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Abstract

Sensitivity analysis is a key tool in the study of the relasbips between the input parameters of a model and the
output solution. Although sensitivity analysis is extee$y addressed in the literature, little attention has bheenght

to the methodological aspects of the sensitivity of nordingarametric solutions computed through a continuation
technique.

This paper proposes four combinations of sensitivity asialyith continuation and homotopy methods, including
sensitivity analysis along solution branches or at a palgicpoint. Theoretical aspects are discussed in the higher
order continuation framework Diamant. The sensitivity hogls are applied to a thermal ignition problem and some
free vibration problems. Remarkable eigenvalue maps auged for the complex nonlinear eigenvalue problems.

Keywords: continuation, homotopy, sensitivity, automati¢fdientiation, Diamant, complex nonlinear eigenvalue
problem
2010 MSC:35B60, 35C20, 65D25, 68W30, 90C31

1. Introduction

Modeling in engineering frequently results in nonlineargmaeterized problems, the solutions of which depend on
a set of modeling parametgps These may define material properties, a behavior law, a gggnmitial or boundary
conditions. Under-determined nonlinear parametric olsl include a particular parameterto be varied. Their
solutions form branches in bifurcation diagrams [28, 35}dér analyticity assumptions, the solutions of nonlinear
problems may be computed through Taylor-based numerictiiadse and higher order Automatic fBérentiation
(AD) [7, 23, 2, 33]. Among them, Diamant [13, 10] is targetedtie solution of nonlinear parametric problems by
continuation.

In numerous scientific domains, sensitivity analysis is e importance in the understanding of the relation-
ships between the model inputs (modeling parametersaliitiboundary conditions, for instance) and the solution
or the branch of solutions. Usages are concerned with waingrimeasurements and optimization, for instance. Sen-
sitivity analysis is thus extensively addressed in thediigre [17, 29]. Nevertheless, to date, little attentioa baen
brought to the methodological study of the sensitivity ohlirear parametric solutions. In other words, the sensiti-
vity analysis to a perturbation in the modeling parameteftisn addressed qualitatively only, by plotting bifurcati
diagrams for diterent values of the parameters.

The paper discusses several quantitative sensitivityniqales adapted to the higher order continuation and homo-
topy methods proposed by the Diamant framework. Given angfieeproblem, the choice for one or another depends
on both the continuation objectives (trajectory compotadi[39], path planning [4], complex nonlinear eigenvalue
calculation [5]) and the usage of the sensitivity resultse Tmplementation partially relies on Diamanlab [11] that
takes advantage of the AD generality [21] and provides algcapuser interface for an interactive continuation. The
sensitivity drivers are validated on a thermal ignition ideon [1] and the damped beam problem described in the
NLEVP benchmark [3]. A frequency-dependent damping magigien considered to propose remarkable eigenvalue
maps for the complex nonlinear eigenvalue problems.

The layout of the paper is as follows. Section 3 discusseBthamant framework through a brief presentation of
both the continuation driver and the homotopy driver. It emmer provides a short introduction to AD and Diamanlab.
Theoretical aspects and possible usages of sensitivitpatations are described in Section 4 meanwhile numerical
results are reported in Section 5. Section 6 provides ceiuis.

Preprint submitted to Elsevier 8 avril 2014


http://ees.elsevier.com/apm/viewRCResults.aspx?pdf=1&docID=17324&rev=0&fileID=280955&msid={AED4CF63-37A8-4DFC-A7BE-9A94E9447F07}

O©CO~NOOOTA~AWNPE

Bifurcation diagrams
10 T T T T

10

log, ,(u(e))

w0 —=0.0

—e=0.2
—g=¢
—e=0.3

L L
12 14 16 18 20

L L L L L
0 2 4 6 8

10
AE)
Ficure 1: Bifurcation diagramsy(0.5, 0.5) againsti, for the thermal ignition problem.

2. Setting of the problem

The solutions of a nonlinear parametric problem form brasdh(p), A(p)) usually represented in a projected bi-
furcation diagram (Fig. 1) as plots of particular state secomponents(p) against the parameta(p). The problem
of thermal ignition [1] is chosen as an illustration. The perature distribution in a material with exothermic reauwti
may be written as

ou u
E—Au+ﬁexp(1+6u), Q)

whereu = (T - T¢)Es/(RT?) is a normalized temperature variable depending on the ¢esyreT, the surface
temperaturd’s, the universal gas constaRtand the Arrhenius activation enery. In equation (1), the parameter
e defined asRTs/E determines the normalized temperature behavior. The \st&ate problem in the unit square
domain,

u
1+eu

Au+ /lexp( ) —0 inQ=(0,1)x(0,1), @)

u=0 onthe boundaryQ, 3)

is discretized using the five-point stencil finiteffdrence method for the Laplace operator. Eleven equidisétib
points are used in each direction. The discrete paramatoialgm is solved using Taylor-based expansions with a
truncation order of 15 and the Diamanlab software (pardg8ap.2). The initial guessu, 1o) is such thatip = 0 in
Qandiy = 0.

