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Abstract

We consider the problem of averaged controllability for parameter depending (either in a discrete
or continuous fashion) control systems, the aim being to find a control, independent of the unknown
parameters, so that the average of the states is controlled. We do it in the context of conservative
models, both in an abstract setting and also analysing the specific example of the wave equation.

Our first result is of perturbative nature. Assuming the averaging probability measure to be a
small parameter-dependent perturbation (in a sense that we make precise) of an atomic measure given
by a Dirac mass corresponding to a specific realisation of the system, we show that the averaged
controllability property is achieved whenever the system corresponding to the support of the Dirac is
controllable.

Similar tools can be employed to obtain averaged versions of the so-called Ingham inequalities.
Particular attention is devoted to 1d wave and Schrödinger equations in which the time-periodicity

of solutions can be exploited to obtain more precise results, provided the parameters involved satisfy
Diophantine conditions ensuring the lack of resonances.

Key words: Parameter dependent systems, averaged control, perturbation arguments, Ingham inequal-
ities, non-harmonic Fourier series, wave equations.

Mathematical Subject Classification (MSC2010): 49J55, 93C20, 42A70.

1 Introduction and main results

1.1 Problem formulation

This paper is devoted to analyze the following question: Given a system depending on a random variable,
is it possible to find a control such that the average or expected value of the output of the system is
controlled?
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In this paper, we address this issue motivated by the prototypical model represented by the wave
equation, but our methods and results apply to a wide class of time-reversible models.

Let us explain the problem in the context of the string equation with Dirichlet boundary control:

ÿζ(t, x) = ∂x (aζ(x)∂xyζ(t, x)) ((t, x) ∈ R∗+ × (0, 1)) , (1.1a)

yζ(t, 0) = u(t) (t ∈ R∗+) , (1.1b)

yζ(t, 1) = 0 (t ∈ R∗+) , (1.1c)

yζ(0, x) = yi,0ζ (x) and ẏζ(0, x) = yi,1ζ (x) (x ∈ (0, 1)) , (1.1d)

ζ ∈ R being the unknown parameter and aζ ∈ L∞(0, 1) a coefficient bounded from below by a positive
constant independent of ζ.
Notice that this system fits in the abstract frame:

ẏζ = Aζyζ +Bζu , yζ(0) = yiζ , (1.2)

where ζ is a random variable following the probability law η. As we shall see, the averaged controllability
properties will significantly depend on the nature of the averaging measure η.

Given T > 0, the problem of exact averaged controllability consists in analysing whether, for every
set of parameter dependent initial conditions (yi,0ζ , y

i,1
ζ ) ∈ L2(0, 1) × H−1(0, 1) and every final target

(yf,0, yf,1) ∈ L2(0, 1) × H−1(0, 1), there exists a control u ∈ L2(0, T ) (independent of the parameter ζ)
such that: ∫

R
yζ(T ) dηζ = yf,0 and

∫
R
ẏζ(T ) dηζ = yf,1 . (1.3)

One can also address the weaker approximate averaged control problem, in which, for every ε > 0,
one aims to find a control u ∈ L2(0, T ) such that:∥∥∥∥∫

R
yζ(T ) dηζ − yf,0

∥∥∥∥2

L2(0,1)

6 ε and

∥∥∥∥∫
R
ẏζ(T ) dηζ − yf,1

∥∥∥∥2

H−1(0,1)

6 ε . (1.4)

In both (1.3) and (1.4), yζ is the solution of (1.1) with initial Cauchy condition (yi,0ζ , y
i,1
ζ ) and control u.

This paper is devoted to address these questions both in the abstract version (1.2) in which the
generator of the semigroup A is anti-adjoint and some particular instances as the 1d wave equation above
or the corresponding Schrödinger analog. But our results apply in the multi-dimensional context too.

1.2 Main results

We address the problem of averaged control analyzing the equivalent one of averaged observability for the
corresponding adjoint system. We do it in two complementary contexts that we briefly describe below.
We first show the stability of the observability inequality under small enough perturbations, to later derive
a much more specific result for Fourier series expansions, using its periodicity properties.

Perturbation argument: Consider the general abstract parameter dependent system (1.2), depending
on the unknown parameter ζ ∈ R.

We focus on the case where the uncontrolled dynamics, i.e. the one associated with u = 0, is time-
conservative. Our results apply also on a slightly larger context (for instance, involving bounded damping
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terms) but, for instance, cannot be applied directly for heat-like equations because of its time irreversibil-
ity.

In order to tackle the averaged controllability problem, we consider a probability measure of the form
η = (1 − θ)δζ0 + θη̃, where η̃ is a probability measure on R and θ ∈ [0, 1] a small parameter so that, in
practice, we deal with a small perturbation of an atomic measure concentrated at ζ0. Our result ensures
that, under suitable smallness conditions, averaged observability holds provided the realization of the
system for ζ = ζ0 is observable.

To be more precise, proving the exact averaged controllability in time T > 0 is equivalent to the
averaged observability inequality:∫ T

0

∥∥∥∥∫
R
B∗ζ zζ(t) dηζ

∥∥∥∥2

U

dt > c(T )‖zf‖2X (zf ∈ X) , (1.5)

with c(T ) > 0 and where X (resp. U) is the state (resp. control) space and zζ is solution of the adjoint
system:

−żζ = A∗ζzζ , zζ(T ) = zf .

Assuming that for the parameter ζ = ζ0 the system is exactly controllable/observable, i.e. that we
have: ∫ T

0

∥∥B∗ζ0zζ0(t)
∥∥2

U
dt > cζ0(T )‖zf‖2X (zf ∈ X) ,

with cζ0(T ) > 0, we prove that, for θ ∈ (0, 1) small enough, the inequality (1.5) holds, i.e. the parameter
dependent system (1.2) is exactly controllable in average for the probability measure η.

This result is the core of Theorem 2.1 and it can be applied in many situations such as wave,
Schrödinger or plate equations with internal or boundary control.

A similar result holds in the context of Ingham inequalities (see Proposition 3.1), an issue that we
dirscuss now in more detail.

Averaged Ingham inequalities: In the context of one dimensional equations such as string or Schrödinger
equations, the problem of averaged controllability can be reduced to the analysis of averages of non-
harmonic Fourier series and the recovery of its coefficients out of its L2(0, T )-norm.

To be more precise, we introduce the following parameter-dependent family of non-harmonic Fourier
series: ∑

n∈Z
[Lζa]ne

2iπλnς(ζ)t (t ∈ R) , (1.6)

and its average:

f(t) =

∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dηζ (t ∈ R) , (1.7)

(an)n ∈ `2 being a square summable sequence, (λn)n a given sequence of real numbers, both independent
of the unknown parameter ζ, and Lζ ∈ L(`2) and ς(ζ) depending on ς ∈ RR.

The problem of averaged controllability is then reduced to the obtention of results of the form:
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• Averaged admissibility:
There exists C(T ) > 0 independent of (an)n such that,∫ T

0
|f(t)|2 dt 6 C(T )

∑
n∈Z
|an|2 ; (1.8)

• Exact averaged observability:
There exists c(T ) > 0 independent of (an)n such that,∫ T

0
|f(t)|2 dt > c(T )

∑
n∈Z
|an|2 ; (1.9)

• Approximate averaged observability:∫ T

0
|f(t)|2 dt = 0 =⇒ an = 0 (n ∈ Z) . (1.10)

Notice that in the case where η = δζ0 is a single Dirac mass, these results are true (provided some gap
condition is satisfied for the eigenfrequencies λn and T is large enough) as a consequence of Ingham’s
inequality (see, for instance, the original paper of A. E. Ingham [14]), that has played an important role
when dealing with one-dimensional control problems.

But here we are interested on averaged versions of these Ingham inequalities. They can be achieved,
as described above, by perturbation arguments.

But in some specific situations, more precise results can be obtained, combining a periodicity properties
and classical Ingham inequalities.

To show how these arguments can be applied, we consider the particular case in which :

1. η is a sum of Dirac masses located at points ζk;

2. the parameters ς(ζk) satisfy the non-resonance condition guaranteeing the irrationality with respect
to all other ones.

