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Abstract

Sensitivity analysis is a key tool in the study of the relationships between the input parameters of a model and the
output solution. Although sensitivity analysis is extensively addressed in the literature, little attention has beenbrought
to the methodological aspects of the sensitivity of nonlinear parametric solutions computed through a continuation
technique.

This paper proposes four combinations of sensitivity analysis with continuation and homotopy methods, including
sensitivity analysis along solution branches or at a particular point. Theoretical aspects are discussed in the higher
order continuation framework Diamant. The sensitivity methods are applied to a thermal ignition problem and some
free vibration problems. Remarkable eigenvalue maps are produced for the complex nonlinear eigenvalue problems.

Keywords: continuation, homotopy, sensitivity, automatic differentiation, Diamant, complex nonlinear eigenvalue
problem
2010 MSC:35B60, 35C20, 65D25, 68W30, 90C31

1. Introduction

Modeling in engineering frequently results in nonlinear parameterized problems, the solutions of which depend on
a set of modeling parametersp. These may define material properties, a behavior law, a geometry, initial or boundary
conditions. Under-determined nonlinear parametric problems include a particular parameterλ to be varied. Their
solutions form branches in bifurcation diagrams [28, 35]. Under analyticity assumptions, the solutions of nonlinear
problems may be computed through Taylor-based numerical methods and higher order Automatic Differentiation
(AD) [7, 23, 2, 33]. Among them, Diamant [13, 10] is targeted to the solution of nonlinear parametric problems by
continuation.

In numerous scientific domains, sensitivity analysis is of prime importance in the understanding of the relation-
ships between the model inputs (modeling parameters, initial or boundary conditions, for instance) and the solution
or the branch of solutions. Usages are concerned with uncertainty measurements and optimization, for instance. Sen-
sitivity analysis is thus extensively addressed in the literature [17, 29]. Nevertheless, to date, little attention has been
brought to the methodological study of the sensitivity of nonlinear parametric solutions. In other words, the sensiti-
vity analysis to a perturbation in the modeling parameter isoften addressed qualitatively only, by plotting bifurcation
diagrams for different values of the parameters.

The paper discusses several quantitative sensitivity techniques adapted to the higher order continuation and homo-
topy methods proposed by the Diamant framework. Given a scientific problem, the choice for one or another depends
on both the continuation objectives (trajectory computations [39], path planning [4], complex nonlinear eigenvalue
calculation [5]) and the usage of the sensitivity results. The implementation partially relies on Diamanlab [11] that
takes advantage of the AD generality [21] and provides a graphical user interface for an interactive continuation. The
sensitivity drivers are validated on a thermal ignition problem [1] and the damped beam problem described in the
NLEVP benchmark [3]. A frequency-dependent damping model is then considered to propose remarkable eigenvalue
maps for the complex nonlinear eigenvalue problems.

The layout of the paper is as follows. Section 3 discusses theDiamant framework through a brief presentation of
both the continuation driver and the homotopy driver. It moreover provides a short introduction to AD and Diamanlab.
Theoretical aspects and possible usages of sensitivity computations are described in Section 4 meanwhile numerical
results are reported in Section 5. Section 6 provides conclusions.

Preprint submitted to Elsevier 8 avril 2014
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Figure 1: Bifurcation diagrams,u(0.5, 0.5) againstλ, for the thermal ignition problem.

2. Setting of the problem

The solutions of a nonlinear parametric problem form branches (u(p), λ(p)) usually represented in a projected bi-
furcation diagram (Fig. 1) as plots of particular state vector componentsu(p) against the parameterλ(p). The problem
of thermal ignition [1] is chosen as an illustration. The temperature distribution in a material with exothermic reaction
may be written as

∂u
∂t
= ∆u+ λ exp

( u
1+ ǫu

)

, (1)

whereu = (T − Ts)Ea/(RT2
s) is a normalized temperature variable depending on the temperatureT, the surface

temperatureTs, the universal gas constantR and the Arrhenius activation energyEa. In equation (1), the parameter
ǫ defined asRTs/E determines the normalized temperature behavior. The steady-state problem in the unit square
domain,

∆u+ λ exp
( u
1+ ǫu

)

= 0 inΩ = (0, 1)× (0, 1), (2)

u = 0 on the boundary∂Ω, (3)

is discretized using the five-point stencil finite difference method for the Laplace operator. Eleven equidistributed
points are used in each direction. The discrete parametric problem is solved using Taylor-based expansions with a
truncation order of 15 and the Diamanlab software (paragraph 3.3.2). The initial guess (u0, λ0) is such thatu0 ≡ 0 in
Ω andλ0 = 0.

Figure 1 plots the solutions for various values of the parameter ǫ. The caseǫ = 0 corresponds to the Gelfand
equation and exhibits a turning point at (u(0.5, 0.5), λ0) ≃ (6.793, 1.385). For 0< ǫ < ǫ∗, the solution branch presents
two turning pointsλ1 andλ2. From a physical point of view, the material ignition takes place when the turning point
λ1 is passed. The solution branch degenerates forǫ∗ ≃ 0.24174. This value depends on the geometry of the domain
[1]. Former explanations are those of a brief qualitative sensitivity analysis of the solutions of (2)–(3) performed by
plotting curves for various values of the parameterǫ. The quantitative sensitivity analysis of the solution branches
requires the computation of the first order derivatives of (u(p), λ(p)) with respect top in order to propose accurate first
order approximations for the solutions.

