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Minimal penalty for Goldenshluger-Lepski method

C. Lacour(1) & P. Massart(1)

Januar 2015

Abstract

This paper is concerned with adaptive nonparametric estimation using the Goldenshluger-
Lepski methodology. This method is designed to select an estimator among a collection
(f̂h)h∈H by minimizing B(h) + V (h) with B(h) = sup{[‖f̂h′ − f̂h‖ − V (h′)]+, h

′ ∈ H} and
V (h) a variance term. In the case of density estimation with kernel estimators, it is shown
that the procedure fails if the variance term is chosen too small: this gives for the first time a
minimal penalty for the Goldenshluger-Lepski methodology. Some simulations illustrate the
theoretical results.

1 Introduction

A challenging task in nonparametric estimation is the data-driven selection of an estimator among a
collection. Selecting a bandwidth for kernel estimators, or a level resolution for wavelet estimators,
is of crucial importance for theoretical and practical issues. The most (theoretically-justified)
known methods for adaptive estimation are wavelet thresholding (Donoho et al., 1996), Lepski’s
method (Lepskĭı, 1990), and model selection (Barron et al., 1999) (see also Birgé (2001) for the
link between model selection and Lepski’s method). A more recent procedure is the one introduced
by Goldenshluger and Lepski (2008). This method proposes a data-driven choice of h to select an

estimator among a collection (f̂h)h∈H. To sum up, the selected ĥ is chosen as a minimizer of
B(h) + V (h) with

B(h) = sup{[‖f̂h′ − f̂h,h′‖2 − V (h′)]+, h
′ ∈ H}

where x+ denotes the positive part max(x, 0) and where f̂h,h′ are oversmoothed auxiliary estima-
tors and V (h) is a penalty term (called ”majorant”) to be suitably chosen. They first develop their
methodology in white noise model (Goldenshluger and Lepski, 2008, 2009), next for density esti-
mation (Goldenshluger and Lepski, 2011) and then for various models (Goldenshluger and Lepski,
2013). Their initial objective was to provide an adaptive procedure for multivariate and anisotropic
estimation. They use it to give minimax rates of convergence in very general framework (see
Goldenshluger and Lepski, 2014). To this purpose, they have established oracle inequalities to

ensure that, if V (h) is large enough, the final estimator f̂ĥ is almost as efficient as the best one
in the collection. The Goldenshluger-Lepski methodology has already been fruitfully applied in
various contexts: transport-fragmentation equations (Doumic et al., 2012), anisotropic deconvolu-
tion (Comte and Lacour, 2013), warped bases regression (Chagny, 2013) among others (see also
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Bertin et al. (2015) which contains some explanation on the methodology). We cannot close this
paragraph without cite the nice work of Laurent et al. (2008), who have independently introduce
a very similar method, in order to adapt model selection in a pointwise framework.

In this paper we focus on the calibration of the penaly term V . It is known that the method
achieves good results for V large enough. But what is the minimal (and the optimal) value for V
to keep this good behavior? We consider this issue from a theoretical point of view but actually it
is decisive for a practical implementation of the method. The main contribution of this paper is to
evidence an explosion phenomenon: if the penalty term V is chosen smaller than some critical V0,
the risk ‖f − f̂ĥ‖ is proven to dramatically increase, though for V > V0 this risk is quasi-optimal.
Proofs are extensively based on concentration inequalities. In particular, left tail concentration
inequalities are used to prove the explosion result. We also implement numerical simulations which
corroborate this behavior.

We assume here that the function to estimate is univariate and we study the Goldenshluger-
Lepski methodology without oversmoothing. That is to say that we do not use auxiliary estimators.
Indeed, this is not the heart of the method, and only induces slight changes in the bias term in
our context. Thus the precise procedure we study is the following one: the selected ĥ is chosen as
a minimizer of B(h) + V (h) where

B(h) = sup{[‖f̂h − f̂h′‖2 − V (h′)]+, h
′ ∈ H}.

The term V (h) is chosen proportional to the variance of f̂h.
We first present some heuristics in Section 2 in order to well understand the working of the

method. In Section 3 we recall the oracle inequality that can be obtained in the framework of
density estimation. Then Section 4 contains our main theorem about minimal penalty. This result
is illustrated by some simulations (Section 5). Finally, some proofs are gathered in Section 7 after
some concluding remarks.