3. there exists γ > 0 such that λn ∈ γZ for every n.

Notice that the last condition is fulfilled for the string or one dimensional Schrödinger equation but that
it is much stronger than the gap condition required to apply Ingham’s inequality.

Under these conditions, in Theorem 3.1 we derive the unique continuation property (1.10) (see Corol-
lary 3.1) and a weighted Ingham inequality (see corolaries 3.2 and 3.3) of the form:∫ T

0
|f(t)|2 dt > c(T )

∑
n∈Z

ρn|an|2 , (1.11)

where the weights ρn depend of the Diophantine properties of the parameters ζk. This weighted averaged
Ingham inequality allows deriving averaged controllability results for 1d wave and Schrödinger equations
in weighted spaces (see § 3.3, Theorem 3.1, propositions 3.3 and 3.4).

These results are related to those (see R. Dáger and E. Zuazua [10, § 5.8.2]) on the simultaneous
controllability of strings and networks of string equations. But, while in the context of simultaneous
controllability all the velocities of propagation need to be mutually irrational, for averaged control it
suffices one of them to be non-resonant with all the other ones.

4



1.3 Bibliographical comments

The notion of averaged controllability was introduced in [37] where, also, necessary and sufficient rank
conditions were given in the finite dimensional context.

The works of J.-S. Li and N. Khaneja [25] and J.-S. Li [24] on ensemble control are also worth
mentioning. In the context of the control of nuclear spins the ensemble control notion is introduced
to steer, with a control independent of the parameter, all the parameter dependent trajectories in an
arbitrary small ball around a desired target.

In the PDE context, in [23], the problem of averaged control was considered for two different wave
equations by means of a common interior control, using H-measures techniques. In [36], other situations
were also considered when, for instance, the solution of a given PDE is perturbed in an additive way
by the solution of another one. Furthermore, in [29], the authors considered one-parameter families of
Schrödinger and heat equations in the multi-dimensional case, with controls distributed in some interior
sub-domain, showing that, depending on the averaging measure, one can obtain either the controllability
results corresponding to time-reversible or parabolic-like equations.

The present paper is the first contribution for PDEs depending on the unknown parameter in a rather
general manner which are also of application in the context of boundary control.

As we mentioned above, the results we obtain for the string equation are related but different to
previous ones on the simultaneous controllability, a notion that was first introduced by D. L. Russell
[31] (see also J.-L. Lions [26, Chapter 5]) and that has been extensively analyzed in the literature (see
R. Dáger and E. Zuazua [10], C. Baiocchi, V. Komornik and P. Loreti [2], S. A. Avdonin and W. Moran
[1] and the references therein).

In the case Lζ = Id and ς(ζ) = ζ, the issues we discussed in the previous paragraph on the averages
of non-harmonic Fourier series can be recast in terms of the property of Riesz sequence stability of the
family {t 7→ η̂(−λnt)}n (η̂ being the Fourier-Stieltjes transform of the density of probability η), in the
closed subspace of L2(0, T ) they generate. This is so since the function f introduced by (1.7) becomes:

f(t) =
∑
n∈Z

anη̂(−λnt) (t ∈ R) .

This problem is related to frame theory. However, even if the literature on this subject is huge (see
for instance I. Joó [16], N. Bary [4], G. Chistyakov and Y. Lyubarskii [9], A. Gonzàlez and R. A. Zalik
[11], D. Han, W. Jing and R. N. Mohapatra [12], P. G. Casazza and O. Christensen [8, 5], Y. Y. Koo
and J. K. Lim [22]), the results we needed, and that, accordingly, we prove in this article, did not seem
to be available.

There are several other possible natural paths to extend the results of this paper. In particular, it
would be natural to address similar issues for wave equations in networks. We refer to the book R. Dáger
and E. Zuazua [10] and to I. Joó [17], S. Nicaise and J. Valein [30] and J. Valein and E. Zuazua [35] for
some of the main existing results on the control and stabilization of networks of 1d wave equations.

Averaged controllability can be seen also as a first step to achieve simultaneous controllability. Ob-
viously, the later requires also the control of the differences of all possible states for the various different
realizations of the unknown parameters, and not only of their average. In the concluding section, we will
show the link between these two notions via penalized optimization problems, an issue that is treated in
more detail in [28]. This procedure, quickly explained in this paper, is similar to the one implemented by
J.-L. Lions in [27] to link approximate controllability to exact controllability for the heat equation.
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1.4 Structure of the paper

The core of this work is devoted to the obtention of averaged observability inequalities.
More precisely, in section 2, after having defined a functional setting and some abstract duality

results in § 2.1, in § 2.2 we give some general averaged admissibility conditions. Then, in § 2.3, we
use a perturbation argument in order to derive some exact averaged observability results. Finally, we
apply this result in §2.4 for the averaged controllability of wave equations, comparing our result with the
one in [23].

Then, in section 3 we give some averaged Ingham inequalities. We start with § 3.1 where we apply
the results of section 2 to non-harmonic Fourier series. Then in § 3.2, we prove an approximate averaged
observability result in the particular context of Fourier series expansions (see (1.10)) and a weighted
Ingham inequality of type (1.9), with weights depending on Diophantine approximation properties. Then,
in § 3.3, we apply the results obtained in § 3.1 and § 3.2 to the string equation with Dirichlet boundary
control. Connections with simultaneous controllability will also be discussed.

We conclude with some remarks and open questions in section 4.

2 An abstract perturbation result

2.1 Functional setting and duality

In this paragraph, we present some basic notations, the abstract functional setting and some well-known
key duality results.

Let us introduce two Hilbert spaces, namely the state space X and the control space U , each of them
being identified with its dual.

For every ζ ∈ R, we define the operator Aζ , given by Aζ ∈ L(D(Aζ), X), with D(Aζ) a dense linear
subspace of X, with non empty resolvent ρ(Aζ). We define Xζ,1 = D(Aζ) the Hilbert space endowed with
the norm:

‖y‖Xζ,1 = ‖(βI −Aζ)y‖X (y ∈ Xζ,1)

and Xζ,−1 the completion of X with respect to the norm:

‖y‖Xζ,−1
= ‖(βI −Aζ)−1y‖X (y ∈ X) ,

where, in the above, we have chosen β ∈ ρ(Aζ). We refer to [33, § 2.10] for those definitions.
In addition, we assume that Aζ is skew-adjoint and generates a strongly continuous group Tζ of

isometries on X. We also denote by Aζ and Tζ their extensions to Xζ,−1

Consider the Cauchy problems:

ẏζ = Aζyζ +Bζu , yζ(0) = yiζ , (2.1)

with yζ the state variable, u the control, Aζ the operator for the free system, Bζ ∈ L(U,Xζ,−1) the
control operator and ζ ∈ R the random variable following the probability law η. In addition, yiζ ∈ X is
the parameter dependent initial condition for which we assume:∫

R

∥∥yiζ
∥∥
X

dηζ <∞ . (2.2)
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In this abstract setting it is easy to see that averaged control problems cannot be handled by classical

methods. Indeed, the average Y (t) =

∫
R
yζ(t) dηζ satisfies:

Ẏ =

∫
R
Aζyζ dηζ +

(∫
R
Bζ dηζ

)
u , Y (0) =

∫
R

yiζ dηζ .