Computing quantitative sensitivities is an important issue not only for the understanding of the relationships bet-
ween the nonlinear parametric problem inputs and the outputsolution branches, but also in classical uses of sensitivity
results such as optimization or uncertainty measurement. This paper proposes different options for an accurate calcu-
lation of the sensitivities of the solution branches computed through higher-order continuation methods. Sensitivity
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branches (ud, λd) computed using additional Taylor-based expansions are presented in paragraph 4.1. Then, local sen-
sitivities (up

1, λ
p
1) computed at particular points are proposed in paragraph 4.2. Numerical results, including the thermal

ignition problem, are reported in Section 5. Prior to that, the next section presents the Diamant framework.

3. Higher order continuation framework

Diamant [13, 10] is the AD-based framework derived from the asymptotic numerical method [36, 15]. Under
analyticity assumptions, it automates the solution of the nonlinear parametric problems written in the generic form

R(u(a, p), λ(a, p)) = 0, (4)

a =< u(a, p) − u(0, p),
∂u
∂a

(0, p) > + (λ(a, p) − λ(0, p))
∂λ

∂a
(0, p). (5)

In system (4)–(5), the residual vectorR ∈ Cn depends on the unknown state vectoru(p) ∈ Cn and the scalar parameter
λ(p) to be varied. The variablep denotes the modeling parameters. Equation (5) measures thepseudo-arc length along
the branch of solutions (u(a, p), λ(a, p)) issued from (u(0, p), λ(0, p)). Another path equation may be used to close the
under-determined nonlinear residual problem (4). The branch (u(a, p), λ(a, p)) is approximated using the truncated
Taylor series (6) in a vicinity ofa = 0 following

(u(a, p), λ(a, p)) ≃
(
κ
∑

k=0

ak

k!
∂ku

∂ak
(0, p),

κ
∑

k=0

ak

k!
∂kλ

∂ak
(0, p)

)

=

(
κ
∑

k=0

akuk,

κ
∑

k=0

akλk

)

, (6)

whereκ is the truncation order anduk andλk denote the Taylor coefficients ofu andλ at orderk, respectively. The
Taylor coefficients ofR are denoted byRk and verify

R(u(a, p), λ(a, p)) ≃
κ
∑

k=0

akRk = 0. (7)

For the sake of conciseness, the dependence ofu, λ andR with respect toa andp is omitted in the description of the
continuation driver (paragraph 3.1) and the homotopy driver (paragraph 3.2). From a theoretical and computer point
of view, AD (paragraph 3.3) is a key tool for the evaluation ofthe Taylor coefficients.

3.1. Continuation driver

The analyticity ofR implies that
Rk = 0, for k = 1 to κ. (8)

The truncated series (6) are introduced in the nonlinear problem (4). Using the Faà di Bruno generalized formula [30],
the Taylor coefficientsRk of the compound functionR are expressed as

Rk = {R1|u1=Id,λ1=1}(uk, λk)T + {Rk|uk=0,λk=0} = 0, for k = 1 to κ, (9)

and comprise the same Jacobian{R1|u1=Id,λ1=1} over the orders. This Jacobian contains the tangent linear contributions
resulting from the differentiation ofR with respect tou andλ. The remaining terms{Rk|uk=0,λk=0} contain the nonlinear
contributions depending on the Taylor coefficientsul andλl , for l = 1 to k− 1. The resultingκ linear systems,

{R1|u1=Id,λ1=1}(uk, λk)
T = −{Rk|uk=0,λk=0}, for k = 1 to κ, (10)

a = (uk − u0)u1 + (λk − λ0)λ1, for k = 1 to κ. (11)

allow to determine a higher order approximation for the solution (u, λ) of the generic problem (4)–(5). The solution of
(10)–(11) is performed in an iterative manner fromk = 1 toκ, by alternating higher order derivative computations and
linear system solutions. The continuation driver (10)–(11) is thus a high level mathematical solver. Implementation
detail is reported in [11].

3
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As discussed in previous papers, Diamant is a generic and competitive path following method that may replace
the Newton-Raphson scheme in the solution of any equilibrium system of smooth equations. The step size control is
based on thea posterioriestimation (12) of the range of validity of the series

amax=















β
|u1|
|uκ|















1/κ−1

, (12)

whereβ is a small parameter (usuallyβ = 1.10−6). Residuals are measured at the end of the computed branch of
solutions to evaluate the interest of a correction. In practice, the higher order predictor Diamant is frequently run
without the need for correction steps.

Best practices are concerned with nonlinear mechanical problems involving material or geometrical nonlinearities
[15, 10].

3.2. Homotopy driver
A homotopy is a continuous deformation that allows for the solution of a nonlinear problem from a known so-

lution using a continuation method [27, 35]. Among the best practices relying on homotopy, one may cite trajectory
computations [39], path planning [4], and complex nonlinear eigenvalue problems [5].