Figure 1 plots the solutions for various values of the patame The case = 0 corresponds to the Gelfand
equation and exhibits a turning point a(@.5, 0.5), 1) ~ (6.793 1.385). For 0< € < €*, the solution branch presents
two turning pointst; andA,. From a physical point of view, the material ignition takéage when the turning point
A1 is passed. The solution branch degenerates*fer 0.24174. This value depends on the geometry of the domain
[1]. Former explanations are those of a brief qualitativesiievity analysis of the solutions of (2)—(3) performed by
plotting curves for various values of the parameteThe quantitative sensitivity analysis of the solutionrwiaes
requires the computation of the first order derivativesigp), A(p)) with respect tq in order to propose accurate first
order approximations for the solutions.

Computing quantitative sensitivities is an important essot only for the understanding of the relationships bet-
ween the nonlinear parametric problem inputs and the ostgdution branches, but also in classical uses of sengitivit
results such as optimization or uncertainty measureméiig.paper proposesftierent options for an accurate calcu-
lation of the sensitivities of the solution branches comgdutrough higher-order continuation methods. Sensitivit
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branches®, 1%) computed using additional Taylor-based expansions asepted in paragraph 4.1. Then, local sen-
sitivities u?, /lf) computed at particular points are proposed in paragrahtiNdimerical results, including the thermal
ignition problem, are reported in Section 5. Prior to thia¢, mext section presents the Diamant framework.

3. Higher order continuation framework

Diamant [13, 10] is the AD-based framework derived from tlgnaptotic numerical method [36, 15]. Under
analyticity assumptions, it automates the solution of thielinear parametric problems written in the generic form

R(u(@. ). (@, p) = O, @
a=<u(@,p) - 0. p). 52(0.7) > + (A(a. p) ~ A0, P) 320, ). ©)

In system (4)—(5), the residual vect®re C" depends on the unknown state veatm) € C" and the scalar parameter
A(p) to be varied. The variablpdenotes the modeling parameters. Equation (5) measurpséheo-arc length along
the branch of solutionsu(a, p), A(a, p)) issued from (0, p), A(0, p)). Another path equation may be used to close the
under-determined nonlinear residual problem (4). The divgu(a, p), A(a, p)) is approximated using the truncated
Taylor series (6) in a vicinity o& = 0 following

Kk gk K ok qk K K
(ua ) A p) = () F 0., Y, T, p) = () e > e ©
k=0 k=0 k=0

- k! 9ak ki 9ak

wherex is the truncation order angk and Ax denote the Taylor cdgcients ofu and A at orderk, respectively. The
Taylor codficients ofR are denoted bRy and verify

R(u(@. p). A(a. p)) = } &R = 0. Y
k=0

For the sake of conciseness, the dependenag.bandR with respect taa andp is omitted in the description of the
continuation driver (paragraph 3.1) and the homotopy diiparagraph 3.2). From a theoretical and computer point
of view, AD (paragraph 3.3) is a key tool for the evaluatiorired Taylor coéficients.

3.1. Continuation driver
The analyticity ofR implies that
R =0, fork=1tox. (8)

The truncated series (6) are introduced in the nonlinedileno (4). Using the Faa di Bruno generalized formula [30],
the Taylor coéficientsRy of the compound functio® are expressed as

Ric = {Rujug=td 1121} (Ui A) " + {Ruue=o20} = 0, fork = 1tox, 9)

and comprise the same Jacobf®&a,-14,.4,=1} Over the orders. This Jacobian contains the tangent liredributions
resulting from the dterentiation ofR with respect tas andA. The remaining term&Ry, -o.1,=0} contain the nonlinear
contributions depending on the Taylor ¢deientsu; andAy, for| = 1 tok — 1. The resulting linear systems,

{Ruju=1d.1,=1} Uk, A) " = —{Riqu=0.10}, fork =1 tox, (10)
a= (U — Up)us + (A — Ap)A1, fork=1tox. (12)

allow to determine a higher order approximation for the 8ofu(u, 1) of the generic problem (4)—(5). The solution of
(10)—(11) is performed in an iterative manner frem 1 tox, by alternating higher order derivative computations and
linear system solutions. The continuation driver (10)}($Xhus a high level mathematical solver. Implementation
detail is reported in [11].



O©CO~NOOOTA~AWNPE

As discussed in previous papers, Diamant is a generic angetitime path following method that may replace
the Newton-Raphson scheme in the solution of any equilibsystem of smooth equations. The step size control is
based on tha posteriorestimation (12) of the range of validity of the series

1/k-1
Bonax = [ﬁ'“l'] , (12)

U

whereg is a small parameter (usual/ = 1.10°%). Residuals are measured at the end of the computed branch of
solutions to evaluate the interest of a correction. In ficacthe higher order predictor Diamant is frequently run
without the need for correction steps.

Best practices are concerned with nonlinear mechanichlg@mts involving material or geometrical nonlinearities
[15, 10].

3.2. Homotopy driver

A homotopy is a continuous deformation that allows for thiison of a nonlinear problem from a known so-
lution using a continuation method [27, 35]. Among the beatpces relying on homotopy, one may cite trajectory
computations [39], path planning [4], and complex nonlireigenvalue problems [5].