This shows that the dynamics of the average is not governed by an abstract differential equation.
Despite of this, classical duality theory can be developed, and averaged controllability can be shown

to be equivalent to averaged observability.
For every ζ ∈ R∗, one can classically define the input to state map:

Φζ
tu =

∫ t

0
Tζ(t− s)Bζu(s) ds (t > 0 , u ∈ L2(R+, U)) , (2.3)

so that, for every ζ ∈ R, the solution of (2.1) is formally:

yζ(t) = Tζ(t)yiζ + Φζ
tu (t > 0 , u ∈ L2(R+, U)) . (2.4)

Taking the average of (2.4) with respect to ζ, we obtain (formally):∫
R
yζ(t) dηζ =

∫
R
Tζ(t)yiζ dηζ + Ftu (t > 0 , u ∈ L2(R+, U)) , (2.5)

where yζ is the solution of (2.1) and where we have defined the averaged input to state map:

Ftu =

∫
R

Φζ
tudηζ (t > 0 , u ∈ L2(R+, U)) . (2.6)

Finally, let us define for every ζ ∈ R the observability map:

(ψζt z)(s) =

{
B∗ζT∗ζ(s)z if s 6 t ,

0 if s > t
(z ∈ Xζ,1 , t, s > 0) (2.7)

and the averaged observability map:

(Ψtz)(s) =

∫
R

(ψζt z)(s) dηζ =


∫
R
B∗ζT∗ζ(s)z dηζ if s 6 t ,

0 if s > t
(t, s > 0) , (2.8)

with z ∈ Xζ,1 for almost every ζ ∈ R with respect to the measure η.
Let us also define the time reflection operator:

( Rtf)(s) = f(t− s) (0 < s < t , f defined almost every where on [0, t]) . (2.9)

With these notations we are in position to define the admissibility, controllability and observability
concepts.

Definition 2.1 (Averaged admissibility). The sequence of control operators (Bζ)ζ is said to be admissible
in average for the family of semi-groups (Tζ)ζ if there exists a time T > 0 such that the map FT is bounded.
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Remark 2.1. If (Bζ)ζ is admissible in average for (Tζ)ζ and if the initial conditions satisfy (2.2), then
the averaged solution

∫
R yζ(t) dηζ defined by (2.6) is well defined for every t ∈ R+.

Let us now introduce the following averaged controllability concepts.

Definition 2.2 (Exact/Approximate averaged controllability). Let T > 0. The sequence of pairs (Aζ , Bζ)ζ
is said to be exactly (resp. approximatively) controllable in average in time T if FT

(
L2([0, T ], U)

)
is equal

to (resp. dense in) X.

As in classical control theory (see for instance [33, §4.4]), we have the following duality results:

Proposition 2.1. Let t ∈ (0, T ]. Then, we have:

Ft ∈ L
(
L2([0, T ], U), X

)
⇐⇒ Ψt ∈ L

(
X,L2([0, T ], U)

)
and F∗t = RtΨt, where Ft, Ψt and Rt are defined by (2.6), (2.8) and (2.9).
Moreover, if Ft ∈ L

(
L2([0, T ], U), X

)
, then:

1. Ft
(
L2([0, T ], U)

)
is dense in X if and only if Ker Ψt = {0};

2. Ft
(
L2([0, T ], U)

)
= X if and only if Ψt ∈ L

(
X,L2([0, T ], U)

)
is bounded from bellow.

In the next paragraphs, following this general abstract path, we prove admissibility and exact averaged
observability results for the corresponding adjoint systems.

2.2 A general admissibility condition

In this paragraph, we give a general condition on the measure η such that the averaged admissibility
condition is satisfied.

Proposition 2.2. Let us assume that for almost every ζ ∈ R with respect to the measure η, the control
operator Bζ is admissible for the semi-group Tζ . That is to say, for every T > 0, there exists a constant
Cζ(T ) > 0 such that: ∥∥∥ψζT z

∥∥∥2

L2([0,T ],U)
6 Cζ(T )‖z‖2X (z ∈ X , ζ ∈ R a.e.) , (2.10)

with ψζt defined by (2.7).
Let η be a probability measure on R and assume:

C(T ) :=

(∫
R

√
Cζ(T ) dηζ

)2

<∞ . (2.11)

Then (Bζ)ζ is admissible in average for (Tζ)ζ and we have:

‖ΨT z‖2L2([0,T ],U) 6 C(T )‖z‖2X (z ∈ X , T > 0) , (2.12)

with ΨT defined by (2.8)

Proof. Using Minkowski inequality, we have:

‖ΨT z‖L2([0,T ],U) 6
∫
R

∥∥∥ψζT z
∥∥∥
L2([0,T ],U)

dηζ .

This last inequality together with (2.10), gives the result.

8



2.3 A general perturbation argument

Using the admissibility condition given in the previous paragraph, one can easily develop a perturbation
argument leading to averaged controllability.

Theorem 2.1. Set T > 0, let η̃ be a probability measure and ζ0 ∈ R. Assume that,

1. For almost every ζ ∈ R with respect to the measure η̃ and for ζ = ζ0, Bζ is an admissible control
operator for the semi-group Tζ , i.e. there exists C̃ζ(T ) > 0 for which∥∥∥ψζT z

∥∥∥2

L2([0,T ],U)
6 C̃ζ(T )‖z‖2X (z ∈ X) , (2.13)

with ψζt defined by (2.7).

2. The measure η̃ satisfies (2.10), i.e.: ∫
R

√
C̃ζ(T ) dη̃ζ <∞ . (2.14)

3. The pair (Aζ0 , Bζ0) is exactly controllable in time T , i.e., there exists cζ0(T ) > 0 such that:

cζ0(T )‖z‖2X 6
∥∥∥ψζ0T z

∥∥∥2

L2([0,T ],U)
(z ∈ X) , (2.15)

with ψζt defined by (2.7).

Set θ0 =

(
1 +

∫
R

√
C̃ζ(T )
cζ0 (T ) dη̃ζ

)−1

. Then for every θ ∈ [0, θ0), (Aζ , Bζ)ζ is exactly controllable in

average in time T with respect to the probability measure η given by:

η = (1− θ)δζ0 + θη̃ . (2.16)

In addition, for every θ ∈ [0, θ0), we have:

cθ(T )‖z‖2X 6 ‖ΨT z‖2L2([0,T ],U) 6 Cθ(T )‖z‖2X (z ∈ X) , (2.17)

with ΨT defined by (2.8), Cθ(T ) > 0 and cθ(T ) =

(
(1− θ)

√
cζ0(T )− θ

∫
R

√
C̃ζ(T ) dη̃ζ

)2

.

Remark 2.2. 1. This result can be applied in many different examples such as wave equations, the
Schödinger and plate equations, etc. with boundary or internal controls of different nature.
However, the proof, which is rather straightforward, is based on a smallness argument and, hence,
it does not cover the sharp results in [23] for the averaged controllability of two wave equations with
internal control, or the ones in [36] for the additive superposition of wave and a heat equations.

2. Similar results can be obtained in more general probability spaces.
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Proof. The assumption made on η̃ and the admissibility of Bζ0 for Tζ0 ensure the averaged admissibility
of (Bζ)ζ for (Tζ)ζ with respect to the measure η given by (2.16) for every θ ∈ [0, 1].

For every θ ∈ [0, 1], let us notice that for every z ∈ X, we have:

‖ΨT z‖L2([0,T ],U) =
∥∥∥(1− θ)ψζ0T z + θΨ̃T z

∥∥∥
L2([0,T ],U)

> (1− θ)
∥∥∥ψζ0T z

∥∥∥
L2([0,T ],U)

− θ
∥∥∥Ψ̃T z

∥∥∥
L2([0,T ],U)

,

with ΨT given by (2.8) (with η given by (2.16)) and with Ψ̃T z =

∫
R
ψζT z dη̃ζ .

Thus, from Proposition 2.2 and (2.15), we easily obtain:

‖ΨT z‖L2([0,T ],U) >

(
(1− θ)

√
cζ0(T )− θ

∫
R

√
C̃ζ(T ) dη̃ζ

)
‖z‖X (z ∈ X) .

This ends the proof.

2.4 Averaged control of parameter depending wave systems

For every ζ ∈ R, let us consider the controlled wave equation:

ÿζ = div (aζ(x)∇yζ) + χωu in (0, T )× Ω , (2.18a)

yζ = 0 on (0, T )× ∂Ω , (2.18b)

yζ(0, x) = yi,0ζ (x) and ẏζ(0, x) = yi,1ζ (x) (x ∈ Ω) , (2.18c)

where Ω is a smooth domain of Rd, ω an open subset of Ω, aζ ∈ L∞(Ω) is uniformly strictly positive and

bounded and the parameter-dependent initial data (yi,0ζ , yi,1ζ ) ∈ L2(Ω)×H−1(Ω) are such that:∫
R

∥∥∥(yi,0ζ , yi,1ζ )
∥∥∥
L2(Ω)×H−1(Ω)

dηζ <∞ .