In the Diamant framework, the homotopy related to the nonlinear residual problem (4) is written [5] as

R(u(a), λ(a)) = S(u(a), λ(a))+ aT (u(a), λ(a)) = 0, for a ∈ (0, 1). (13)

This homotopy is run from a known solution (u(0), λ(0)) of the problem

S(u(0), λ(0))= 0, for a = 0, (14)

to the desired solution (u(1), λ(1)) of the residual problem (4), fora = 1. The functionT (u, λ) defines as

T (u, λ) = R(u, λ) − S(u, λ), (15)

usually contains the nonlinearities. The use of the Taylor series (6) in equation (13) yields generic linear systems

({S1|u1=Id,λ1=1} + a( j){T1|u1=Id,λ1=1})(uk, λk)T = −{Sk|uk=0,λk=0} − a( j){Tk|uk=0,λk=0} − Tk−1, ∀ k = 1, .., κ, (16)

that are similar to the linear systems (10). In (16), the Jacobian related to thejth branch is denoted byJ( j), that is

J( j) = ({S1|u1=Id,λ1=1} + a( j){T1|u1=Id,λ1=1}). (17)

The linear systems (16) are closed with either a path equation or some additional constraint. The choice ofS andT
and the closure equation is problem-dependent. Other computational aspects may be automated.

Initially, this homotopy driver was developed for the solution of the generic complex nonlinear eigenvalue problem
(18) arising in the free vibration modeling of viscoelasticstructures [5]

R(u, λ) = (K + (D0 +D(λ)) − λM)u = 0, (18)

assuming that the eigensolutions satisfyu(x, t) = u(x)eiωt andω2 = λ. In equation (18), the stiffness matrixK and
the mass matrixM are real symmetric positive definite. The damping termD0 + D(λ) is a complex symmetric po-
sitive semidefinite matrix that may depend onλ in a nonlinear fashion. In [5], the homotopy is run from one ofthe
eigensolutions of the real problem (19),

S(u, λ) = (K + D0 − λM)u, (19)

T (u, λ) = D(λ)u, (20)

to the related eigensolution of the complex problem (18). The mass orthonormalization of the eigenvectors

λk = −
uT

0

(

{Sk|uk=0,λn=0} + a( j){Tk|uk=0,λk=0} + Tk−1

)

uT
0 ({S1|u1=0,λ1=1} + a( j){T1|u1=0,λ1=1})

, (21)

is used to deduce the closure equation.

4
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3.3. Automatic differentiation (AD)
Given a simulation code, sensitivity computations and higher order derivatives may be implemented using Auto-

matic Differentiation [21]. AD tools apply the classical differentiation rules such as “the derivative of a product of two
functions is the derivative of the first times the second, plus the derivative of the second times the first”, and so forth.
On the one hand, the source transformation tools [24, 6] propose to augment the user code with statements encoding
the first order derivative computation in tangent linear mode or adjoint mode. The generated code is readable, notably
in the tangent linear mode. Some of these tools propose a second order differentiation too. On the other hand, the
derivative computations may be hidden in an operator overloading library that includes specific data types as well as
methods that encode the classical differentiation rules. The user code is linked to the library at compile time (or at
interpretation time) to enable derivative computations atrun time. In both cases, the derivative calculation is correct
to machine precision.

AD is undoubtedly the more practicable approach for the higher order differentiation, combining generality and
ease of use in efficient tools [18, 34, 14, 2, 14]. The higher order AD relies on operator overloading as the vehicle
of attaching recurrent derivative computations to the arithmetic operators and intrinsic functions provided by the
programming language. A comprehensive overview of the techniques, tools and usage is available on the AD com-
munity’s websitewww.autodiff.org. Main applications are sensitivity analysis, gradient-based optimization and
nonlinear problem solution.

3.3.1. AD usages in the Diamant continuation framework
Devoted to the generic solution of nonlinear parametric problems, the Diamant drivers rely on the recurrence for-

mulas (10) and (16), respectively. Each of these sequences of linear systems involves a Jacobian and higher order
derivatives. The Jacobian calculation is a well-known issue in AD. It may be achieved using a tangent linear code
together with either the canonical basis for small systems,or a sparse Jacobian evaluation for larger ones. Within Dia-
mant, the Jacobian and the higher order terms are computed using an AD operator overloading library. Consequently,
Diamant inherits from AD’s generality and ease of use.

It is well-known that a particular differentiation is mandatory for an efficient AD of high level mathematical ope-
rations such as linear solvers, fast Fourier/wavelet transforms and nonlinear solvers. This also applies to the Diamant
continuation drivers.

3.3.2. Diamanlab
Diamanlab [11] is an object-oriented software in Matlab targeted to the interactive solution of differential algebraic

equation systems. It implements the continuation driver (10). Solutions branches of the nonlinear problem under study
are computed as a set of Taylor-based solutions stored in checkpoints [20, 8]. Each checkpoint contains the Taylor
series information (starting point (u(0), λ(0)), series and range of validity) and an oriented tangent vector that indicates
the continuation direction. Room may be added to collect complementary information such as sensitivities. During the
continuation process, the end point of the last computed branch becomes the next checkpoint unless the user interacts
with the plotted bifurcation diagram to set another point and to continue.

From a developer point of view, the core Diamanlab classes are concerned with the handling of the generic non-
linear problemR, the higher-order AD, the checkpoint management and the interactive continuation (graphical user
interface). The higher order differentiation methods are gathered in the @Taylor class. The interested reader is re-
ferred to [11] for detail. Diamanlab offers generality and ease of use at the user level too. Any analytical nonlinear
satisfying (4) may be solved deriving a user class from the generic system class. For the sake of reproducibility, Dia-
manlab includes a benchmark of classical nonlinear problems. These may serve as a basis for the implementation of
a new user problem.