In the Diamant framework, the homotopy related to the naalirresidual problem (4) is written [5] as

R(u(@), 1(a)) = S(u(a), 1(a)) + a7 (u(a), 1(a)) =0, for ae(0,1). (13)
This homotopy is run from a known solution(Q), 2(0)) of the problem
S(u(0), 2(0))=0, fora=0, (14)
to the desired solutioru(1), A1(1)) of the residual problem (4), far= 1. The functiori7 (u, 2) defines as
T (u, 2) = R(u, 2) — S(u, 1), (15)
usually contains the nonlinearities. The use of the Taydoies (6) in equation (13) yields generic linear systems
(1St =1d.1=1) + G T 1y =1d.2,-11) (Uks )T = ~{Skiue=0.1=0) — &)1 Tkiu=01=0} = Tke1, Y k=1, ..., (16)
that are similar to the linear systems (10). In (16), the Bagorelated to thg" branch is denoted by, that is
Ty = (Syu=1d.0=1} + aG){T yuy=1d,4,=1})- (17)

The linear systems (16) are closed with either a path equatisome additional constraint. The choiceSo&nd7”
and the closure equation is problem-dependent. Other ctatioal aspects may be automated.

Initially, this homotopy driver was developed for the sautof the generic complex nonlinear eigenvalue problem
(18) arising in the free vibration modeling of viscoelastituctures [5]

R(U, 1) = (K + (Do + D(1)) — AM)u = 0, (18)

assuming that the eigensolutions satisfy, t) = u(x)é“! andw? = A. In equation (18), the stness matrix< and
the mass matriM are real symmetric positive definite. The damping t&pw D(2) is a complex symmetric po-
sitive semidefinite matrix that may depend .0in a nonlinear fashion. In [5], the homotopy is run from onetod
eigensolutions of the real problem (19),

S(u, 2) = (K + Dg — AM)u, (19)
7 (u,2) = D()u, (20)

to the related eigensolution of the complex problem (18k fifass orthonormalization of the eigenvectors

ug ({Sk|uk:0,/ln:0} + ai{ T kue=0,4=0} + Tk—l)
ud ({S1u=0.1-1} + 8G{T1u=0.,=1})

A= — , (21)

is used to deduce the closure equation.
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3.3. Automatic dferentiation (AD)

Given a simulation code, sensitivity computations and éigirder derivatives may be implemented using Auto-
matic Differentiation [21]. AD tools apply the classicati@rentiation rules such as “the derivative of a product of two
functions is the derivative of the first times the seconds pihe derivative of the second times the first”, and so forth.
On the one hand, the source transformation tools [24, 6]qeepo augment the user code with statements encoding
the first order derivative computation in tangent linear modadjoint mode. The generated code is readable, notably
in the tangent linear mode. Some of these tools propose adewder diferentiation too. On the other hand, the
derivative computations may be hidden in an operator oaditg library that includes specific data types as well as
methods that encode the classicdtatientiation rules. The user code is linked to the libraryahpile time (or at
interpretation time) to enable derivative computationsuattime. In both cases, the derivative calculation is airre
to machine precision.

AD is undoubtedly the more practicable approach for the ériginder dfferentiation, combining generality and
ease of use infcient tools [18, 34, 14, 2, 14]. The higher order AD relies @em@tor overloading as the vehicle
of attaching recurrent derivative computations to theharitic operators and intrinsic functions provided by the
programming language. A comprehensive overview of thertiegtes, tools and usage is available on the AD com-
munity’s websitewww . autodiff . org. Main applications are sensitivity analysis, gradiensdzhoptimization and
nonlinear problem solution.

3.3.1. AD usages in the Diamant continuation framework

Devoted to the generic solution of nonlinear parametribj@ms, the Diamant drivers rely on the recurrence for-
mulas (10) and (16), respectively. Each of these sequeridesar systems involves a Jacobian and higher order
derivatives. The Jacobian calculation is a well-knownéssuAD. It may be achieved using a tangent linear code
together with either the canonical basis for small systema,sparse Jacobian evaluation for larger ones. Within Dia-
mant, the Jacobian and the higher order terms are computeglars AD operator overloading library. Consequently,
Diamant inherits from AD’s generality and ease of use.

It is well-known that a particular eierentiation is mandatory for arfieient AD of high level mathematical ope-
rations such as linear solvers, fast Foyriavelet transforms and nonlinear solvers. This also appdi¢he Diamant
continuation drivers.

3.3.2. Diamanlab

Diamanlab [11] is an object-oriented software in Matlalgéaed to the interactive solution offférential algebraic
equation systems. It implements the continuation drive)y.(%olutions branches of the nonlinear problem under study
are computed as a set of Taylor-based solutions stored rkpbats [20, 8]. Each checkpoint contains the Taylor
series information (starting point(0), 2(0)), series and range of validity) and an oriented tangeator that indicates
the continuation direction. Room may be added to collectglementary information such as sensitivities. During the
continuation process, the end point of the last computeddbraecomes the next checkpoint unless the user interacts
with the plotted bifurcation diagram to set another poird tmcontinue.