Applying Theorem 2.1 to this system, we obtain the following:

Proposition 2.3. Assume, for every ζ ∈ R, aζ is bounded from below by a positive constant independent
of ζ and a1 ∈ C2(Ω). Assume in addition that (0, T )×ω satisfies the geometric control condition (see [3])
for the equation (2.18) indexed by ζ = 1.

Then there exists θ0 ∈ (0, 1] such that system (2.18) fulfils the exact averaged control property for every
θ ∈ [0, θ0) with measure ηθ = (1− θ)δ1 + θη̃.

Proof. From [3], the geometric control condition for the control system indexed by ζ = 1 ensures that
this system is exactly controllable in time T .

In addition, for every (zf,0ζ , zf,1ζ ) ∈ L2(Ω)×H−1(Ω) and every T > 0, we have:∫ T

0

∣∣∣∣∫
ω
żζ(t, x) dx

∣∣∣∣2 dt 6 2T
∥∥∥(zf,0ζ , zf,1ζ )

∥∥∥2

L2(Ω)×H−1(Ω)
,

where zζ is solution of the adjoint system:

z̈ζ = div (aζ(x)∇zζ) in (0, T )× Ω , (2.19a)

zζ = 0 on (0, T )× ∂Ω , (2.19b)

zζ(T, x) = zf,0(x) and ż(T, x) = zf,1(x) (x ∈ Ω) . (2.19c)

Thus the condition (2.14) of Theorem 2.1 is automatically satisfied for every probability measure η̃. Hence,
applying Theorem 2.1, we obtain the result.
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Remark 2.3. This result holds in the particular case ηθ = (1− θ)δ1 + θδ2 where two wave equations with
different velocities of propagation are averaged.

This case was addressed in [23, Theorem 2.1] where it was proved that, if the coefficients a1 and a2

satisfy:
a1(x) 6= a2(x) (x ∈ ω) , (2.20)

then the system satisfies the averaged control property for every θ ∈ [0, 1) (see [23, Theorem 2.1]). The
proof in [23, Theorem 2.1] employs microlocal defect measures and the fact that the characteristic manifolds
of the two wave equations involved are disjoint. This example shows that the smallness condition we impose
on the perturbations is not always sharp.

3 Averaged Ingham inequalities

Let us define the Hilbert space of square summable sequences:

`2 =

{
(an)n∈Z ∈ CZ ,

∑
n∈Z
|an|2 <∞

}
.

We also consider a real sequence λ = (λn)n∈Z, which is assumed to satisfy the following gap condition:
there exists γ > 0 such that

inf
(m,n)∈Z2

m 6=n

|λm − λn| > γ . (3.1)

Our goal in this section is to find conditions on (λn), the measure η and the time T such that, for
every a ∈ `2, the function f defined by (1.7) satisfies (1.8) and (1.9) or (1.10).

Notice that when η is the atomic mass located in ζ0, Lζ0 = Id and ς(ζ0) 6= 0, according to Ingham’s
inequality, (1.8) and (1.9) are valid for T > 1/|ς(ζ0)|γ. More precisely,

c(T )
∑
n∈Z
|an|2 6

∫ T

0

∣∣∣∣∣∑
n∈Z

ane
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt ((an)n ∈ `2 , T > 1
|ς(ζ0)|γ ) , (3.2a)

∫ T

0

∣∣∣∣∣∑
n∈Z

ane
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt 6 C(T )
∑
n∈Z
|an|2 ((an)n ∈ `2 , T > 0) , (3.2b)

with c(T ) =
2

π

(ς(ζ0)γT )2 − 1

(ς(ζ0)γT )2
T and C(T ) =

10T

πmin(1, 2|ς(ζ0)|γT )
.

This classical result can be found in the original paper by A. E. Ingham, [14, Theorem 1 and 2]. For its
relation with control theory, we refer, for instance, to [15, 20, 21] and the books [33, 10].

3.1 Perturbation of Ingham inequalities

In this paragraph we apply our perturbation argument developed in §2.3 in the context of non-harmonic
Fourier series.

Proposition 3.1. Let λ = (λn)n∈Z be a sequence of real numbers satisfying the gap condition (3.1). Let
Lζ ∈ L(`2), η̃ a probability measure on R, ς ∈ RR and ζ0 ∈ R.
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Assume ς(ζ0) 6= 0 and let T >
1

γ|ς(ζ0)|
. Assume in addtion:

∫
R
‖Lζ‖L(`2) dη̃ζ <∞ and

∫
R

‖Lζ‖L(`2)√
|ς(ζ)|

dη̃ζ <∞

Lζ0 being bounded from bellow, i.e. there exists Λζ0 > 0 such that:

Λζ0‖a‖`2 6 ‖Lζ0a‖`2 (a ∈ `2) .

Set θ0 =

(
1 +

1

Λζ0

√
5(γς(ζ0)T )2

(γς(ζ0)T )2 − 1

∫
R

‖Lζ‖L(`2)

min(1,
√

2γ|ς(ζ)|T )
dη̃ζ

)−1

.

Then for every θ ∈ [0, θ0), there exists cθ(T ) > 0 and Cθ(T ) > 0 such that:

cθ(T )‖a‖2`2 6
∫ T

0

∣∣∣∣∣θ
∫
R

∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t dη̃ζ + (1− θ)

∑
n∈Z

[Lζ0a]ne
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt 6 Cθ(T )‖a‖2`2 (a ∈ `2) ,

Proof. First of all, we have from (3.2):

∫ T

0

∣∣∣∣∣∑
n∈Z

[Lζa]ne
2iπλnς(ζ)t

∣∣∣∣∣
2

dt 6 ‖Lζ‖2L(`2)Cζ(T )‖a‖2`2 (ζ ∈ R∗ , a = (an)n ∈ `2 , T > 0) ,

and

Λ2
ζ0cζ0(T )‖a‖2`2 6

∫ T

0

∣∣∣∣∣∑
n∈Z

[Lζ0a]ne
2iπλnς(ζ0)t

∣∣∣∣∣
2

dt (a = (an)n ∈ `2 , T > 1
|ς(ζ0)|γ ) ,

with cζ(T ) =
2

π

(γς(ζ)T )2 − 1

(γς(ζ)T )2
T and C(T ) =

10T

πmin(1, 2γ|ς(ζ)|T )
.

We conclude as in the proof of Theorem 2.1.

Remark 3.1. The condition T > 1
|ς(ζ0)|γ is only required in view of the fact that we have employed the

classical formulation of Ingham’s inequality. But, for instance, if the sequence (λn)n∈N∗ is nondecreasing
and satisfies the asymptotic gap condition lim inf

n→∞
λn+1 − λn = +∞ then, employing generalised versions

of Ingham’s inequalities (see [18]), our result can be shown to hold true for every T > 0.

Remark 3.2. We have shown that averaged versions of Ingham’s inequalities hold true under a suitable
smallness condition on the perturbing measures, that is necessary in some sense as the example below
shows.

Let us build an example where averaged Ingham fails. Consider the case Lζ = Id, λn = n, ζ0 = 1,
ζ1 = 2, ς(ζ) = ζ and the measure η = (1 − θ)δζ0 + θδζ1. In view of the proposition above, for every
T > 1/ζ0, there exists θ0 ∈ [0, 1) such that for every θ ∈ [0, θ0), there exist constants cθ(T ), Cθ(T ) > 0
such that:

cθ(T )‖a‖2`2 6
∫ T

0

∣∣∣∣∣∑
n∈Z

an
(
(1− θ)e2iπnt + θe4iπnt

)∣∣∣∣∣
2

dt 6 Cθ(T )‖a‖2`2 (a ∈ `2) .
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But the smallness condition on θ is necessary. In particular, for θ = 1
2 , no such c

1
2 (T ) > 0 exists.