The sensitivity driver (23)–(24) presented in paragraph 4.1 has been implemented introducing new classes based
on the existing Diamanlab classes. The sensitivity driver benefits from the graphical user interface. For now, the
homotopy sensitivity driver makes use of the @Taylor class only.

4. Sensitivity computations and usage

Sensitivity analysis and continuation methods are two of the major pillars in computational sciences and engi-
neering. Designing AD-based numerical methods for accurate quantitative sensitivity computations is then a natural

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

objective. Several options exist. First, sensitivity branches (ud, λd) may be approximated using series expanded in
the path variable. Second, local sensitivities denoted by (up

1, λ
p
1) may be computed at particular points. These local

sensitivities do not depend on the path variable. Both methods are discussed for the continuation and the homotopy
drivers, together with their benefits and usages.

4.1. Sensitivity branches
The Diamant continuation drivers (10) and (16) are differentiated with respect to the modeling parameterp in

order to compute sensitivities as solution branches (ud, λd). Such a process involves the Taylor coefficients (ud
k, λ

d
k),

ud
k =
∂uk

∂p
=

(

∂k+1u
∂p∂ak

)

(0, p) and λd
k =
∂λk

∂p
=

(

∂k+1λd

∂p∂ak

)

(0, p), for k = 1, .., κ, (22)

that are mixed derivatives of first order inp and of higher order ina.

4.1.1. Continuation
The tangent linear differentiation of (10) with respect top yields theκ linear systems [31]

{R1|u1=Id,λ1=1}(ud
k, λ

d
k)T = −{Rd

k|uk=0,λk=0} − {R
d
1|u1=Id,λ1=1}(uk, λk)

T , ∀ k = 1, .., κ, (23)

ad = (ud
k − ud

0)u1 + (uk − u0)ud
1 + (λd

k − λd
0)λ1 + (λk − λ0)λd

1, ∀ k = 1, .., κ. (24)

These systems involve the Jacobian exhibited in the continuation driver and may be solved at almost no extra cost.
The sensitivity branches (ud, λd) are obtained from a differentiation of Eq. (6), that is

(ud(a, ad), λd(a, ad)) =
( κ
∑

k=0

akud
k + kak−1aduk,

κ
∑

k=0

akλd
k + kak−1adλk

)

. (25)

From a computer point of view, mixed derivatives [12, 9, 31, 38] may be computed using a source transformation
AD tool onto the code implementingR (the actual user code) to generate a tangent linear codeRd. The sensitivity
driver implemented using Diamanlab solves equations (10)–(11) as well as (23)–(24). The higher-order AD ofRd

is performed at interpretation time by definingud andλd as @Taylor objects. The higher order tensor algorithm
[19], implemented within Rapsodia [14], is less appropriate for the evaluation of such mixed derivatives because the
Diamant drivers alternate derivative computations with linear system solutions.

The sensitivity driver is new to Diamanlab. It is used in paragraph 5.1 to plot branches of sensitivities for the
thermal ignition problem. Some sensitivity results obtained for different viscoelastic sandwich beams and plates are
reported in [31].

4.1.2. Homotopy continuation
The homotopy formulation (16) is differentiated with respect to the modeling parameterp following the differen-

tiation process presented in paragraph 4.1.1. The differentiation of (16) and (17) yields

Jd
( j) = {S

d
1|u1=Id,λ1=1} + a( j){T d

1|u1=Id,λ1=1} + ad
( j){T1|u1=Id,λ1=1}, (26)

J( j)(ud
k, λ

d
k)T = −{Sd

k|uk=0,λk=0} − a( j){T d
k|uk=0,λk=0} − ad

( j){Tk|uk=0,λk=0} − T d
k−1 − J

d
( j)(uk, λk)T , ∀ k = 1, .., κ. (27)

The closure equation is to be differentiated too.
The sensitivity of solution branches is of special interestwhen the trajectory computation is the main objective

of the homotopy [25, 39], including the evolution of the complex eigenvalues with respect to a particular modeling
parameter as proposed in paragraph 5.2.2.

4.2. Local sensitivities
Sensitivities along branches may have limited interest when the goal of the homotopy is the solution at the end

point only. Likewise, the sensitivity of solution branchescomputed and plotted using an interactive continuation
software may be questionable when the user operates a “jump”from one point of the bifurcation diagram to another,
for instance. The sensitivity drivers should thus allow fora local sensitivity analysis, at either a user-defined checkpoint
or at the end point of the homotopy method. In both cases, the differentiation stages ina and p are decoupled and
there are no more mixed derivatives to compute.

6
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4.2.1. Continuation
Let (u(p), λ(p)) be a known solution point. An approximated solution of (4)may be computed for a small pertur-

bation ofp in the direction of the unit vectorp1 as

(u(p+ αp1), λ(p+ αp1)) = (u(p) + αup
1(p)), λ(p) + λp

1(p)), (28)

whereα is a small real parameter and the sensitivity (up
1(p), λp

1(p)) is the first order derivative of (u(p), λ(p)) computed
with respect top. From a numerical point of view, one may use either the tangent linear codeRd, or the codeR
overloaded for a differentiation with respect top.