From a developer point of view, the core Diamanlab classesancerned with the handling of the generic non-
linear problenR, the higher-order AD, the checkpoint management and tleeaotive continuation (graphical user
interface). The higher orderfterentiation methods are gathered in th& &@lor class. The interested reader is re-
ferred to [11] for detail. Diamanlabfiers generality and ease of use at the user level too. Any tcallponlinear
satisfying (4) may be solved deriving a user class from thege system class. For the sake of reproducibility, Dia-
manlab includes a benchmark of classical nonlinear prokldinese may serve as a basis for the implementation of
a new user problem.

The sensitivity driver (23)—(24) presented in paragraghhés been implemented introducing new classes based
on the existing Diamanlab classes. The sensitivity drivamdiits from the graphical user interface. For now, the
homotopy sensitivity driver makes use of thé& @ylor class only.

4. Sensitivity computations and usage

Sensitivity analysis and continuation methods are two efrifajor pillars in computational sciences and engi-
neering. Designing AD-based numerical methods for aceugaantitative sensitivity computations is then a natural
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objective. Several options exist. First, sensitivity lota@s (9, 19) may be approximated using series expanded in

the path variable. Second, local sensitivities denotedJﬁy/l{’) may be computed at particular points. These local

sensitivities do not depend on the path variable. Both nustfawe discussed for the continuation and the homotopy
drivers, together with their benefits and usages.

4.1. Sensitivity branches
The Diamant continuation drivers (10) and (16) arfedentiated with respect to the modeling parametar
order to compute sensitivities as solution branchiési). Such a process involves the Taylor flagents (iZ, A7),

OU o1y (9/1k ok+1d
d_ _— =

e = ap (6paak)(o P and 4= op (6p8ak
that are mixed derivatives of first order rand of higher order iia.

)(o, P, fork=1, ..« (22)

4.1.1. Continuation
The tangent linear étierentiation of (10) with respect foyields thex linear systems [31]

{Rl‘U1:|d,/ll (uk9 /IE)T Rk‘uk O/lk O} - {Rg‘u1=|d'/[1=1}(uk’ /lk)T? v k = 19 (R3] K’ (23)
at = (U — Wyus + (U — uo)ud + (A8 = 2D + (A — )28, Vk=1, .,k (24)

These systems involve the Jacobian exhibited in the caatiiou driver and may be solved at almost no extra cost.
The sensitivity branchesi{, 19) are obtained from a fferentiation of Eq. (6), that is

(u(a,a), 2%a a%) = (Z aud + kataduy, Z aad + kak‘lad/lk). (25)
k=0

From a computer point of view, mixed derivatives [12, 9, 3], i®Bay be computed using a source transformation
AD tool onto the code implementing (the actual user code) to generate a tangent linear ®8d&he sensitivity
driver implemented using Diamanlab solves equations (1Q)-as well as (23)—(24). The higher-order AD ®ft
is performed at interpretation time by definin§ and A% as @ aylor objects. The higher order tensor algorithm
[19], implemented within Rapsodia [14], is less approriatr the evaluation of such mixed derivatives because the
Diamant drivers alternate derivative computations witledir system solutions.

The sensitivity driver is new to Diamanlab. It is used in ppegoh 5.1 to plot branches of sensitivities for the
thermal ignition problem. Some sensitivity results obegirfior diferent viscoelastic sandwich beams and plates are
reported in [31].

4.1.2. Homotopy continuation
The homotopy formulation (16) is fiierentiated with respect to the modeling parampttailowing the diferen-
tiation process presented in paragraph 4.1.1. Thieréntiation of (16) and (17) yields

578) = {S%ul:m,zl )+ a7y Yu=tdy=1) + a?j){Tllulzldlel}’ (26)
J(i)(ug’ /lg)T = _{Sg\uk:O,/lk:O} - a(i){Tlguk:O,zkzo} - a?j){TkIuFO.Ak:O} - Tk—l - J(j)(uk’ A Vk=1.k (27)

The closure equation is to befidirentiated too.

The sensitivity of solution branches is of special intesglsen the trajectory computation is the main objective
of the homotopy [25, 39], including the evolution of the cdexpeigenvalues with respect to a particular modeling
parameter as proposed in paragraph 5.2.2.

4.2. Local sensitivities

Sensitivities along branches may have limited interestnaithe goal of the homotopy is the solution at the end
point only. Likewise, the sensitivity of solution branchesmputed and plotted using an interactive continuation
software may be questionable when the user operates a “jtnmp’one point of the bifurcation diagram to another,
forinstance. The sensitivity drivers should thus allowddocal sensitivity analysis, at either a user-defined cheick
or at the end point of the homotopy method. In both cases, itfierentiation stages ia and p are decoupled and
there are no more mixed derivatives to compute.
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4.2.1. Continuation

Let (u(p), A(p)) be a known solution point. An approximated solution of if#dgy be computed for a small pertur-
bation ofp in the direction of the unit vectqr; as

(u(p + apy), AP+ apy)) = (U(P) + auf(p)), A(P) + A7 (P)), (28)

wherea is a small real parameter and the sensitivlilg,(p), Af(p)) is the first order derivative ofi(p), A(p)) computed
with respect top. From a numerical point of view, one may use either the tantjesar codeR?, or the coder
overloaded for a dierentiation with respect tp.