2 Heuristics in the Gaussian white noise model

In this section we consider the following Gaussian white noise model. Indeed, the Euclidean
structure in this framework allows to better understand the phenomena at play. Let

dYε(x) = f(x)dx + εdW (x)

where f is the signal to estimate, W the standard Brownian motion and ε the noise level. By
projection on an orthonormal basis (ϕj), we derive the classical Gaussian sequence model

yj =

∫

f(x)ϕj(x)dx + εξj

where the ξj are i.i.d. normal variables. We consider subspaces of L2 for 1 ≤ m ≤ N : Sm :=
Span(ϕj , . . . , ϕDm

) where the dimensions Dm are assumed to be ordered, such that m ≤ m′ ⇔
Sm ⊂ Sm′ . Then we can introduce the estimators of f :

f̂m =

Dm
∑

j=1

yjϕj ,
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and

fm = E(f̂m) =

Dm
∑

j=1

(
∫

f(x)ϕj(x)dx

)

ϕj

the projection of f on the vectorial space Sm := Span(ϕj , . . . , ϕDm
).

Denoting ‖.‖ the L2 norm, we are interested in the following procedure:

B(m) = sup
m′≥m

{‖f̂m′ − f̂m‖2 − aε2Dm′}+,

m̂ = argmin
m

{B(m) + aε2Dm},

with a a tuning parameter of interest. This is simply the Goldenshluger-Lepski method in this
context. Here V (m) = aε2Dm = a

∫

Var(f̂m). For the following computations, we shall use
Pythagorean theorem which leads to

∀m′ ≥ m ‖f̂m′ − f̂m‖2 = ‖f̂m′‖2 − ‖f̂m‖2,

and
∀m′ ≥ m ‖fm′ − fm‖2 = ‖f − fm‖2 − ‖f − fm′‖2 = ‖fm′‖2 − ‖fm‖2.

In the sequel, we attempt to give some links between this Goldenshluger-Lepski method and
others adaptive methods, and we provide some heuristic insight of the behavior of the method.

• Let us first observe the link with the classical Lepski method (Lepskĭı, 1990). Using the
previous equations, we can rewrite

B(m) = sup
m′≥m

{‖f̂m′‖2 − ‖f̂m‖2 − aε2Dm′}+.

Thus B is a nonincreasing function with m. It vanishes from some point m̄. This m̄ is exactly
the one of the Lepski method:

m̄ = min{m, ∀m′ ≥ m ‖f̂m − f̂m′‖2 ≤ aε2Dm′}.

It is easy to see that m̂ ≤ m̄. Actually, when a > 1, m̂ = m̄ with high probability.

• We can also find a link with the classical model selection method (Barron et al., 1999). If we
remove the positive part, we can introduce:

B2(m) = sup
m′≥m

{‖f̂m′ − f̂m‖2 − aε2Dm′}

which is equal to
B2(m) = sup

m′≥m
{‖f̂m′‖2 − aε2Dm′} − ‖f̂m‖2.

Then, denoting by Cr(m) = −‖f̂m‖2 + aε2Dm, we obtain

m̂2 = argmin
m

sup
m′≥m

{Cr(m)− Cr(m′)} = argmin
m

Cr(m).

This is the classical model selection method.
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Now let us study the mean behavior of B(m). For all m′ ≥ m,

E‖f̂m′ − f̂m‖2 =
Dm′
∑

Dm+1

Ey2j = ‖fm′ − fm‖2 + ε2(Dm′ −Dm)

and concentration results ensure that ‖f̂m′− f̂m‖2 is close to this expectation with high probability.
Hence, with great probability B(m) is close to

sup
m′≥m

{‖fm′ − fm‖2 + ε2(Dm′ −Dm)− aε2Dm′}+

= sup
m′≥m

{‖f − fm‖2 − ‖f − fm′‖2 + (1− a)ε2Dm′ − ε2Dm}+

Now let us study the behavior of this quantity according to the value of 1− a.

• If a ≤ 1: in this case the quantity −‖f − fm′‖2 + (1 − a)ε2Dm′ is non-decreasing with m′.
Therefore

sup
m′≥m

{‖fm′ − fm‖2 + (1− a)ε2Dm′ − ε2Dm}+

= {−‖f − fN‖2 + (1− a)ε2DN + ‖f − fm‖2 − ε2Dm}+
where N is the biggest model. Then, with great probability, the criterion to minimize is

‖f − fm‖2 − ε2Dm + aε2Dm

(except when m is very close to N , where it is aε2Dm). Then m̂ ≈ N , which is the worst choice.
We shall find again this result in Theorem 3.

• In the case where a = 1, we shall assume for the sake of simplicity that fN = f (that is
f belongs to the largest model). Using previous computations, we can see that B(m) is close to
{‖f − fm‖2 − ε2Dm}+. Introduce m∗ the ”oracle point“ such that ‖f − fm∗‖2 ≈ ε2Dm∗ Then

B(m) ≈ {‖f − fm‖2 − ε2Dm}+ =

{

‖f − fm‖2 − ε2Dm for m ≤ m∗,

0 for m > m∗.

and the criterion to minimize is close to ‖f − fm‖2 for m ≤ m∗, and ε2Dm for m > m∗. Thus
m̂ ≈ m∗.