Indeed, more precisely, consider:

f(t) =
∑
n∈Z

an
(

1
2e

2iπnt + 1
2e

4iπnt
)

=
1

2

( ∞∑
n=1

(a2n + an)e4iπnt +
∑
n∈Z

a2n+1e
2iπ(2n+1)t

)
,

with

an =

{
(−1)k if n = 2k and k ∈ {0, · · · , N} ,
0 otherwise,

(n ∈ Z) ,

with N ∈ N∗ given, so that

f(t) =
(−1)N

2
e4iπ2N+1t.

Thus for every T > 0,
∫ T

0 |f(t)|2 dt = T
4 , whereas, ‖a‖`2 = N + 1.

Letting N tend to infinity we see that the observability inequality fails and this for all T > 0.

3.2 Discrete averages

In §3.1, we used a perturbation argument to prove, roughly speaking, the stability of Ingham inequalities
when the measure η is a Dirac mass plus a small enough perturbation. Obviously, there are many other
cases of interest that do not enter on that setting.

In this paragraph we consider another interesting particular case, in which a finite number of equations
are involved. In other words, we address the case in which the unknown parameter varies on a finite set.

In order to handle this case and to prove the needed averaged Ingham inequalities we will use a
different argument. Instead of arguing through a perturbation principle, we shall rather use a method
inspired on [10] and [36] whose key tool is to use the fact the solutions of the model under consideration,
for given values of the parameter, are annihilated by a given linear bounded operator commuting with
all other equations. This is the case for the 1d wave and Schrödinger equations with Dirichlet boundary
conditions, for which the solutions are time-periodic.

In order to present these cases we consider a sequence (λn)n∈Z satisfying:

λm 6= λn , for m 6= n and λn ∈ γZ (m,n ∈ Z) , (3.3)

with γ > 0. Of course, in this case the Ingham gap condition holds.
In order to make things more clear, let us write λn = µnγ, with µn ∈ Z.
As in the previous paragraph, we also consider a operator Lζ ∈ L(`2) and a function ς ∈ RR, and we

will consider the function f defined by:

f(t) =
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t (a ∈ `2 , t > 0) , (3.4)

with K > 0, θk ∈ [0, 1) such that
∑K

k=0 θk = 1, and ζk ∈ R.
Since we are averaging on a finite number of parameters, it is easy to see from (3.2) that, for every T > 0,
there exists a constant C(T ) > 0 such that:

‖f‖2L2(0,T ) 6 C(T )‖a‖2`2 (a ∈ `2) .

Let us now recover an observability inequality.

13



Theorem 3.1. Let (µn)n∈Z be a sequence of integers and γ > 0.
Let ς ∈ RR, K ∈ N∗, and for every k ∈ {0, · · · ,K}, let θk ∈ [0, 1] be the weights (so that

∑K
k=0 θk = 1),

(akn)n ∈ `2 and ζk ∈ R. Assume for every k ∈ {0, · · · ,K}, ς(ζk) 6= 0.
Then, if

T >
1

γ

K∑
k=0

1

|ς(ζk)|
,

there exists a constant c(T ) > 0 independent of (akn)n such that:

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

akne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt > θ2
0c(T )

∑
n∈Z
|a0
n|2

K∏
l=1

sin2

(
πµn

ς(ζ0)

ς(ζl)

)
. (3.5)

Proof. First of all, by changing γς(ζk) in ζk, we can assume without loss of generality that γ = 1 and
ς(ζ) = ζ.
Considering the function f defined by:

f(t) =

K∑
k=0

θk
∑
n∈Z

akne
2iπµnζkt (t ∈ R) ,

one can notice that:

f(t+ |ζK |−1)− f(t) =

K−1∑
k=0

θk
∑
n∈Z

akn

(
e

2iπµn
ζk
|ζK | − 1

)
e2iπµnζkt (t ∈ R) .

Iterating this argument it is easy to see that:

F0(t) = θ0

∑
n∈Z

a0
n

K−1∏
l=0

(
e

2iπµn
ζ0

|ζK−l| − 1

)
e2iπµnζ0t (t ∈ R) ,

where F0 is defined recursively by:

FK(t) = f(t) ,
Fk−1(t) = Fk(t+ |ζk|−1)− Fk(t) (k ∈ {1, · · · ,K}) . (t ∈ R) . (3.6)

Then for any τ > 0, by the classical Ingham inequality [14, Theorem 1] we deduce the existence of a
constant cτ such that ∫ 1

ζ0
+τ

0
|F0(t)|2 dt > cτ θ

2
0

∑
n∈Z

∣∣a0
n

∣∣2 K−1∏
l=0

∣∣∣∣e2iπµn
ζ0

|ζK−l| − 1

∣∣∣∣2 , (3.7)

with cτ > 0 a constant depending only on τ and ζ0.
But, we have:∫ 1

|ζ0|
+τ

0
|F0(t)|2 dt =

∫ 1
|ζ0|

+τ

0

∣∣∣F1(t+ 1
|ζ0|)− F1(t)

∣∣∣2 dt 6 2

∫ 1
|ζ0|

+ 1
|ζ1|

+τ

0
|F1(t)|2 dt (τ > 0)

and by iteration,
‖F0‖2L2(0, 1

|ζ0|
+τ)

6 2K‖f‖2
L2(0, τ+

∑K
k=0 |ζk|−1)

(τ > 0) . (3.8)
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Consequently, (3.7) together with (3.8) gives:

‖f‖2
L2(0, τ+

∑K
k=0 |ζk|−1)

>
cτ θ

2
0

2K

∑
n∈Z
|a0
n|2

K−1∏
l=0

∣∣∣∣e2iπµn
ζ0

ζK−l − 1

∣∣∣∣2 (τ > 0) .

Corollary 3.1. Let (µn)n∈Z be a sequence of integers and γ > 0.
Let ς ∈ RR, K ∈ N∗, and for every k ∈ {0, · · · ,K}, let θk ∈ [0, 1] be the weights (so that

∑K
k=0 θk = 1),

(akn)n ∈ `2, ζk ∈ R and Lζk ∈ L(`2).
Assume θ0 6= 0, Lζ0 is bounded from below, ς(ζ0) 6= 0 and

ς(ζ0)−1ς(ζk) 6∈ Q (k ∈ {1, · · · ,K}) . (3.9)

Then, for every T >
1

γ

K∑
k=0

1

|ς(ζk)|
,

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt = 0 =⇒ ∀n ∈ Z , an = 0.

Proof. Setting ak = Lζka in Theorem 3.1, we obtain from (3.5):

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt > θ2
0c(T )

∑
n∈Z
|[Lζ0a]n|2

K∏
l=1

sin2

(
πµn

ς(ζ0)

ς(ζl)

)
,

with C(T ) > 0. Since θ0 6= 0, ς(ζ0)−1ς(ζk) 6∈ Q for every k ∈ {1, · · · ,K} and, hence,
∏K
l=1 sin2

(
πµn

ς(ζ0)
ς(ζl)

)
6=

0, we obtain [Lζ0a]n = 0 for every n ∈ Z and hence a = 0 since Lζ0 is bounded from below.

Remark 3.3. Let us discuss the optimality of Corollary 3.1.

1. Inequality (3.5) is similar to the one in (5.87), p. 139 of [10] which can be applied to the simultaneous
control of finitely many strings (see § 5.8.2 of that book).

2. The irrationality condition (3.9) is sharp as the example presented in Remark 3.2 shows.

In corollaries 3.1 and 3.3, we present a unique continuation result. However, with some more restrictive
conditions on the parameters ζk, we can obtain an observability inequality.

Corollary 3.2. Under the conditions of Corollary 3.1, let ε > 0 and assume in addition, for every α > 0,
there exists Λζ0,α > 0 such that:

∑
n∈Z

|[Lζ0a]n|2

|µn|2α
> Λ2

ζ0,α

∑
n∈Z

|an|2

|µn|2α
(a ∈ `2) (3.10)

and
ς(ζ0)−1ς(ζk) ∈ Bε (k ∈ {1, · · · ,K}) , (3.11)
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with Bε defined, as in [6, p. 120], so that the Lebesgue measure of R \ Bε vanishes and there exists a

constant ρε > 0 so that, if ζ ∈ Bε then, for every m ∈ N∗, we have: min
r∈Z
|r −mζ| > ρε

m1+ε
.