At a given point, local sensitivities do not depend on thénpatriablea and the path equation (5) cannot be used
to close the system. As in classical parameterized problgradocal sensitivity oli may be computed for a given
A. For the sake of completeness, it is important to mentiohhfgher-order local approximations may be obtained
following the asymptotic analysis proposed in [23].

4.2.2. Homotopy

The diferentiation of the homotopy and the propagation of the dévigs along the path are not mandatory when
one is interested in the sensitivity of the end point solutibhe particular case of the nonlinear eigenvalue problem
with an orthonormality closure constraint (21) is discuaksse paragraph 5.2. This local computation requires one
extra linear system solution at the end point, but it lealtiesTaylor series capabilities available for an optimizatio
method [16, 23, 22] based on a higher ordéfedientiation of the eigenvariablasand with respect to the modeling
parametep. From a numerical point of view, the paper focuses on seitgitiesults only.

5. Numerical results and discussion

The sensitivity drivers are evaluated on a thermal ignigiosblem [1] for the continuation one, and on the damped
beam problem [26] described in the NLEVP benchmark [3] fertibmotopy driver. A frequency-dependentdamping
model [37, 5] is considered to emphasize the abilities ofdlemant driver and to discuss approximated eigenvalue
maps.

5.1. Thermal ignition problem

Branch and checkpoint sensitivity results are proposeth®isteady-state problem presented in Section 2. The
code related to the discrete thermal ignition problem isotiesh byR.

The sensitivity ¢, 1%) = (% %) of the solution ¢, 1) of the thermal ignition model (2)—(3) satisfies
d_ 2.4
d q ut-use ) ( u ) 3 L
AU +(/l A ren) 0 Tra) =0 2= 0DxE1) (29)
u’=0 on the boundaryQ. (30)

Equations (29)—(30) are discretized with the five-poinhsiifinite difference scheme used for the equations (2)—(3)
and implemented in the tangent linear code denote®%byrhis contains the statements®fas well. In Matlab, the
codeR is overloaded at interpretation time for the higher AD. Thasstivity driver solves the equations (10)—(11)
and (23)—(24) to compute the Taylor ¢bheients and the branches of sensitivities following (25) #e& sake of
reproducibility, the sensitivity driver and the user clested to the thermal ignition problem may be obtained from
the corresponding author.

The correctness of the sensitivity process is checked witlassical Taylor test. This compares the sensitivity
result (, 1%) obtained with the sensitivity driver at poiatn the directione® to first order finite diference approxi-
mations computed using the continuation driver as follows

|A(e + ae) — u(e)]
a9, )

lu(e + ae) — u(e)]
alud(e, %)

and r, = (1)

re(u) = for smalle € R. (31)
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a ro(U) Fo(4)
1.E-3 1.13957691646213 0.99771091315504
1.E-4 1.00808650725132 0.99988326634830
1.E-5 1.00075453289025 0.99998938980647
1.E-6 1.00007491725486 0.99999894943411
1.E-7 1.00000748384382 0.99999989502055
1.E-8 1.00000072256463 0.99999997858741
1.E-9 0.99999752919078 1.00000005788443
1.E-10 0.99999122129183 0.99999883793030
1.E-11 1.00003853053399 0.99999639802205

TasLe 1: Taylor test on the sensitivity ofi(0.5, 0.5), 1) with respect to4, €9) = (0.2, 0.1) at the end point of the"Sbranch.

First order approximation of bifurcation diagrams
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Figure 2: Bifurcation diagramsu(0.5,0.5) againsti, and their first order approximations for the thermal igmitiproblem. The sensitivity is
computed at = 0.2. Color online.

Ratios computed at the end point of the fifth branch using® = (0.2,0.1) are reported in Table 1. Theoretically,
these ratio should tend linearly toward 1eagends to O since smadl are necessary to minimize the numerical errors
coming from the finite dterence approximation. However, the subtraction of tooecftwating-point numbers yields

a cancellation error that dominates the truncation erraming from the finite diference computation. Taylor tests
presenting such a behavior indicate that the implementesitsdty computation is correct.

Bifurcation diagrams and their first order approximatioresdisplayed in Fig. 2. Solid lines plot solutions 4)
computed for various values of the modeling parame{btue fore = 0.2, green foke = ¢* and red fofe = 0.3) using
the continuation driver. The solution %) is calculated using the sensitivity driver with the paréene = 0.2 and
the perturbatior® = 0.1. The first order approximated solutions are plotted usaghed lines with same colors. The
agreement between the thermal ignition problem solutiodglaeir approximations using the sensitivity computagion
is good. In particular, the turning point positions are welbroduced for this highly nonlinear problem (Figs. 2 and
3.a).