• If a > 1: The penalty term aε2Dm′ allows us to compensate the variance ε2(Dm′ − Dm)
so that B(m) can be upper bounded with great probability by ‖fm′ − fm‖2 ≤ ‖f − fm‖2. Then
(1) appears as a bias variance tradeoff and the procedure is efficient, see the oracle inequality in
Proposition 1.

This discussion shows that a = 1 seems to be a critical value for the penalty term: the method
fails if a < 1, and succeeds as soon as a ≥ 1. In the following we come back to the density model
with kernel estimators. However we shall see that the behavior of the method is almost the same,
replacing projection estimators by kernel ones, ε2 by 1/n and Dm′ −Dm by ‖Kh′ −Kh‖2.
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3 Kernel density estimation framework and upper bound

on the risk

We consider independent and identically distributed real variables X1, . . . , Xn with unknown den-
sity f . Let ‖.‖ the L2 norm for the Lebesgue measure. For h a bandwidth we can define the
classical estimator

f̂h(x) =
1

n

n
∑

i=1

Kh(x−Xi)

where K is a kernel and Kh = K(./h)/h. Now from {f̂h, h ∈ H} the collection of estimators, the
procedure is the following. The bias is estimated by

B(h) = sup
h′≤h

[

‖f̂h′ − f̂h‖2 − V (h′)
]

+
with V (h′) = a

‖Kh′‖2
n

(1)

and the selected bandwidth is
ĥ = argmin

h∈H
{B(h) + V (h)} . (2)

This is the same procedure as for Gaussian white noise model with the classical equivalence ε2 =
1/n and also m = 1/h and ‖Kh‖2/n = εDm the variance term. We introduce the following
notation:

fh := E(f̂h), hmin := minH, hmax := maxH
D(h) := max( sup

h′≤h
‖fh′ − fh‖, ‖f − fh‖) ≤ 2 sup

h′≤h
‖fh′ − f‖

We assume that the kernel verifies assumption

(K0)
∫

|K| = 1, ‖K‖ < ∞ and

∀ 0 ≤ x ≤ 1
〈K,K(x.)〉

‖K‖2 ≥ 1.

This is verified for classical kernels (Gaussian kernel, rectangular kernel, Epanechnikov kernel,
biweight kernel; see Lemma 4). This entails that for all h′ ≤ h, ‖Kh′ −Kh‖2 ≤ ‖Kh′‖2 − ‖Kh‖2
which is a key property for our results.

Let us now recall what can be obtained if a is well chosen.

Proposition 1. Assume that f is uniformly bounded and K verifies (K0). Assume that a > 1.
Then, with probability larger than

1− 2
∑

h∈H

∑

h′≤h

max(e−c
√
n, e−c/h′

),

where c is a constant only depending on ‖K‖, a and ‖f‖∞, the following holds

‖f̂ĥ − f‖ ≤ C0 inf
h∈H

{

D(h) +
√
a
‖Kh‖√

n

}
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with C0 > 1 +
√

2a
a−1 . Moreover, if h−1

max ≤ √
n, there exists a positive C = C(K, f) such that

E‖f̂ĥ − f‖2 ≤ 2

(

3a− 1

a− 1

)2

inf
h∈H

{

D2(h) + a
‖Kh‖2

n

}

+ C
|H|2
hmin

e−
(1−a−1)2

Chmax

For H = {e−k, ⌈2 log logn⌉ ≤ k ≤ ⌊logn⌋}, the remainder term is bounded by e−(1−a−1)2(logn)2/C′

.

We recognize in the right members the classical bias variance tradeoff. This oracle inequality
shows that the Goldenshluger-Lepski methodology works when a > 1.

The proof of Proposition 1 is postponed in Section 7.1, and is based on the following concen-
tration result (adapted from Klein and Rio (2005))

Lemme 2. Let X1, . . . , Xn be a sequence of i.i.d. variables and ν(t) = n−1
∑n

i=1[gt(Xi) −
E(gt(Xi))] for t belonging to a countable set of functions F . Assume that for all t ∈ F ‖gt‖∞ ≤ b
and Var(gt(X1)) ≤ v. Denote H = E(supt∈F ν(t)). Then, for any ε > 0, for H ′ ≥ H,

P(sup
t∈F

ν(t) ≥ (1 + ε)H ′) ≤ max

(

exp

(

−ε2

6

nH ′2

v

)