At a given point, local sensitivities do not depend on the path variablea and the path equation (5) cannot be used
to close the system. As in classical parameterized problems, the local sensitivity ofu may be computed for a given
λ. For the sake of completeness, it is important to mention that higher-order local approximations may be obtained
following the asymptotic analysis proposed in [23].

4.2.2. Homotopy
The differentiation of the homotopy and the propagation of the derivatives along the path are not mandatory when

one is interested in the sensitivity of the end point solution. The particular case of the nonlinear eigenvalue problem
with an orthonormality closure constraint (21) is discussed in paragraph 5.2. This local computation requires one
extra linear system solution at the end point, but it leaves the Taylor series capabilities available for an optimization
method [16, 23, 22] based on a higher order differentiation of the eigenvariablesu andλ with respect to the modeling
parameterp. From a numerical point of view, the paper focuses on sensitivity results only.

5. Numerical results and discussion

The sensitivity drivers are evaluated on a thermal ignitionproblem [1] for the continuation one, and on the damped
beam problem [26] described in the NLEVP benchmark [3] for the homotopy driver. A frequency-dependent damping
model [37, 5] is considered to emphasize the abilities of theDiamant driver and to discuss approximated eigenvalue
maps.

5.1. Thermal ignition problem

Branch and checkpoint sensitivity results are proposed forthe steady-state problem presented in Section 2. The
code related to the discrete thermal ignition problem is denoted byR.

The sensitivity (ud, λd) =
(

∂u
∂ǫ
,
∂λ

∂ǫ

)

of the solution (u, λ) of the thermal ignition model (2)–(3) satisfies

∆ud +

(

λd + λ
ud − u2ǫd

(1+ ǫu)2

)

exp
( u
1+ ǫu

)

= 0 inΩ = (0, 1)× (0, 1), (29)

ud = 0 on the boundary∂Ω. (30)

Equations (29)–(30) are discretized with the five-point stencil finite difference scheme used for the equations (2)–(3)
and implemented in the tangent linear code denoted byRd. This contains the statements ofR as well. In Matlab, the
codeRd is overloaded at interpretation time for the higher AD. The sensitivity driver solves the equations (10)–(11)
and (23)–(24) to compute the Taylor coefficients and the branches of sensitivities following (25). For the sake of
reproducibility, the sensitivity driver and the user classrelated to the thermal ignition problem may be obtained from
the corresponding author.

The correctness of the sensitivity process is checked with aclassical Taylor test. This compares the sensitivity
result (ud, λd) obtained with the sensitivity driver at pointǫ in the directionǫd to first order finite difference approxi-
mations computed using the continuation driver as follows

rα(u) =
|u(ǫ + αǫd) − u(ǫ)|
α|ud(ǫ, ǫd)| and rα = (λ)

|λ(ǫ + αǫd) − u(ǫ)|
α|λd(ǫ, ǫd)| , for smallα ∈ IR. (31)
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α rα(u) rα(λ)
1.E-3 1.13957691646213 0.99771091315504
1.E-4 1.00808650725132 0.99988326634830
1.E-5 1.00075453289025 0.99998938980647
1.E-6 1.00007491725486 0.99999894943411
1.E-7 1.00000748384382 0.99999989502055
1.E-8 1.00000072256463 0.99999997858741
1.E-9 0.99999752919078 1.00000005788443
1.E-10 0.99999122129183 0.99999883793030
1.E-11 1.00003853053399 0.99999639802205

Table 1: Taylor test on the sensitivity of (u(0.5, 0.5), λ) with respect to (ǫ, ǫd) = (0.2, 0.1) at the end point of the 5th branch.
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10
0

10
1

10
2

λ(ε)
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First order approximation of bifurcation diagrams

 

 

Solution (ε=0.2)

Solution (ε=ε*)

1st ord. approx. (ε=ε*)
Solution (ε=0.3)
1st ord. approx. (ε=0.3)

Figure 2: Bifurcation diagrams,u(0.5, 0.5) againstλ, and their first order approximations for the thermal ignition problem. The sensitivity is
computed atǫ = 0.2. Color online.

Ratios computed at the end point of the fifth branch using (ǫ, ǫd) = (0.2, 0.1) are reported in Table 1. Theoretically,
these ratio should tend linearly toward 1 asα tends to 0 since smallα are necessary to minimize the numerical errors
coming from the finite difference approximation. However, the subtraction of too close floating-point numbers yields
a cancellation error that dominates the truncation error coming from the finite difference computation. Taylor tests
presenting such a behavior indicate that the implemented sensitivity computation is correct.

Bifurcation diagrams and their first order approximations are displayed in Fig. 2. Solid lines plot solutions (u, λ)
computed for various values of the modeling parameterǫ (blue forǫ = 0.2, green forǫ = ǫ∗ and red forǫ = 0.3) using
the continuation driver. The solution (ud, λd) is calculated using the sensitivity driver with the parameter ǫ = 0.2 and
the perturbationǫd = 0.1. The first order approximated solutions are plotted using dashed lines with same colors. The
agreement between the thermal ignition problem solutions and their approximations using the sensitivity computations
is good. In particular, the turning point positions are well-reproduced for this highly nonlinear problem (Figs. 2 and
3.a).