In Fig. 3.a, the sensitivityu¢, 1%) evaluated along the path fog, €9) = (0.2,0.02) is represented as blue dotted
lines linking the solution computed at= 0.2 (blue curve) to the first order approximatian u?, 1 + 1) (magenta
dashed curve). The solution computedtat 0.22 is plotted using a magenta solid line. Checkpoints areateld
using circles with same colors. This picture shows that ttop@sed continuation driver requires very few branches
computations, about twenty, each one involving a Jacolnarpeitation. The first order approximation of the solution
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Ficure 3: Sensitivities of the solution computedeat 0.2. (a) Along the pathed = 0.1¢. (b) : Local branches at checkpoints. Color online.

L

77 77

Ficure 4: Simply supported damped beam

ate = 0.22 is very good. One notices that the checkpoint locatidgatyy differ due to the adaptive computation of
the validity range@max This is notimportantin the proposed numerical method eMineless, this may be a significant
issue in the sensitivity computations performed by mearimidé difference approximations.

Local sensitivity branches, denoted ly-u®, 1+19) too, are evidenced in Fig. 3.b. These are computed irzitigi
(ud, /lg) to (0,0) at checkpoints to cancel the linear accumulaticthé first order derivatives.

5.2. Nonlinear eigenvalue problems

Initially, the Diamant homotopy driver is designed for tlodugion of the complex frequency-dependent eigenvalue
problems arising in the free vibration modeling [5]. For theke of reproducibility, sensitivity computations are
illustrated on thelamped_beam problem [26] belonging to the collection of nonlinear eigalne problems NLEVP

[3].

5.2.1. NLEVP’s damped beam example

Thedamped_beam problem [26] is a quadratic eigenvalue problem (QEP) [28jiag in the free vibration analysis
of the simply supported beam, Fig. 4, with a damper locatetsimiddle. The damping cdigcientd. is constant.
Assuming that the eigensolutions satisfy, t) = u(x)e*!, the resulting discretéamped_beam QEP is written as

Q(w)u = (w*M + wD + K)u= 0, (32)

where the sftness matrixKk and the mass matrik are symmetric positive definite, and the viscosity mafix
is symmetric positive semidefinite. Tlhiemped_beam modeling parameters are reported in Tab. 2. In NLEVP, the
guadratic polynomia(w) is turned into a linear one,

L(w) = wX+Y =0, (33)
9
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Length L=1m Young modulus E=7x10Pa
Width 1=5x102m Density p=0674Kg.m3
Height H=5x103m Damping cofficient d. =5

TasLe 2: Geometric and material properties of the damped beam.

Diamant & Homotopy results

s NLEVP raw results

x 10°
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— rd —
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Re(w) Re(w)
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Ficure 5: Eigensolutions of the NLEVP damped beam problem. (a) : WREaw results. (b) : Homotopy results.

the dimension of which is twice those @{w). Thedamped_beam raw eigenvalues (Fig. 5.a, no scaling is applied)
are obtained concurrently using a QZ algorithm following

[coeffs, fun] = damped_beam(200); [X, e] = polyeig(coeffs{:});

where the cell arrayoeffs={K,D,M} contains the problem matrices.

The authors make use of this example to draw attention onrirapidinearization aspects such as scaling, condi-
tion numbers and backward errors. Accurate results (Fip.rhay be obtained either by scaling the QEP before the
solution using a linearization [26], or by using the homagtdpiver as proposed in the next paragraph.

5.2.2. Diamant- homotopy
Substitutingw by i VA into the QEP (32) yields the residual problem satisfying (18

(K +iVAD — AM)u = 0, (34)

whereK, M andD are thedamped_beam matrices. The problem (34) is turned into the generic cormptalinear
eigenvalue problem (18) choosilg = 0 andD(1) = i VAD. The complex eigensolutions of (34) are determined from
the real ones in a sequential manner. A unique branch comnnuia necessary per eigenvalue. The eigenvalues with
positive imaginary parts are computed with Diamant andi@tbin Fig. 5.b. The others are reproduced by symmetry.
The computed spectrum agrees with those obtained in [2&h&best linearization.

The Matlab version of the Diamant homotopy driver is obvlgusore time consuming than NLEVP in the solu-
tion of (32). Nevertheless, the homotopy driver has a nurabprecious methodological assets. First, the automation
and generality of Diamant and AD allows for the solution @dvibration problems with nontrivial damping laws [5]
such as a generalized Maxwell model or a Kelvin-Voigt mo8etond, the Taylor-based approximations are obtained
with an a posteriorierror measured and controlled along the path. The lind@iz@hase discussed in [26] is not
necessary. Third, Taylor-based approximations providessto the continuous variation of each of the eigenvalues

10
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<106 Spectrum for various damping coefficient values
o

e

Im(w)
. \-/ .
N——

o ) (:
ol - No damping i
. O.2dc=li
S| - 0.6d=3i AT
. d=5i IR
6 T2 2 o i % ” > o >
Re(w)

Ficure 6: Eigensolutions for various values of the constant dampowgticientd..

along its homotopy path. For instance, Fig. 6 accounts ®etlolution of the spectrum with respect to the damping
codficientad, for a € {0,0.2,0.6, 1}. In other words, the homotopy intrinsically provides a $@rig/ analysis with
respect to the damping function since it is scaled by the patametes.