, exp

(

−min(ε, 1)ε

24

nH ′

b

))

(3)

P(sup
t∈F

ν(t) ≤ H − εH ′) ≤ max

(

exp

(

−ε2

6

nH ′2

v

)

, exp

(

−min(ε, 1)ε

24

nH ′

b

))

(4)

Moreover

Var(sup
t∈F

ν(t)) ≤ v

n
+ 4

bH

n
(5)

4 Minimal penalty

In this section, we are interested in finding a minimal penalty V (h), beyond which the procedure
fails. Indeed, if a and then V (h) is too small, the minimization of the criterion amounts to minimize
the bias, and then to choose the smallest possible bandwidth. This leads to the worst estimator
and the risk explodes.

In the following result hmin denotes the smallest bandwidth in H and is of order 1/n.

Theorem 3. Assume that f is uniformly bounded. Choose H = {e−k, ⌈2 log logn⌉ ≤ k ≤ ⌊logn⌋}
as a set of bandwidths. Consider for K the Gaussian kernel, the rectangular kernel, the Epanech-
nikov kernel or the biweight kernel. If a < 1 where a is defined in (1), then, for n large enough

(depending on f and K), the selected bandwidth ĥ satisfies

∃C > 0 P(ĥ ≥ 3hmin) ≤ C(logn)2 exp(−(log n)2/C)

i.e. ĥ < 3hmin with high probability. Moreover

lim inf
n→∞

E‖f − f̂ĥ‖2 > 0

This theorem is proved in Section 7.2 for more general kernels and bandwith sets. It ensures
that the critical value for the parameter a is 1. Beyond this value, the selected bandwidth ĥ is of
order 1/n, which is very small (remember that for minimax study of a density with regularity α,
the optimal bandwidth is n−1/(2α+1)), then the risk cannot tend to 0.
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5 Simulations

In this Section, we illustrate the role of tuning parameter a, the constant in the penalty term V .
The aim is to observe the evolution of the risk for various values of a. Is the critical value a = 1
observable in practice? To do this, we simulate data X1, . . . , Xn for several densites f . Next, for
a grid of values for a, we compute the selected bandwidth ĥ, the estimator f̂ĥ and the integrated

risk ‖f̂ĥ − f‖2.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Cauchy   

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Uniform  

−0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
Expo     

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Mix2Gauss

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
Claw     

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
HistIrreg

Figure 1: Plots of true density f for Examples 1–6

We consider the following examples, see Figure 1:

Example 1 f is the Cauchy density

Example 2 f is the uniform density U(0, 1)

Example 3 f is the exponential density E(1)

Example 4 f is a mixture of two normal densities 1
2N (0, 1) + 1

2N (3, 9)

Example 5 f is a mixture of normal densities sometimes called Claw

Example 6 f is a mixture of eight uniform densities
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We implement the method for various kernels, but we only present results for Gaussian kernel,
since the choice of kernel does not modify the results. On the other hand, the method is sensitive
to the choice of bandwidths set H: here we use

H = {e−k, 3 ≤ k ≤ 10} ∪ {0.002 + k × 0.02, 0 ≤ k ≤ 24}.

For n = 5000 and n = 50000, and several values of a, the Figure 2 plots

C0 = Ẽ
‖f̂ĥ − f‖2

minh∈H ‖f̂h − f‖2

where Ẽ means the empirical mean on N = 50 experiments. Thus smaller C0 better the estimation.
Moreover, we also plot on Figure 3 the selected bandwidth compared to the optimal bandwidth in
the selection (for N = 1 experiment), i.e.

ĥ− h0 where ‖f̂h0 − f‖2 = min
h∈H

‖f̂h − f‖2.
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Figure 2: Oracle constant C0 as a function of a, for Examples 1–6

We can observe that the risk (and then the oracle constant C0) is very high for small values
of a, as expected. Then it jumps to a small value, that indicates the method begins to work well.
For too large values of a the risk finally goes back up. Thus we observe in practice what was
announced by the theory. Notice that the theory is asymptotic. That is why in practice, the jump
may be not exactly at a = 1, especially for small values of n. For irregular densities (examples 2,
5, 6), the optimal bandwidth is very low, then it is consistent to observe a smaller jump for the
bandwidth choice. However the jump does exist and this is the interesting point.
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Figure 3: ĥ− h0 as a function of a, for Examples 1–6

6 Discussion

To precisely calibrate the penalty V , we face a practical problem: just before a = 1, the risk
explodes, and just after the result is optimal. Then we can consider another procedure:

B(h) = sup
h′≤h

[

‖f̂h′ − f̂h‖2 − a
‖Kh′‖2

n

]

+

,

ĥ = argmin
h∈H

{

B(h) + b
‖Kh‖2

n

}

.

with b 6= a (here we just study the case a = b). The differentiation between a and b could enable
a better calibration. Preliminar computations indicate that a = 1 and b = 2 may be optimal. But
addressing the optimality issue requires further developpment that we do not want to give here.
A good track for practical purpose seems to use the procedure of Section 3 to find a0 where there
is a jump in the risk: a0 = 1 in the theory but could be slightly different in practice (simulations
show that this jump is very perceptible), and then to choose b = 2a0.