Then, for every T >
1

γ

K∑
k=0

1

|ς(ζk)|
, there exists a constant Cε(T ) > 0 such that:

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt > Cε(T )
∑
n∈Z

|an|2

|µn|2K(1+ε)
(a ∈ `2) .

Proof. The proof follows directly from (3.5) and [6, p. 120].

Corollary 3.3. Under the conditions of Corollary 3.1 and assume, for every α > 0, there exists Λζ0,α >
0 such that (3.10) holds. Assume in addition that ς(ζ0)−1ς(ζ1), · · · , ς(ζ0)−1ς(ζK) are algebraic and
ς(ζ0), · · · , ς(ζK) are Q-linearly independent.

Then for every T >
1

γ

K∑
k=0

1

|ς(ζk)|
and every ε > 0, there exists Cε(T ) > 0 such that:

∫ T

0

∣∣∣∣∣
K∑
k=0

θk
∑
n∈Z

[Lζka]ne
2iπµnγς(ζk)t

∣∣∣∣∣
2

dt > Cε(T )
∑
n∈Z

|an|2

|µn|2(1+ε)
(a ∈ `2) .

Proof. The proof follows directly from (3.5) and [32].

3.3 Application to the string equation

We are now in position to derive the main consequences concerning averaged controllability of the string
equation with Dirichlet boundary control:

ÿζ(t, x) = ζ2∂2
xyζ(t, x) ((t, x) ∈ R∗+ × (0, 1)) , (3.12a)

yζ(t, 0) = u(t) (t ∈ R∗+) , (3.12b)

yζ(t, 1) = 0 (t ∈ R∗+) , (3.12c)

yζ(0, x) = yi,0ζ (x) and ẏζ(0, x) = yi,1ζ (x) (x ∈ (0, 1)) . (3.12d)

Let us briefly describe how the string equation with Dirichlet boundary control enters in the abstract
formalism. We refer the interested reader to [33, Sections 10.9 and 11.6] for further details.
Notice that since we have a second order operator, it is more convenient to assume that the parameter
ζ enters in a quadratic manner in (3.12a). So that the adjoint problem can be expressed in terms of
non-harmonic Fourier series of the form (1.7). In addition, one can assume ζ ∈ R+ or equivalently, the
averaging measure η satisfies supp η ⊂ R+.

Let us first introduce the one dimensional Dirichlet-Laplacian operator, A0:

D(A0) = H2(0, 1) ∩H1
0 (0, 1) and A0f = −∂2

xf (f ∈ D(A0)) .

We also introduce the Hilbert spaces H = L2(0, 1), H1 = D(A), H 1
2

= H1
0 (0, 1) and H−1 (resp. H− 1

2
)

the dual space of H1 (resp. H 1
2
) with respect to the pivot space H. Then A0 can be seen as an unitary

operator from H1 to H, H 1
2

to H− 1
2

and H to H−1.
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In addition, let us remind that the Dirichlet-Laplacian operator A0 can be diagonalized in an ortho-
normal basis (ϕn)n∈N∗ of L2(0, 1). More precisely, we have:

ϕn(x) =
√

2 sin(nπx) and A0ϕn = (nπ)2ϕn (x ∈ [0, 1] , n ∈ N∗) . (3.13)

With these notations in mind, let us the define the state space X = H × H− 1
2
, the control space

U = R, the operator A =

[
0 Id
−A0 0

]
with domain D(A) = H 1

2
× H := X1 and the control operator

B =

[
0

A0D

]
∈ L(U,X−1), with D the Dirichlet map [33, Proposition 10.6.1]. Notice that we have

A∗ = −A and B∗
[
z0

z1

]
= ∂x

(
A−1

0 z1
)

(0). Let us denote by T the semi-group generated by A. It is

classical that B is an admissible control operator for T.
Let us now define fζ(s, x) = yζ(

s
ζ , x), thus f is solution of:

f̈ζ(s, x) = ∂2
xfζ(s, x) ((s, x) ∈ R∗+ × (0, 1)) ,

fζ(s, 0) = u( sζ ) (s ∈ R∗+) ,

fζ(s, 1) = 0 (t ∈ R∗+) ,

fζ(0, x) = yi,0ζ (x) and ḟζ(0, x) = 1
ζ yi,1ζ (x) (x ∈ (0, 1)) .

Thus, setting Iζ =

[
Id 0
0 ζId

]
, Fζ(s) =

[
fζ(s)

ḟζ(s)

]
= I−1

ζ

[
yζ(

s
ζ )

ẏζ(
s
ζ )

]
, Fζ is solution of:

Ḟζ = AFζ +Bu( ·ζ ) , Fζ(0) = I−1
ζ

[
yi,0ζ
yi,1ζ

]
.

Using Duhamel formula, we obtain:

Fζ(ζT ) = T(ζT )I−1
ζ

[
yi,0ζ
yi,1ζ

]
+

∫ ζT

0
T(ζT − s)Bu( sζ ) ds = T(ζT )I−1

ζ

[
yi,0ζ
yi,1ζ

]
+

∫ T

0
T(ζ(T − t)) ζBu(t) dt

and hence, [
yζ(T )
ẏζ(T )

]
= IζT(ζT )I−1

ζ

[
yi,0ζ
yi,1ζ

]
+

∫ T

0
IζT(ζ(T − t))I−1

ζ ζ2Bu(t) dt .

Let us then define the averaged input to state map:

FTu =

∫
R

∫ T

0
IζT(ζ(T − t))I−1

ζ ζ2Bu(t) dt dηζ (u ∈ L2(0, T ))

and the averaged observability map is:(
ΨT

[
z0

z1

])
(t) =

∫
R
ζ2B∗I−1

ζ T(−ζt)Iζ
[
z0

z1

]
dηζ

=

∫
R
ζB∗T(−ζt)

[
z0

ζz1

]
dηζ (

[
z0

z1

]
∈ X1 , t ∈ (0, T )) .
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Let zζ be the solution of:

z̈ζ = ζ2∂2
xzζ ,

0 = zζ(t, 0) = zζ(t, 1) (t > 0)

with initial conditions:
zζ(0, ·) = z0 and żζ(0, ·) = −ζ2z1 .

Thus,

T(−ζt)
[

z0

ζz1

]
=

[
zζ(t)
−1
ζ żζ(t)

]
and hence, (

ΨT

[
z0

z1

])
(t) = −

∫
R
∂x
(
A−1

0 żζ(t, ·)
)

(0) ζdηζ ,

Expanding the initial conditions z0 =
∑
αnϕn and z1 =

∑
βnϕn on the eigenvector basis {ϕn}n of A0

defined by (3.13) leads to:

zζ(t, x) =
∑
n∈N∗

(
αn cos(nπζt)− ζ βn

nπ
sin(nπζt)

)
ϕn(x) .

Thus, the observation operator is:(
ΨT

[
z0

z1

])
(t) = −

√
2

∫
R

∞∑
n=0

(
αn sin(nπζt) + ζ

βn
nπ

cos(nπζt)

)
ζdηζ

=
−
√

2

2

∫
R

(∑
n∈N∗

(
−iαn + ζ

βn
nπ

)
einπζt +

∑
n∈N∗

(
iαn + ζ

βn
nπ

)
e−inπζt

)
ζdηζ .

Let us also notice that

∥∥∥∥[zi0zi1

]∥∥∥∥2

X

=
∑
n∈N∗

(
α2
n +

β2
n

(nπ)2

)
. Thus setting:

λn =
n

2
, an =

{
αn if n > 0 ,
β−n
nπ if n < 0

(n ∈ Z∗) and

[Lζa]n =

{
−
√

2
2 (−ian + ζa−n) ζ if n > 0 ,
−
√

2
2 (ia−n + ζan) ζ if n < 0 ,

(a ∈ `2(Z∗) , n ∈ Z∗ , ζ ∈ R) ,

the observation operator is

∫
R

∑
n∈Z∗

[Lζa]ne
2iπλnζt dηζ .