In Fig. 3.a, the sensitivity (ud, λd) evaluated along the path for (ǫ, ǫd) = (0.2, 0.02) is represented as blue dotted
lines linking the solution computed atǫ = 0.2 (blue curve) to the first order approximation (u+ ud, λ + λd) (magenta
dashed curve). The solution computed atǫ = 0.22 is plotted using a magenta solid line. Checkpoints are indicated
using circles with same colors. This picture shows that the proposed continuation driver requires very few branches
computations, about twenty, each one involving a Jacobian computation. The first order approximation of the solution
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Figure 3: Sensitivities of the solution computed atǫ = 0.2. (a) Along the path,ǫd = 0.1ǫ. (b) : Local branches at checkpoints. Color online.

L

Figure 4: Simply supported damped beam

at ǫ = 0.22 is very good. One notices that the checkpoint locations slightly differ due to the adaptive computation of
the validity rangeamax. This is not important in the proposed numerical method. Nevertheless, this may be a significant
issue in the sensitivity computations performed by means offinite difference approximations.

Local sensitivity branches, denoted by (u+ud, λ+λd) too, are evidenced in Fig. 3.b. These are computed initializing
(ud

0, λ
d
0) to (0,0) at checkpoints to cancel the linear accumulation in the first order derivatives.

5.2. Nonlinear eigenvalue problems

Initially, the Diamant homotopy driver is designed for the solution of the complex frequency-dependenteigenvalue
problems arising in the free vibration modeling [5]. For thesake of reproducibility, sensitivity computations are
illustrated on thedamped_beam problem [26] belonging to the collection of nonlinear eigenvalue problems NLEVP
[3].

5.2.1. NLEVP’s damped beam example
Thedamped_beamproblem [26] is a quadratic eigenvalue problem (QEP) [26] arising in the free vibration analysis

of the simply supported beam, Fig. 4, with a damper located inits middle. The damping coefficientdc is constant.
Assuming that the eigensolutions satisfyu(x, t) = u(x)eωt, the resulting discretedamped_beamQEP is written as

Q(ω)u = (ω2M + ωD + K)u = 0, (32)

where the stiffness matrixK and the mass matrixM are symmetric positive definite, and the viscosity matrixD
is symmetric positive semidefinite. Thedamped_beam modeling parameters are reported in Tab. 2. In NLEVP, the
quadratic polynomialQ(ω) is turned into a linear one,

L(ω) = ωX + Y = 0, (33)
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Length L = 1 m Young modulus E = 7× 1010 Pa
Width l = 5× 10−2 m Density ρ = 0.674Kg.m−3

Height H = 5× 10−3 m Damping coefficient dc = 5

Table 2: Geometric and material properties of the damped beam.
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Figure 5: Eigensolutions of the NLEVP damped beam problem. (a) : NLEVP raw results. (b) : Homotopy results.

the dimension of which is twice those ofQ(ω). Thedamped_beam raw eigenvalues (Fig. 5.a, no scaling is applied)
are obtained concurrently using a QZ algorithm following

[coeffs, fun] = damped_beam(200); [X, e] = polyeig(coeffs{:});

where the cell arraycoeffs={K,D,M} contains the problem matrices.
The authors make use of this example to draw attention on important linearization aspects such as scaling, condi-

tion numbers and backward errors. Accurate results (Fig. 5.b) may be obtained either by scaling the QEP before the
solution using a linearization [26], or by using the homotopy driver as proposed in the next paragraph.

5.2.2. Diamant& homotopy
Substitutingω by i

√
λ into the QEP (32) yields the residual problem satisfying (18)

(K + i
√
λD − λM)u = 0, (34)

whereK, M andD are thedamped_beam matrices. The problem (34) is turned into the generic complex nonlinear
eigenvalue problem (18) choosingD0 = 0 andD(λ) = i

√
λD. The complex eigensolutions of (34) are determined from

the real ones in a sequential manner. A unique branch computation is necessary per eigenvalue. The eigenvalues with
positive imaginary parts are computed with Diamant and plotted in Fig. 5.b. The others are reproduced by symmetry.
The computed spectrum agrees with those obtained in [26] forthe best linearization.

The Matlab version of the Diamant homotopy driver is obviously more time consuming than NLEVP in the solu-
tion of (32). Nevertheless, the homotopy driver has a numberof precious methodological assets. First, the automation
and generality of Diamant and AD allows for the solution of free vibration problems with nontrivial damping laws [5]
such as a generalized Maxwell model or a Kelvin-Voigt model.Second, the Taylor-based approximations are obtained
with an a posteriorierror measured and controlled along the path. The linearization phase discussed in [26] is not
necessary. Third, Taylor-based approximations provide access to the continuous variation of each of the eigenvalues
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Figure 6: Eigensolutions for various values of the constant damping coefficientdc.

along its homotopy path. For instance, Fig. 6 accounts for the evolution of the spectrum with respect to the damping
coefficientadc for a ∈ {0, 0.2, 0.6, 1}. In other words, the homotopy intrinsically provides a sensitivity analysis with
respect to the damping function since it is scaled by the pathparametera.