7 Proofs

7.1 Proof of Proposition 1

The first step is to write, for some fixed h ∈ H,

‖f̂ĥ − f‖ ≤ ‖f̂ĥ − f̂h‖+ ‖f̂h − f‖.

The last term can be splitted in ‖f̂h − fh‖ + ‖fh − f‖ ≤ ‖f̂h − fh‖ + D(h). Notice that for all

h′ ≤ h, using (1), ‖f̂h′ − f̂h‖2 ≤ B(h) + V (h′), which can be written , for all h, h′;

‖f̂h′ − f̂h‖2 ≤ B(h ∨ h′) + V (h ∧ h′)

9



where h ∨ h′ = max(h, h′) and h ∧ h′ = min(h, h′). Then, using (2),

‖f̂ĥ − f̂h‖2 ≤ B(h ∨ ĥ) + V (h ∧ ĥ) ≤ B(h) + V (h) + max(B(h), V (h)).

We obtain, for any h ∈ H,

‖f̂ĥ − f‖ ≤
√

2B(h) + 2V (h) +D(h) + ‖f̂h − fh‖.

Thus the heart of the proof is to control B(h) = suph′≤h

[

‖f̂h′ − f̂h‖2 − V (h′)
]

+
by a bias term.

First we center the variables and write, for θ a real in (0, a− 1),

‖f̂h′ − f̂h‖2 ≤ (1 + θ)‖f̂h′ − fh′ − f̂h + fh‖2 + (1 + θ−1)‖fh′ − fh‖2

Moreover ‖f̂h′ − fh′ − f̂h + fh‖ = supt∈B ν(t) where B is the unit ball in L2 and

ν(t) = 〈t, f̂h′ − fh′ − f̂h + fh〉 =
1

n

n
∑

i=1

gt(Xi)− E(gt(Xi))

with

gt(X) =

∫

(Kh′ −Kh)(x −X)t(x)dx.

We shall now use the concentration inequality stated in Lemma 2, with F a countable set in
B such that supt∈F ν(t) = supt∈B ν(t). To apply result (3), we need to compute b, H and v.

• For all y ∈ R, since t ∈ B,

|gt(y)| = |
∫

(Kh′ −Kh)(x− y)t(x)dx| ≤ ‖Kh′ −Kh‖‖t‖ ≤ ‖Kh′ −Kh‖ ≤ ‖Kh′‖

so that b = ‖Kh′‖. We used assumption (K0) which implies, for h′ ≤ h, ‖Kh′ − Kh‖2 ≤
‖Kh′‖2 − ‖Kh‖2 ≤ ‖Kh′‖2.

• Jensen’s inequality gives H2 ≤ E(supt∈F ν2(t)). Now

sup
t∈F

ν2(t) = ‖f̂h′ − fh′ − f̂h + fh‖2

= ‖ 1
n

n
∑

i=1

(Kh′ −Kh)(x−Xi)− E((Kh′ −Kh)(x −Xi))‖2

E(sup
t∈F

ν2(t)) =

∫

Var(
1

n

n
∑

i=1

(Kh′ −Kh)(x−Xi))dx

=
1

n

∫

Var((Kh′ −Kh)(x−X1))dx (6)

≤ 1

n

∫

E((Kh′ −Kh)
2(x −X1))dx ≤ 1

n
‖Kh′ −Kh‖2 ≤ 1

n
‖Kh′‖2

Then H2 ≤ n−1‖Kh′‖2.
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• For the variance term, let us write

Var(gt(X1)) ≤ E

[

(
∫

(Kh′ −Kh)(x−X)t(x)dx)

)2
]

≤ E

[
∫

|Kh′ −Kh|(x−X)dx

]

E

[
∫

|Kh′ −Kh|(x−X)t2(x)dx

]

≤ ‖Kh′ −Kh‖21‖f‖∞‖t‖2 ≤ 4‖K‖21‖f‖∞‖t‖2

since ‖Kh′ −Kh‖1 ≤ 2‖K‖1. Then v = 4‖K‖21‖f‖∞ = 4‖f‖∞.

