNC 
measurements. 
 

Table 1: Leaf nitrogen content measurements (in g/kg dry matter). 

Data set 
Number of 
samples 

Min Max Mean 
Standard  

deviation 

Python 24 34.08 49.64 42.82 5.18 
Eleonora 23 37.14 50.12 43.94 4.10 

Total 47 34.08 50.12 43.36 4.66 
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2.2. Spectral preprocessing and PLS model calibration 

The spectral information acquired by the HS camera and converted into reflectance could not 
be directly used to infer LNC. A number of biochemical and geometrical considerations had 
to be carefully taken into account so that the remaining spectral variability was mainly due to 
the LNC variability. 
Firstly, LNC is often retrieved through the chlorophyll influence, both variables being usually 
correlated (Schlemmer, et al., 2013). Indeed, Curran (1989) has reported that nitrogen does 
not absorb light between 400 and 1000 nm, while chlorophyll-a and chlorophyll-b do (at 430 
and 460 nm for chlorophyll-a, and at 640 and 660 nm for chlorophyll-b). Moreover, the mag-
nitude of the near-infrared plateau weakly depends on chlorophyll and nitrogen, so in order to 
remove any variability not strongly related to LNC, the regression model was built using only 
the 400-700 nm region. 
Secondly, the complex geometry of plants had to be considered and its influence on spectral 
measurements had to be corrected. To do so, we used the model proposed by Vigneau, 
Ecarnot, Rabatel, & Roumet (2011) to characterize the effects of leaf inclination and specular 
reflection: 

𝑅𝑚𝑒𝑎𝑠  𝜆 = 𝛼. 𝑅𝑙𝑒𝑎𝑓  𝜆 + 𝛽 

 

where 𝑅𝑚𝑒𝑎𝑠  𝜆  and 𝑅𝑙𝑒𝑎𝑓  𝜆  are the measured and actual leaf reflectances respectively. The 

scalar 𝛼 models the multiplicative effect caused by leaf inclination (𝛼 = 1 for leaves perpen-

dicular to the main camera axis), while the scalar 𝛽 models an additive effect such as specu-
lar reflection. 
Before calibrating the regression model, several preprocessing steps were therefore imple-
mented to remove the effects of some sources of nuisance variability. First, every spectral 
pixel was smoothed, thus reducing the spectral noise that was inherent to the image acquisi-
tion process. Then, to remove the 𝛽 influence, every single spectral pixel was mean-

centered. In this study, we assumed that the effect of 𝛼  was negligible, i.e., 𝛼 = 1. Finally, 
for each HS image, the mean limb spectrum was computed and associated to the measured 
LNC reference value. 
 
The regression model between the reflectance spectra and LNC measurements was found 
using PLS regression. The model was calibrated using leave-one-out cross-validation (Naes, 
Isaksson, Fearn, & Davies, 2002) and the number of latent variables that was needed to best 
explain the nitrogen variability was obtained by minimizing the root mean square error of 
cross-validation (RMSECV). The obtained regression model was then applied to individual 
spectra of HS images and the estimated LNC distribution was evaluated by visual inspection. 
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3. Results and discussion 

3.1. Spectral preprocessing 

 

Figure 2: Effect of preprocessing steps : (a) Original true color composite image, (b) False color com-
posite image after preprocessing, and (c) Spectra extracted from regions submitted (dashed lines) or 
not submitted (solid lines) to specular reflections. 

Fig. 2 illustrates the effects of preprocessing steps (i.e., spectral smoothing and constant 
trend removal) on individual spectra, comparing both the preprocessed HS image and spec-
tra with their original counterpart. The blue arrows in Fig. 2.a (resp. the red arrows in Fig. 2.b) 
correspond to the blue (resp. red) spectra in Fig. 2.c. Solid (resp. dashed) arrows indicate 
regions submitted (resp. not submittted) to specular reflections. 
Fig. 2.a shows that there were a lot of specular reflections within the whole plant because the 
sugar beet leaves were waxy. The spectral variability between affected and non-affected 
regions (highlighted by the blue arrows) that was not correlated with LNC, was greatly re-
duced after constant trend removal. Indeed, the leaf color distribution of the preprocessed 
image observed in Fig. 2.b was much more homogeneous than the original one, and the two 
red highlighted spectra were nearly equal, thus proving the benefits of preprocessing. 