For illustration purposes, the damping is now achieved idening the frequency-dependent rheological model
determined for the viscoelastic material 3M ISD112 at a terapre of 27 [37],

3

G(w) = Go(l £y A ) (35)

=t w — IQJ‘

whereGo is the shear modulus of the delayed elasticity and \/Z Parametersqj, Q;) are reported in Tab. 3. The
damping is still applied at the middle of the beam using th&im® = D/d.. As in [5], the real constant palti; and
frequency-dependent pafi(w) of the damping function (including the heightldf= 5 x 103 m),

Do + D(w) = HG(w)D, (36)

are split into the homotopy functiodsand7 as follows

3
i Aw \
S(U,A) = (K + HGoD — AM)u, and 77(u, ) = HGO( > ’?‘;2 )Du. 37)
n w — i
i=1 !

Nonlinear mechanics results obtained at homotopy end pairgt discussed in [5] for viscoelastic sandwich beams
and plates. The splitting (38) may also be used,

A ) . (38)

3

S(U,A) = (K-aMu, and 7(u,1) = HGo(l + .
=t w — IQJ'

The choice between these two splittings may be of particnt@rest when an electro-rheological law [40] or a

magneto-rheological law [32] is used. Théfdience between these models and viscoelastic ones is iathmeter

E. that represents an applied electrical or magnetic field teabied. For instance, the shear modulus used in [40]

reads as

G(E.) = myE. + by, (39)
11
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Aj  Qj(rad/s)
0.746 468.7
3.265 4742.4

43.284 715325

WN P

Tasre 3: Parameters for the 3M ISD112 model at a temperature o 237].

Spectrum, frequency—dependent model Spectrum, frequency—dependent model
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Ficure 7: Eigensolutions for various scaling of the damping mo@8é) ((a) : Splitting (37). (b) : Splitting (38)

where the parametens; andby are obtained from experiments. It does not depends.oh homotopy based on the
splitting (37), with7 = myE., enables for the observation of the evolution of the eigkerisms with respect to the
applied electrical field. Work is in progress to considerhsadaw in an actual mechanical framework. Meanwhile,
Fig. 7 plots the eigenvalue evolution for the beam dampeH thie¢ 3M ISD112 function considering the splittings
(37) and (38), respectively. A unique branch computatiameisessary per eigenvalue, except for the first eigenvalue
computed with the splitting (38).

The half spectrums (positive imaginary parts) correspogth damping functionldo+D(w)) for variousa € (0, 1)
are plotted in Figs. 7.a and 7.b for the splitting (37) and)(8&spectively. The choice for one or another splitting
influences the construction of the real eigenvalue problethdetermines the “slope” between the real eigenvalue
(starting point of the homotopy) and the related complermiglue (end point of the homotopy). Intermediate results
are diterent along the path since the path parameeteats as a scaling on only. As expected, the first eigenvalue is
the more sensitive to the splitting choice and both spiigiproduce equivalent eigensolutions at the end points. The
first five complex eigenvalues computed at the end point ofitmotopy are reported in Tab. 5 for the two splittings.

5.2.3. Sensitivities

The few statements of thiamped_beam code are dferentiated (manually) with respect to modeling parameters
to get the tangent linear matrick§, DY andMY. Taylor tests, see Tab. 4, are verified in a systematic maRigere 8
presents sensitivity results for a perturbation of the tgr®eficientp and the two splittings. As expected, the
sensitivity onw is negative because a denser beam vibrates slower and hasflegquencies. Computations are
performed using = 0.674Kg.m 3 andp® = 0.1Kg.m™3. In Figure 9.a, the eigenvalues (color circles, blueder 1,
magenta fora = 0.8, green fora = 0.6, cyan fora = 0.4, red fora = 0.2 and black fora = 0) and their related
sensitivity are added to propose a first order approximdhtatk crosses) of the first nine eigenvalues computed with
p = 0.774Kg.m 3 (with squares and same colors). For the two splittings, twdggreement between squares and
crosses is confirmed by relative errors (abo886) presented in Tab. 5 on the first order approximationsgutia

12
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TasLe 4: Taylor test on the sensitivity of the first complex eigeéneal (at homotopy end point) with respect to a perturbation of dbasity

(p.p") = (0.2,0.0).

Spectrum sensitivity/p, frequency-dependent model

a

ro()
(nlevp,d; = 5i)

ro(A)

(ISD112,H = 5.1073m)

1.E-2
1.E-3
1.E-4
1E-5
1.E-6
1.E-7

0.9889713342713
0.9989467373101
1.0011346796444
1.0145292086048
1.0772568674870
2.6064844849179

0.98895850930239
0.99887758359406
1.00115275243155
1.01473807301412
1.07828544963728
2.61097302946291

Spectrum sensitivity/p, frequency—dependent model
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Ficure 8: Spectrum sensitivity, with respectofor various values of the damping dheient. (Color online).
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Fiure 9: Eigenvalue maps and first order approximationsafer1 (blue),a = 0.8 (magenta)a = 0.6 (green)a = 0.4 (cyan),a = 0.2 (red),a= 0