Finally, using (3), with probability larger than 1−∑h′<hmax(e−
ε2∧ε
24

√
n, e−

ε2‖K‖2

24‖f‖∞

1
h′ )

∀h′ ≤ h ∈ H ‖f̂h′ − fh′ − f̂h + fh‖ ≤ (1 + ε)
‖Kh′‖√

n

where ε is such that a > (1+ε)(1+θ). Then, with probability 1−∑h∈H
∑

h′≤h max(e−
ε2∧ε
24

√
n, e−

ε2‖K‖2

24‖f‖∞
1
h′ )

for any h,
B(h) ≤ (1 + θ−1)D(h)2

In the same way, choosing ǫ =
√
a−1, we can prove with probability 1−∑h∈Hmax(e−

ǫ2∧ǫ
24

√
n, e−

ǫ2‖K‖2

6‖f‖∞
1
h )

for any h,

‖f̂h − fh‖ ≤ (1 + ǫ)
‖Kh‖√

n
=
√

V (h)

Finally, with high probability,

‖f̂ĥ − f̂h‖ ≤
√

2(1 + θ−1)D(h)2 + 2V (h) +D(h) +
√

V (h)

≤ C0D(h) + (
√
2 + 1)

√

V (h)

with C0 > 1 +
√

2(1 + (a− 1)−1) = 1 +
√

2a
a−1 . Regarding the second result, note that the rough

bound ‖f̂h‖2 ≤ ‖Kh‖2 ≤ ‖K‖2/hmin is valid for all h. Then, denoting A the set on which the
previous oracle inequality is verified,

E‖f̂ĥ − f‖2 ≤ E‖f̂ĥ − f‖21A + 2(‖f‖2 + ‖K‖2/hmin)P(A
c)

with

P(Ac) ≤ 2
∑

h,h′∈H
max(e−

ε2∧ε
24

√
n, e−

ε2‖K‖2

24‖f‖∞
1
h′ ) ≤ 2|H|2e−2C(K,f) ε2∧ε

hmax

It is then sufficient to take ε = a−1
2a and C0 = 3a−1

a−1 .
�
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7.2 Proof of Theorem 3

We shall prove a more general version of the theorem, where several bandwidths sets H and kernels
K are possible. We denote Crit(h) := B(h) + V (h) and EH = min{h/h′;h ∈ H, h′ ∈ H, h > h′}.
We assume that EH does not depend on n and is larger than 1 (H = {e−k, an ≤ k ≤ bn} suits
with EH = e). Let us define

φ(x) = ‖K‖−2‖K −Kx‖2 = 1 +
1

x
− 2

〈K,K(x.)〉
‖K‖2 .

We assume that the kernel K satisfies :

(K1) the function φ is bounded from below over [EH,+∞),

(K2) for 0 < µ < 1, the function φ(x) − µ
x tends to +∞ when x → 0 and is decreasing in some

neighborhood of 0,

(K3) for 0 < µ < 1, the function φ(x) + µ
x is increasing for x ≥ 2.

These assumptions are mild, as shown in the following Lemma, proved in Section 7.3.

Lemme 4. The following kernels satisfy assumptions (K0–K3):

a - Gaussian kernel: K(x) = e−x2/2/
√
2π

b - Rectangular kernel: K(x) = 1[−1,1](x)/2

c - Epanechnikov kernel: K(x) = (3/4)(1− x2)1[−1,1](x)

d - Biweight kernel: K(x) = (15/16)(1− x2)21[−1,1](x)

The general result is:

Theorem 5. Assume (K0–K3) and that f is uniformly bounded. Assume that EH does not
depend on n and hmax → 0 when n → ∞. We also assume that there exist θ1 < θ2 reals such that
θ2 ≥ 2, θ1.hmin ∈ H and φ(θ2)− φ(θ1) ≥ 1/θ1 − 1/θ2.

Then, if a < 1, for n large enough (depending on f,H,K),

∃C > 0 P(ĥ ≥ θ2hmin) ≤
∑

h∈H

∑

h′<h

max(e−Cε2/
√
n, e−Cε2‖Kh′−Kh‖2

)

where ε < 1− a1/3. If H = {e−k, an ≤ k ≤ bn} and the kernel is Gaussian, rectangular, Epanech-
nikov or biweight, θ1 = e and θ2 = 3 work.

This results implies Theorem 3, since under (K1), ‖Kh′−Kh‖2 = ‖K‖2

h′ φ(h/h′) ≥ (minEH φ)‖K‖2

h′

as soon as h > h′, so that
∑

h∈H

∑

h′<h

e−C‖Kh′−Kh‖2 ≤ |H|2e−C′/hmax .