 

Figure 3: Spectra represented as a function of their LNC value (in g/kg): (a) Original mean spectra, 
and (b) Preprocessed mean spectra. 

For every HS image, preprocessed spectra were then averaged, thus leading to a single 
mean spectrum. Fig. 3.b shows the obtained mean preprocessed spectra while Fig. 3.a. dis-
plays the mean spectra without preprocessing. Even if these are somewhat affected by envi-
ronmental effects, their global behavior remain the same. For both figures, the color of each 
spectrum indicates its LNC value (in g/kg). 
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In general, one sees that the higher the LNC, the more attenuated the reflectance spectra. 
Indeed, high nitrogen concentrations increase the leaf absorption, thus lowering its reflective 
power. The two regions where the attenuation was the strongest (410-500 nm and 630-
680 nm) corresponded to the absorption features of chlorophyll-a and chlorophyll-b men-
tioned in Section 2.2 (note that carotenoids also greatly affected the spectra at around 500 
nm). As both types of chlorophyll are assumed to be correlated with LNC, the latter can be 
potentially retrieved using these absorption features. 

3.2. PLS modeling 

Fig. 4 shows the obtained prediction results. As observed in Fig. 4.a, six latent variables 
were needed to explain the maximum LNC variability. Using the so-built regression model, 
LNC was accurately predicted with low RMSECV and high R² (RMSECV = 1.72 g/kg; 
R² = 0.86), which indicates that there exists a strong relationship between the mean reflec-
tance spectra and LNC in the 400-700 nm range. Furthermore, when studying each variety 
separately, one sees that the model led to variable prediction performance depending on the 
considered variety. LNC was better retrieved in Python plants (RMSECV = 1.59 g/kg; 
R² = 0.90) than in Eleonora plants (RMSECV = 1.87 g/kg; R² = 0.80). Such differences can 
be caused either directly by the plant biochemical properties or indirectly by the plant archi-
tecture. In the first case, this would mean that the inner relationship between LNC and reflec-
tance depends on the variety. In the second case, the observed differences between the two 
varieties would come from measurement errors caused by the plant structure. Indeed, Eleo-
nora plants are more vertical than Python plants, therefore increasing the (uncorrected) ef-
fects of leaf inclination and multiple reflections. 

 

Figure 4: Regression model obtained with the two varieties: (a) RMSECV versus the number of latent 
variables, and (b) LNC predicted values versus LNC actual values (six latent variables). 

3.3. LNC mapping 

A strong relationship between reflectance spectrum and LNC was thus established, so we 
applied the regression model to individual spectra of HS image in order to map the LNC dis-
tribution in the whole plants. 
The imaged plants had to meet two criteria. First, the nitrogen supply had to be low in order 
to notice LNC gradients according to leaf age (Hikosaka, Terashima, & Katoh, 1994). 
Second, the leaves had to be as horizontal as possible to avoid to some extent effects re-
lated to leaf inclination and heterogeneous lighting conditions. The true color composite im-
age built from the selected HS image is displayed in Fig. 5.a and the resulting LNC map is 
displayed in Fig. 5.b (masking out non-vegetation pixels). In the following, the pixel located at 
line X and column Y is the pixel (X,Y). 
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(a) 

 

(b) 

  

Figure 5: (a) True color composite image, and (b) Estimated LNC map. 