For illustration purposes, the damping is now achieved considering the frequency-dependent rheological model
determined for the viscoelastic material 3M ISD112 at a temperature of 27◦ [37],

G(ω) = G0

(

1+
3
∑

j=1

∆ jω

ω − iΩ j

)

, (35)

whereG0 is the shear modulus of the delayed elasticity andω =
√
λ. Parameters (∆ j ,Ω j) are reported in Tab. 3. The

damping is still applied at the middle of the beam using the matrix D̃ = D/dc. As in [5], the real constant partD0 and
frequency-dependent partD(ω) of the damping function (including the height ofH = 5× 10−3 m),

D0 +D(ω) = HG(ω)D̃, (36)

are split into the homotopy functionsS andT as follows

S(u, λ) = (K + HG0D̃ − λM)u, and T (u, λ) = HG0

(
3
∑

j=1

∆ jω

ω − iΩ j

)

D̃u. (37)

Nonlinear mechanics results obtained at homotopy end points are discussed in [5] for viscoelastic sandwich beams
and plates. The splitting (38) may also be used,

S(u, λ) = (K − λM)u, and T (u, λ) = HG0

(

1+
3
∑

j=1

∆ jω

ω − iΩ j

)

D̃u. (38)

The choice between these two splittings may be of particularinterest when an electro-rheological law [40] or a
magneto-rheological law [32] is used. The difference between these models and viscoelastic ones is in the parameter
E∗ that represents an applied electrical or magnetic field to bevaried. For instance, the shear modulus used in [40]
reads as

G(E∗) = mgE∗ + bg, (39)
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j ∆ j Ω j(rad/s)
1 0.746 468.7
2 3.265 4742.4
3 43.284 71532.5

Table 3: Parameters for the 3M ISD112 model at a temperature of 27◦C [37].
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Figure 7: Eigensolutions for various scaling of the damping model (36). (a) : Splitting (37). (b) : Splitting (38)

where the parametersmg andbg are obtained from experiments. It does not depends onω. A homotopy based on the
splitting (37), withT = mgE∗, enables for the observation of the evolution of the eigensolutions with respect to the
applied electrical field. Work is in progress to consider such a law in an actual mechanical framework. Meanwhile,
Fig. 7 plots the eigenvalue evolution for the beam damped with the 3M ISD112 function considering the splittings
(37) and (38), respectively. A unique branch computation isnecessary per eigenvalue, except for the first eigenvalue
computed with the splitting (38).

The half spectrums (positive imaginary parts) corresponding to damping function (D0+D(ω)) for variousa ∈ (0, 1)
are plotted in Figs. 7.a and 7.b for the splitting (37) and (38), respectively. The choice for one or another splitting
influences the construction of the real eigenvalue problem and determines the “slope” between the real eigenvalue
(starting point of the homotopy) and the related complex eigenvalue (end point of the homotopy). Intermediate results
are different along the path since the path parametera acts as a scaling onT only. As expected, the first eigenvalue is
the more sensitive to the splitting choice and both splittings produce equivalent eigensolutions at the end points. The
first five complex eigenvalues computed at the end point of thehomotopy are reported in Tab. 5 for the two splittings.

5.2.3. Sensitivities
The few statements of thedamped_beam code are differentiated (manually) with respect to modeling parameters

to get the tangent linear matricesKd, Dd andMd. Taylor tests, see Tab. 4, are verified in a systematic manner. Figure 8
presents sensitivity results for a perturbation of the density coefficient ρ and the two splittings. As expected, the
sensitivity onω is negative because a denser beam vibrates slower and has lower frequencies. Computations are
performed usingρ = 0.674Kg.m−3 andρd = 0.1Kg.m−3. In Figure 9.a, the eigenvalues (color circles, blue fora = 1,
magenta fora = 0.8, green fora = 0.6, cyan fora = 0.4, red fora = 0.2 and black fora = 0) and their related
sensitivity are added to propose a first order approximation(black crosses) of the first nine eigenvalues computed with
ρ = 0.774Kg.m−3 (with squares and same colors). For the two splittings, the good agreement between squares and
crosses is confirmed by relative errors (about 0.8%) presented in Tab. 5 on the first order approximations using the
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α rα(λ) rα(λ)
(nlevp,dc = 5i) (ISD112,H = 5.10−3m)

1.E-2 0.9889713342713 0.98895850930239
1.E-3 0.9989467373101 0.99887758359406
1.E-4 1.0011346796444 1.00115275243155
1.E-5 1.0145292086048 1.01473807301412
1.E-6 1.0772568674870 1.07828544963728
1.E-7 2.6064844849179 2.61097302946291