Let ε ∈ (0, 1) such that a < (1− ε)3 and

ε3 + 3ε <
φ(θ2)− φ(θ1)− a/θ1 + a/θ2

φ(θ2) + φ(θ1)
(7)

12



(possible since a < 1 ≤ (φ(θ2)− φ(θ1))/(1/θ1 − 1/θ2)). Let us decompose

f̂h′ − f̂h = (f̂h′ − fh′ − f̂h + fh) + (fh′ − fh) = S(h, h′) + (fh′ − fh)

with

S(h, h′) =
1

n

n
∑

i=1

(Kh′ −Kh)(x −Xi)− E((Kh′ −Kh)(x−Xi))

and the bias term ‖fh′ − fh‖ ≤ suph′≤h ‖Kh′ ∗ f −Kh ∗ f‖ = D(h). First write

(1− ε)‖S(h, h′)‖2 −
(

1

ε
− 1

)

D(h)2 ≤ ‖f̂h′ − f̂h‖2 ≤ (1 + ε)‖S(h, h′)‖2 +
(

1 +
1

ε

)

D(h)2

Now we shall prove that with high probability

(1− ε)
‖Kh′ −Kh‖√

n
≤ ‖S(h, h′)‖ ≤ (1 + ε)

‖Kh′ −Kh‖√
n

.

First, we can prove as in Section 3 that for all h′ < h

P

(

‖S(h, h′)‖ ≥ (1 + ε)
‖Kh′ −Kh‖√

n

)

≤ max

(

exp

(

−ε2 ∧ ε

24

√
n

)

, exp

(

− ε2

24‖f‖∞
‖Kh′ −Kh‖2

))

.

Next, we shall use (4) in Lemma 2 in order to lowerbound ‖S(h, h′)‖. Recall that ‖S(h, h′)‖ =
supt∈B ν(t) where B is the unit ball in L2 and ν(t) = 1

n

∑n
i=1 gt(Xi) − E(gt(Xi)) with gt(X) =

∫

(Kh′ − Kh)(x − X)t(x)dx. With notations of Lemma 2, we have b = ‖Kh′ − Kh‖, H ′2 =
n−1‖Kh′ − Kh‖2 and v = 4‖K‖21‖f‖∞. It remains to lowerbound H . First, remark, that (6)
provides nE(supt∈B ν2(t)) = ‖Kh′ −Kh‖2 − ‖(Kh′ −Kh) ∗ f‖2. Next, using (5)

E(sup
t∈B

ν2(t)) ≤ v

n
+ 4

bH

n
+H2 ≤ v

n
+

(

H +
2b

n

)2

.

Then

n

(

H +
2b

n

)2

≥ nE(sup
t∈B

ν2(t))− v = ‖Kh′ −Kh‖2 − ‖(Kh′ −Kh) ∗ f‖2 − 4‖K‖21‖f‖∞

which implies
√
n

(

H +
2b

n

)

≥
√

‖Kh′ −Kh‖2 − 4‖K‖21(‖f‖∞ + ‖f‖2).

Since b = ‖Kh′ −Kh‖,

H ≥
√

‖Kh′ −Kh‖2 − 4‖K‖21(‖f‖∞ + ‖f‖2)
n

− 2‖Kh′ −Kh‖
n

Now, for h′ < h

H ≥ ‖Kh′ −Kh‖√
n

(

√

1− 4‖K‖21(‖f‖∞ + ‖f‖2)
‖Kh′ −Kh‖2

− 2√
n

)

13



so

H − ε

3
H ′ ≥ H ′

(

√

1− 4‖K‖21(‖f‖∞ + ‖f‖2)
‖Kh′ −Kh‖2

− 2√
n
− ε

3

)

.

From (K1), ‖Kh′ −Kh‖2 = ‖K‖2

h′ φ(h/h′) ≥ (minEH φ)‖K‖2

h′ ≥ C
hmax

→ ∞ and, in consequence,
for n large enough

H − ε

3
H ′ ≥ H ′ (1− ε) .

Thus for n large enough

P

(

‖S(h, h′)‖ ≤ (1 − ε)
‖Kh′ −Kh‖√

n

)

(8)

≤ max

(

exp

(

−ε2 ∧ (3ε)

24× 9

√
n

)

, exp

(

− ε2

24× 9‖f‖∞
‖Kh′ −Kh‖2

))

Let δ(h, h) = 0 and, if h 6= h′,

δ(h, h′) = 2max

(

exp

(

−ε2 ∧ (3ε)

24× 9

√
n

)

, exp

(

− ε2

24× 9‖f‖∞
‖Kh′ −Kh‖2

))

.