First, one sees that specular reflections were well corrected since they did not affect much 
the estimated LNC spatial distribution. For example, LNC was homogeneous within the leaf 
centered on pixel (150,950) even though there were strong specular reflections. Further-
more, assuming that the effects of leaf inclination was negligible was reasonable since no 
particular difference between flattest and steepest leaves was noticed.  
Concerning the LNC spatial distribution, the predicted mean value (i.e., 47.50 g/kg) was 
close to the actual one (i.e., 46.82 g/kg), even though pixels affected by environmental ef-
fects (non-homogeneous lighting, multiple reflections) were included in the sample average. 
As expected, unlike for high nitrogen supply (data not shown), the obtained LNC distribution 
was heterogeneous and depended on leaf age. Low LNC values were found in the oldest 
leaves, e.g., those centered on pixels (150,1240), (500,800) or (40,550). Indeed, such leaves 
are located at the base of the plants and therefore submitted to a low light level. Moreover, 
they are first affected in case of nitrogen deficiency. Chloroplasts (containing chlorophyll) 
degrade and nitrogen is translocated to younger leaves (Lemaire, Onillon, Gosse, Chartier, & 
Allirand, 1991). Such a transformation reveals underlying carotenoid pigments that were 
masked by chlorophyll, thus giving senescent leaves a yellow tone (e.g., see pixel 
(150,1240)). 
On the other hand, high LNC values were retrieved in the widest young leaves, e.g., those 
centered on pixels (100,350), (150,950) or (300,1250). Typically, these leaves are well ex-
posed to sunlight, which increases the number of chloroplasts and stimulates photosynthetic 
activity. Because the latter is related to LNC (Evans, 1983), these results were therefore 
consistent. 
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However, some of the youngest leaves located at the centers of the plants (e.g., those cen-
tered on pixels (170,190), (280,200) or (250,670)) were found to have low LNC values, while 
such zones are usually nitrogen-rich (Gastal & Nelson, 1994). A possible reason for this re-
sult is that such zones do not contain as many chloroplasts as mature leaves. Because the 
obtained indirect relationship between reflectance spectrum and LNC was especially based 
upon the usual positive correlation between LNC and chlorophyll content (Evans, 1983), no 
correlation implies bad LNC prediction results. In addition to these physiological considera-
tions, such incongruencies may also be due to nitrogen deficiency or the above mentioned 
environmental effects that were more influential in these zones. 
Lastly, it is worth noting that the LNC values predicted in veins were depending on leaf age. 
In most cases, LNC was high in the veins located in young leaves while no difference be-
tween limbs and veins was observed in old leaves. As veins are responsible for nitrogen 
transportation from the root to the shoot, this may show how the nitrogen translocation 
process was occurring when the HS image was acquired. Indeed, because the considered 
plants were nitrogen-deficient, this nutrient was primarily translocated to younger leaves, 
therefore explaining this heterogeneity. 

4. Conclusions 

In this study, we investigated the potential of close-range hyperspectral imaging for LNC re-
trieval in sugar beet under in-field conditions. To do so, two varieties subjected to four differ-
ent nitrogen applications were imaged at two growth stages. For every replicated row, about 
five plants were imaged and sent to the laboratory for measuring the average LNC.  
Before using such images, several preprocessing steps were applied to image individual 
spectra in order to remove some sources of variability that were uncorrelated to LNC, i.e., 
specular reflections and spectral noise. Then, PLS regression was used to calibrate a re-
gression model between mean reflectance spectra and LNC. With six latent variables, a 
strong relationship was obtained with high R² and low error (RMSECV = 1.72 g/kg; R² = 
0.86). 
Applying the regression model to individual spectra of an HS image led to a consistent LNC 
map of imaged plants. This map shows both how nitrogen accumulates in leaves and how it 
is transported within plants. Low LNC values were found in old nitrogen-deficient leaves, 
while high LNC values were retrieved in young wide leaves. As LNC estimation was based 
on its correlation with chlorophyll, some incongruencies were observed when there was no 
correlation, i.e., in the few youngest leaves. 
To avoid such problems and allow a direct LNC retrieval, it would be interesting to consider a 
wider spectral range containing the nitrogen absorption peaks (situated between 1500 nm 
and 2500 nm). 
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