Let us notice that:

ζ2
(
1 + (ζ2 − 1)1[0,1](|ζ|)

) ∑
n∈Z∗

|an|2

|n|2α
6
∑
n∈Z∗

|[Lζa]n|2

|n|2α
6 ζ2

(
1 + (ζ2 − 1)1(1,∞)(|ζ|)

) ∑
n∈Z∗

|an|2

|n|2α

(a ∈ `2(Z∗) , ζ ∈ R , α > 0) . (3.14)

Consequently, using Proposition 3.1 together with (3.14) and the duality result, Proposition 2.1, we
obtain this perturbation result:
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Proposition 3.2 (Exact averaged controllability with a perturbed measure). Let ζ0 ∈ R∗ and η̃ be a
probability measure on R with: ∫

R
|ζ|α dη̃ζ <∞ (α ∈ [1

2 , 2]) .

Set T >
2

|ζ0|
and

θ0 =



1 +

√
5T

ζ0

√
(ζ0T )2 − 4

∫
R

|ζ|
∣∣1 + (ζ2 − 1)1(1,∞)(|ζ|)

∣∣ 12
min

(
1,
√
|ζ|T

) dη̃ζ

−1

if 0 < ζ0 < 1 ,

1 +

√
5T

ζ2
0

√
(ζ0T )2 − 4

∫
R

|ζ|
∣∣1 + (ζ2 − 1)1(1,∞)(|ζ|)

∣∣ 12
min

(
1,
√
|ζ|T

) dη̃ζ

−1

if ζ0 > 1 .

Then, for every θ ∈ [0, θ0), every target

[
yf,0

yf,1

]
∈ L2(0, 1) × H−1(0, 1) and every initial conditions[

yi,0ζ

yi,1ζ

]
∈ L2(0, 1)×H−1(0, 1) satisfying:

∫
R
‖(yi,0ζ , y

i,1
ζ )‖L2(0,1)×H−1(0,1) dη̃ζ <∞ ,

there exists a control u ∈ L2(0, T ) so that:

(1− θ)yζ0(T ) + θ

∫
R
yζ(T ) dη̃ζ = yf,0 and (1− θ)ẏζ0(T ) + θ

∫
R
ẏζ(T ) dη̃ζ = yf,1 ,

where, for every ζ ∈ R, yζ is solution of (3.12).
Moreover, there exists a constant Cθ(T ) > 0 independent of the initial and final conditions such that:

‖u‖2L2(0,T ) 6 Cθ(T )

(∥∥∥∥(1− θ)yi,0ζ0 + θ

∫
R

yi,0ζ dη̃ζ

∥∥∥∥2

L2(0,1)

+

∥∥∥∥(1− θ)yi,1ζ0 + θ

∫
R

yi,1ζ dη̃ζ

∥∥∥∥2

H−1(0,1)

+ ‖yf,0‖2L2(0,1) + ‖yf,1‖2H−1(0,1)

)
.

In the same way, from Corollary 3.1 we can derive an averaged approximate controllability results.

Proposition 3.3 (Approximate averaged controllability with a discrete measure). Let K ∈ N∗, and for
every k ∈ {0, · · · ,K}, define the weight θk ∈ (0, 1) (so that

∑K
k=0 θk = 1) and the parameter ζk ∈ R∗ and

assume:
ζ−1

0 ζk 6∈ Q (k ∈ {1, · · · ,K} \ {k0}) .

Then for every T > 2
∑K

k=0

1

|ζk|
, every ε > 0, every target

[
yf,0

yf,1

]
∈ L2(0, 1) × H−1(0, 1) and every

initial conditions

[
yi,0ζk
yi,1ζk

]
∈ L2(0, 1)×H−1(0, 1), there exists a control u ∈ L2(0, T ) for which we have:

∥∥∥∥∥yf,0 −
K∑
k=0

θkyζk(T )

∥∥∥∥∥
2

L2(0,1)

6 ε and

∥∥∥∥∥yf,1 −
K∑
k=0

θkẏζk(T )

∥∥∥∥∥
2

H−1(0,1)

6 ε ,
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where for every ζ ∈ R∗, yζ solves (3.12).
Moreover, there exists a constant Cε(T ) > 0 independent of the initial and final conditions such that:

‖u‖2L2(0,T ) 6 Cε(T )

∥∥∥∥∥
K∑
k=0

θky
i,0
ζk

∥∥∥∥∥
2

L2(0,1)

+

∥∥∥∥∥
K∑
k=0

θky
i,1
ζk

∥∥∥∥∥
2

H−1(0,1)

+ ‖yf,0‖2L2(0,1) + ‖yf,1‖2H−1(0,1)

 .

Now using Diophantine approximations, see Corollary 3.3, we obtain:

Proposition 3.4 (Exact average controllability with a discrete measure). Let ε > 0 and let K ∈ N∗, θk
and ζk be defined by Proposition 3.3 and assume, ζ0, · · · , ζK are Q-linearly independent and

ζ−1
0 ζ1, · · · , ζ−1

0 ζK are algebraic. (3.15)

Then, if (yi,0ζ0 , y
i,1
ζ0

), · · · , (yi,0ζK , y
i,1
ζK

), (yf,0, yf,1) ∈ X1+ε ×Xε with:

Xα =

{
ϕ : x ∈ (0, 1) 7→

∞∑
n=1

an sin(nπx) ,
∑
n∈N∗

n2α|an|2 <∞

}
(α ∈ R) , (3.16)

for every T > 2

K∑
k=0

1

|ζk|
there exists a control u ∈ L2(0, T ) such that for every k ∈ {1, · · · ,K}, the solution

yζk of (3.12) (with parameter ζ = ζk) satisfy:

K∑
k=0

θkyζk(T ) = yf,0 and

K∑
k=0

θkẏk(T ) = yf,1 .

A similar result could have been obtained from Corollary 3.2,
Let us also notice that applying directly [10, Corollary 5.43], we obtain the following exact simultaneous

controllability result:

Proposition 3.5. Let ε > 0, K ∈ N∗ and ζk ∈ R∗ for every k ∈ {0, · · · ,K} and assume, ζ0, · · · , ζK are
Q-linearly independent and

ζ−1
k ζl is algebraic for every k, l ∈ {0, · · · ,K} . (3.17)

Let (yi,0ζk , y
i,1
ζk

) and choose final conditions (yf,0, yf,1) satisfying the assumption given in Proposition 3.4.

Then, for every T > 2

K∑
k=0

1

|ζk|
there exists a control u ∈ L2(0, T ) such that:

yζk(T ) = yf,0 and ẏζk(T ) = yf,1 (k ∈ {0, · · · ,K}) .

This result ensures that all the parameter dependent trajectories, and, of course, consequently, their
average, can be steered to a prescribed target with an input independent of the parameter.

Remark 3.4. As expected, the assumption (3.15) needed to obtain averaged controllability is weaker that
the one for simultaneous controllability, (3.17).
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Example 3.1. Let us now summarise the main results on the averaged control of two string equations,
one parametrised by ζ0 = 1 and the other one by ζ1 =

√
2, with averaging measure:

ηθ = (1− θ)δζ0 + θδζ1 . (3.18)

The following holds:

• From Proposition 3.2, if T > 2, the system (3.12) is controllable in average with averaging measure

ηθ for θ ∈
[

0,
(

1 + 2
√

5T√
T 2−4

)−1
)

;

• From Proposition 3.2, if T >
√

2, the system (3.12) is controllable in average with averaging measure

ηθ for θ ∈
(

1−
(

1 +
√

5T
2
√

2T 2−4

)−1
, 1

]
;

• From Proposition 3.4, if T > 2
(

1 +
√

2
2

)
, the system (3.12) is controllable in average with averaging

measure ηθ in some weighted space for θ ∈ [0, 1].

This leads to the time-dependent set of parameters θ for which we have averaged controllability, see Figure 1
below.