Table 4: Taylor test on the sensitivity of the first complex eigenvalue λ (at homotopy end point) with respect to a perturbation of thedensity
(ρ, ρd) = (0.2,0.1).
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Figure 8: Spectrum sensitivity, with respect toρ, for various values of the damping coefficient. (Color online).
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Figure 9: Eigenvalue maps and first order approximations fora = 1 (blue),a = 0.8 (magenta),a = 0.6 (green),a = 0.4 (cyan),a = 0.2 (red),a = 0
(black). (a) : Homotopy (37) ; (b) : Homotopy (38)
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Eigenvalue (ǫ = 0.674) Sensitivity Eigenvalue (ǫ = 0.774) Path comp. End-point
No ω(0.674) ωd(0.674, .1) ω(0.774) Rel. err. Rel. err.
Splitting (37)
1 1.130e+002+ 1.018e+001i -8.539e+000+ -1.496e+000i 1.053e+002+ 8.872e+000i 8.354e-003 8.241e-003
2 2.904e+002+ 6.424e-018i -2.154e+001+ -8.358e-019i 2.709e+002+ 4.641e-016i 7.878e-003 7.878e-003
3 6.622e+002+ 7.035e+000i -4.932e+001+ -8.365e-001i 6.178e+002+ 6.296e+000i 7.923e-003 7.936e-003
4 1.161e+003+ 5.077e-021i -8.616e+001+ -6.396e-022i 1.084e+003+ 2.142e-019i 7.878e-003 7.878e-003
5 1.819e+003+ 4.916e+000i -1.351e+002+ -6.365e-001i 1.697e+003+ 4.357e+000i 7.891e-003 7.893e-003
Splitting (38)
1 1.130e+002+ 1.027e+001i -8.530e+000+ -1.511e+000i 1.053e+002+ 8.951e+000i 8.341e-003 8.287e-003
2 2.904e+002+ 3.445e-016i -2.154e+001+ -4.552e-017i 2.709e+002+ 2.218e-016i 7.878e-003 7.878e-003
3 6.622e+002+ 7.035e+000i -4.931e+001+ -8.379e-001i 6.178e+002+ 6.296e+000i 7.921e-003 7.936e-003
4 1.161e+003+ 1.444e-018i -8.616e+001+ -1.821e-019i 1.084e+003+ 2.175e-021i 7.878e-003 7.878e-003
5 1.819e+003+ 4.916e+000i -1.351e+002+ -6.367e-001i 1.697e+003+ 4.357e+000i 7.891e-003 7.893e-003

Table 5: Eigenvaluesω and sensitivitiesωd to a perturbation of the density computed at the end point of the homotopy path. Relative errors for the
first five eigenvalues and the two splittings.

sensitivityωd computed along the path.
Sensitivities computed along the path with respect to both the homotopy parameter and one of the modeling pa-

rameter, allow for the construction of approximated eigenvalue maps. Similar maps may be constructed for the other
modeling parameters. Consequently, approximated eigenvalues may be evaluated in any non trivial direction of per-
turbationαp1 (α ∈ IR small, |p1| = 1) from the homotopy checkpoints.

At the end point of the homotopy, see paragraph 4.2.2, the local sensitivityωp
1 of a complex eigenvalueω may be

obtained from a differentiation with respect top of both the mass orthonormalization formula and the genericequation
(4). The tangent linear equation (40)

Mup
1 = −0.5M1u, (40)

is derived the orthonormalization formula and solved from the known complex eigensolution (u, λ) to compute the
sensitivityup

1 of the eigenvectoru. The sensitivityλp
1 of the eigenvalue verifies

{R1|λp
1=1,up

1=0,p1=0}λ
p
1 + {R1|λp

1=0,up
1,p1
} = 0. (41)

It may be computed as follows

λ
p
1 = −

uT{R1|λp
1=0,up

1,p1
}

uT{R1|λp
1=1,up

1=0,p1=0}
, (42)

to deduce

ω
p
1 =

1
2

λ
p
1√
λ
. (43)

In equation (42), the tangent linear term{R1|λp
1=1,up

1=0,p1=0} is the first order derivative ofR computed with respect toλ
only. The complementary term{R1|λp

1=0,up
1 ,p1
} contains the first order derivatives with respect top andu evaluated using

the direction of perturbationp1 and the sensitivityup
1. Thinking in further higher order approximations, computations

are performed using the codeR overloaded for a differentiation with respect top. The tangent linear codeRd may
also be used. Both methods are implemented and quasi-identical results are obtained. Some relative errors measured
between the perturbed eigensolutionsω(0.774) and their the first order approximation obtained with (41)–(42) are
reported in Tab. 5. The different approaches proposed to compute the eigenvalue sensitivities yield very similar results
at the end points.

6. Conclusions

On the one hand, continuation and homotopy are classical tools for the solution of nonlinear parametric problems
arising in engineering applications. On the other hand, sensitivity analysis are precious tools for model improvement,
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conception or uncertainty measurement. Proposing sensitivity drivers for the continuation methods is a natural is-
sue. This paper discusses several options for the sensitivity analysis with respect to the modeling parameters of the
solution branches produced by continuation, including homotopy, together with particular applications and usages.
Theoretical developments and implementation are realizedin the Diamant framework that combines higher order
Taylor approximations to AD, inheriting from the generality of Diamant and AD. Numerical results are presented for
a thermal ignition problem and the damped beam problem issued from the NLEVP collection. In both cases, accurate
sensitivities are computed.

A particular attention is brought to the complex nonlinear eigenvalue problems arising in the free vibration mo-
deling of damped structures. A frequency-dependent rheological model is considered to emphasize the interest of
sensitivity computations performed along the homotopy path. More precisely, the sensitivity driver we propose allows
for the construction of approximated eigenvalue maps from both a very few Taylor series expanded in the homotopy
path parameter and a sensitivity analysis performed concurrently with respect to another modeling parameter. Future
work will be concerned with a higher order conception methodtaking advantage of eigenvalue maps.
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