(black). (a) : Homotopy (37); (b) : Homotopy (38)
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Eigenvalue € = 0.674) Sensitivity Eigenvalues(= 0.774) Path comp.  End-point
Ne w(0.674) w%(0.674 .1) w(0.774) Rel. err. Rel. err.
Splitting (37)
1.130e-002+ 1.018e-001i -8.539e-000+ -1.496e-000i 1.053e002+ 8.872e¢-000i  8.354e-003  8.241e-003
2.904e-002 + 6.424e-018i -2.1546001 + -8.358e-019i 2.709e002 + 4.641e-016i 7.878e-003 7.878e-003
6.6226-002 + 7.0356-000i  -4.932e001+ -8.365e-001i  6.178€002+ 6.296e-000i  7.923e-003  7.936e-003
1.161e-003+ 5.077e-021i  -8.616€001+ -6.396e-022i  1.084€003+ 2.142e-019i  7.878e-003  7.878e-003
1.819e-003+ 4.916e-000i -1.351e002+ -6.365e-001i  1.697003+ 4.357e-000i 7.891e-003 7.893e-003
plitting (38)
1.130e-002 + 1.027e-001i  -8.5306-000+ -1.511e-000i 1.053e-002+ 8.951e-000i 8.341e-003 8.287e-003
2.904e-002 + 3.445e-016i  -2.154€001 + -4.552e-017i  2.709€002 + 2.218e-016i 7.878e-003  7.878e-003
6.6226-002 + 7.0356-000i  -4.931e001+ -8.379e-001i  6.178€002+ 6.296e-000i 7.921e-003  7.936e-003
1.161e-003 + 1.444e-018i -8.6166001 + -1.821e-019i 1.084€003 + 2.175e-021i  7.878e-003  7.878e-003
1.8196-003+ 4.916e-000i  -1.351e002+ -6.367e-001i  1.6976003+ 4.357e-000i 7.891e-003  7.893e-003

ORAWNPRF OONWN PR

TasLe 5: Eigenvaluess and sensitivitieso? to a perturbation of the density computed at the end poirti@hbmotopy path. Relative errors for the
first five eigenvalues and the two splittings.

sensitivityw® computed along the path.

Sensitivities computed along the path with respect to Hoehhiomotopy parameter and one of the modeling pa-
rameter, allow for the construction of approximated eigdume maps. Similar maps may be constructed for the other
modeling parameters. Consequently, approximated eifiggwanay be evaluated in any non trivial direction of per-
turbationap; (e € Rsmall,|p;| = 1) from the homotopy checkpoints.

At the end point of the homotopy, see paragraph 4.2.2, tre kemsitivityw} of a complex eigenvalue may be
obtained from a dferentiation with respect tp of both the mass orthonormalization formula and the gerepiation
(4). The tangent linear equation (40)

Mu} = —0.5Myu, (40)
is derived the orthonormalization formula and solved frdma known complex eigensolution, (1) to compute the
sensitivityuf of the eigenvectoun. The sensitivity/lf of the eigenvalue verifies

{Rlule,uf:o,plzo}/lf +{Ruyp=ou p} = 0. (41)

It may be computed as follows
U {Ryp—0.00.p,)

AP =— , (42)
! UT{Ry1P-1,0P=0,py=0}
to deduce 0
141
p_ -1 4
a)l 2 \/z ( 3)

In equation (42), the tangent linear te(®y r_1 v p,-0} IS the first order derivative ok computed with respect to

only. The complementary tert®yr_our.p,} contains the first order derivatives with respegbndu evaluated using

the direction of perturbatiop; and the sensitivityjf. Thinking in further higher order approximations, comjigtas

are performed using the codeoverloaded for a dierentiation with respect tp. The tangent linear cod® may

also be used. Both methods are implemented and quasigdergsults are obtained. Some relative errors measured
between the perturbed eigensolutien®.774) and their the first order approximation obtained with){442) are
reported in Tab. 5. The flerent approaches proposed to compute the eigenvaluengiasiyield very similar results

at the end points.

6. Conclusions

On the one hand, continuation and homotopy are classicksl fmothe solution of nonlinear parametric problems
arising in engineering applications. On the other handsifieity analysis are precious tools for model improvement

14



conception or uncertainty measurement. Proposing sétsitirivers for the continuation methods is a natural is-
sue. This paper discusses several options for the setsaivalysis with respect to the modeling parameters of the
solution branches produced by continuation, including btmpy, together with particular applications and usages.
Theoretical developments and implementation are realizétle Diamant framework that combines higher order
Taylor approximations to AD, inheriting from the genenalitf Diamant and AD. Numerical results are presented for

O©CO~NOOOTA~AWNPE

a thermal ignition problem and the damped beam problemdsfoen the NLEVP collection. In both cases, accurate
sensitivities are computed.

A particular attention is brought to the complex nonlineigeavalue problems arising in the free vibration mo-

deling of damped structures. A frequency-dependent riggzdb model is considered to emphasize the interest of
sensitivity computations performed along the homotopi péiore precisely, the sensitivity driver we propose allows

for the construction of approximated eigenvalue maps froth b very few Taylor series expanded in the homotopy
path parameter and a sensitivity analysis performed coautly with respect to another modeling parameter. Future
work will be concerned with a higher order conception mettakihg advantage of eigenvalue maps.
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