0

1

2

3

5

0 0.8 1

Exact averaged controllability Exact averaged controllability

in a weighted space

1
1+2

√
5

0.6
√
5

2
√
2+

√
5

4

2 +
√

2

√
2

T

θ

Figure 1: Time dependent set of parameters θ for which averaged controllability holds, for two strings
driven by the system (3.12) with parameters ζ0 = 1 and ζ1 =

√
2 and averaging measure ηθ given by (3.18).

4 Concluding remarks

The aim of this article was to give a systematic result, based on perturbation arguments, on the averaged
controllability and observability of parameter-dependent families of equations, mainly in the context of
time-reversible groups of isometries.
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There are several interesting open problems that arise in this context. This is so even for the one
dimensional case, where Fourier series representations can be used. Let us point out some of them:

• In § 2.3, we gave an averaged observability inequality. However, this result only holds when the
measure is the sum of a Dirac mass and a small enough perturbation measure. This condition can
be used for absolutely continuous (with respect to the Lebesgue measure) averaging measures. But
it would be natural to consider more general cases as well.

In the context of Ingham inequalities and in the particular case where Lζ = Id and ς(ζ) = ζ the main
problem can be recast as follows: Given η a probability measure and (λn)n∈Z, is {t 7→ η̂(−λnt)}n∈Z
a Riesz sequence of L2(0, T )?

One of the simplest case to be considered is when ηε is given by dηεζ = 1
2ε1[1−ε,1+ε](ζ) dζ for ε > 0.

Then the sequence (ηε)ε>0 converges in the sense of measures to the Dirac mass δ1 when ε goes
to 0. Assuming that the sequence (λn)n satisfies the Ingham gap condition (3.1) for some γ > 0,
we know from [14] there exists a constant c(T ) > 0 such that:∫ T

0

∣∣∣∣∣∑
n∈Z

ane
2iπλnt

∣∣∣∣∣
2

dt > c(T )
∑
n∈Z
|an|2 (T >

1

γ
, (an)n∈Z ∈ `2) .

It is then natural to wonder if there exists ε0 > 0 such that for every ε < ε0, we have:∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

ane
2iπλnζt dηεζ

∣∣∣∣∣
2

dt > cε(T )
∑
n∈Z
|an|2 (T >

1

γ
, (an)n∈Z ∈ `2) (4.1)

and if it is so, whether cε(T ) converges to c(T ) as ε tends to 0?

A way to prove this result is to look at the quantity:∣∣∣∣∣∣
∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

ane
2iπλnζt dηεζ

∣∣∣∣∣
2

−

∣∣∣∣∣∑
n∈Z

ane
2iπλnt

∣∣∣∣∣
2
 dt

∣∣∣∣∣∣
One can easily get the upper bound

εT 2C

√∑
n∈Z
|λn||an|2

√∑
n∈Z
|an|2.

It goes to 0 as ε tends to 0, but it does not ensure inequality (4.1) to hold.

One can also proceed with a direct computation and, in this case, from § 3.2 one can derive a
weighted averaged Ingham inequality when the eigenvalues λn satisfy (3.3). Indeed, let us consider
a measure η given by dηζ = 1

ζ1−ζ0 1[ζ0,ζ1](ζ) dζ for ζ0 < ζ1 and ζ0, ζ1 6= 0. Writing λn = γµn with
µn ∈ Z∗, we obtain:∫

R

∑
n∈Z

ane
2iπλnζt dηζ =

1

2iπγ(ζ1 − ζ0)t

∑
n∈Z

an
µn

(
e2iπγζ1µnt − e2iπγζ0µnt

)
.

Thus, we have:∫ T

0

∣∣∣∣∣
∫
R

∑
n∈Z

ane
2iπλnζt dηζ

∣∣∣∣∣
2

dt >
1

(2πγ)2(ζ1 − ζ0)2T 2

∫ T

0

∣∣∣∣∣∑
n∈Z

an
µn

(
e2iπγζ1µnt − e2iπγζ0µnt

)∣∣∣∣∣
2

dt .
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Now, assuming that T > 1
γ

(
1
ζ0

+ 1
ζ1

)
and ζ−1

0 ζ1 6∈ Q, we obtain the unique continuation from

Corollary 3.1 and, under the assumption of corollary 3.2 or 3.3 on ζ0 and ζ1, we end up with a
weighted Ingham inequality.

• When dealing with the control system (2.18), in [23], the condition (2.20) was required to ensure
averaged controllability. However, according to Proposition 2.3 (see Remark 2.3), this condition is
not needed under a suitable smallness assumption on the averaging measure.
The optimality of assumption (2.20) without smallness assumptions needs further clarification.

• The results derived in § 3.2 need λn ∈ γZ to be a sequence of integers. But the unique continu-
ation property, Corollary 3.1, could have been obtained directly from [13, Corollary 2.3.5]. This
result still holds in the case general case where (λn)n satisfies (3.1) and assuming that the values
ς(ζk)λn 6= ς(ζl)λm for k 6= l or n 6= m.
In addition, results similar to corollaries 3.2 and 3.3 could have been obtained from [19]. More pre-
cisely, assume that the sequence (λn)n satisfies the Ingham gap condition (3.1), and that ς(ζk)λn 6=
ς(ζl)λm for k 6= l or n 6= m. Let us now consider the increasing sequence (Λn)n such that
{Λn , n ∈ Z} = {ς(ζk)λm , m ∈ Z , k ∈ {0, · · · ,K}}. Then for every n ∈ Z, we have Λn+K+1−Λn >
γmin {|ς(ζk)| , k ∈ {0, · · · ,K}}. Thus [19, Theorem 4] applies and leads to a weighted averaged In-
gham inequality valid for every

T >
K + 1

γmin{|ς(ζ0)|, · · · , |ς(ζK)|}
.

Notice that this minimal time is greater than
∑K

k=0
1

γ|ς(ζk)| , the one obtained in corollaries 3.2

and 3.3, but under stronger assumptions on the sequence (λn)n.
In addition, the results given in [13] and [19] ensure simultaneous observability. Thus it would be
interesting to see how the assumption given in these two works could be weakened it order to only
ensure averaged observability.

In the proof of Theorem 3.1, we strongly need that the sequence (λn)n satisfies (3.3) and, even for
λn = n+ε(n) with ε(n) = o(1), the technique of proof fails. It would worth exploring whether some
improvements could be obtained with a perturbation argument, combined with the ideas of [7] and
in particular with Ulrich’s result [34].

The analysis of all these examples could contribute to achieve sharp results for the averaged con-
trollability of finitely many string equations (1.1).

• Let us conclude this paper with a general remark linking averaged controllability and simultaneous
controllability. The aim is to find controls independent of the parameter performing well for all
values of the parameters. With this goal, a first and natural choice was to control the average of
the parameter dependent outputs. Of course, the best we could expect is a control, independent of
the values of the unknown parameters, steering all parameter dependent trajectories to a common
fixed target, i.e. looking to simultaneous controllability. But this is unfeasible in general.

There exists a natural link between the control of the average and the stronger notion of simultaneous
control. This link can be made through penalisation and optimal control.
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More precisely, for every κ > 0, let us consider the following optimal control problem:

min Jκ(u) :=
1

2
‖u‖2L2([0,T ],U) + κ

∫
R

∥∥∥yζ(T )− yf
∥∥∥2

X
dηζ∫

R
yζ(T ) dηζ = yf ,

ẏζ = Aζyζ +Bζu , yζ(0) = yiζ .

Notice that for κ = 0 this leads the averaged control of minimal norm as we considered here. But,
as κ increases, the control, other than ensuring the averaged controllability property, also forces the
reduction of the variance of the output.

Of course, under the property of averaged controllability, the minimiser uκ exists for every κ > 0.

It can also be proved that, if, in addition, Jκ(uκ) is uniformly bounded, then up to a subsequence,
(uκ)κ is weakly convergent to a control simultaneous control u∞ solution of:∣∣∣∣∣ yζ(T ) = yf (ζ ∈ R η-a.e.) ,

ẏζ = Aζyζ +Bζu , yζ(0) = yi .

This issue is analysed in [28], where this idea is discussed in detail in the finite-dimensional control
context.
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