We just proved that for n large enough, with probability larger than 1− δ(h, h′)

(1− ε)2
‖Kh′ −Kh‖2

n
≤ ‖S(h, h′)‖2 ≤ (1 + ε)2

‖Kh′ −Kh‖2
n

.

Next, with probability larger than 1−∑h′≤h δ(h, h
′)







B(h) ≥ suph′≤h

[

(1− ε)3 ‖Kh′−Kh‖2

n − a‖Kh′‖2

n

]

+
−
(

1
ε − 1

)

D(h)2

B(h) ≤ suph′≤h

[

(1 + ε)3 ‖Kh′−Kh‖2

n − a‖Kh′‖2

n

]

+
+
(

1 + 1
ε

)

D(h)2

But, if hmin small enough, for λ > a

sup
h′≤h

[

λ
‖Kh′ −Kh‖2

n
− a

‖Kh′‖2
n

]

+

= λ
‖Khmin −Kh‖2

n
− a

‖Khmin‖2
n

Indeed, for x = h′/h ≤ 1

λ
‖Kh′ −Kh‖2

n
− a

‖Kh′‖2
n

= λ
‖K‖2
nh

(

1 +
1− a/λ

x
− 2

〈K,K(x.)〉
‖K‖2

)

= λ
‖K‖2
nh

(

φ(x)− a/λ

x

)

and the function φ(x)− a/λ
x tends to +∞ when x → 0 and is decreasing in some neighborhood of

0 (assumption (K2)). Then with probability larger than 1−∑h

∑

h′≤h δ(h, h
′), for all h







Crit(h) ≥ ‖K‖2

nhmin

[

−a+ (1 − ε)3φ(h/hmin) +
a

h/hmin

]

−
(

1
ε − 1

)

D(h)2

Crit(h) ≤ ‖K‖2

nhmin

[

−a+ (1 + ε)3φ(h/hmin) +
a

h/hmin

]

+
(

1 + 1
ε

)

D(h)2
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In particular, for h = θ1hmin,

Crit(θ1hmin) ≤
‖K‖2
nhmin

[

−a+ (1 + ε)3φ(θ1) +
a

θ1

]

+

(

1 +
1

ε

)

sup
h

D(h)2. (9)

Moreover, since a < (1− ε)3, (1− ε)3φ(x) + a
x is increasing for x ≥ 2 (assumption (K3)). This

implies that

∀h ≥ θ2hmin, Crit(h) ≥ ‖K‖2
nhmin

[

−a+ (1− ε)3φ(θ2) +
a

θ2

]

−
(

1

ε
− 1

)

sup
h

D(h)2. (10)

Since (Kh) is an approximation to the identity, ‖f − Kh ∗ f‖ tends to 0 when h tends to 0.
This implies that D(h) ≤ 2 suph′≤h ‖f −Kh′ ∗ f‖ tends to 0 and suph∈H D(h) tends to 0, as soon
as hmax tends to 0. Now (7) leads to ∆ := (1− ε)3φ(θ2) +

a
θ2

− (1 + ε)3φ(θ1)− a
θ1

> 0. Then, for

n large enough, (2/ε) suph D(h)2 < ‖K‖2

nhmin
∆ so that

‖K‖2
nhmin

[

−a+ (1 + ε)3φ(θ1) +
a

θ1

]

+

(

1 +
1

ε

)

sup
h

D(h)2

<
‖K‖2
nhmin

[

−a+ (1− ε)3φ(θ2) +
a

θ2

]

−
(

1

ε
− 1

)

sup
h

D(h)2
(11)

Finally, combining (9) and (10) and (11) gives ĥ < θ2hmin with probability larger than 1 −
∑

h

∑

h′≤h δ(h, h
′).

Let us now prove the second part of Theorem 3, that is the lower bound on the risk. Let

An = {ĥ ≤ 3hmin} and Bn = ∩h∈H{‖fh − f̂h‖ ≥ 1
2
‖Kh‖√

n
}. We have just proved that P(Ac

n) ≤
C(log n)2 exp(−(logn)2/C). In the same way that (8), we can write for n large enough

P

(

‖fh − f̂h‖ ≤ (1− ε)
‖Kh‖√

n

)

≤ max

(

exp

(

−ε2 ∧ (3ε)

24× 9

√
n

)

, exp

(

− ε2

6× 9‖f‖∞
‖Kh‖2

))

which implies P(Bc
n) ≤ C′(log n) exp(−(log n)2/C′) and then

P(An ∩Bn) ≥ 1− o(1).

Then we can write

‖f − f̂ĥ‖ ≥ ‖fĥ − f̂ĥ‖1An∩Bn
− ‖f − fĥ‖

≥ min
h≤3hmin

‖fh − f̂h‖1An∩Bn
−max

h
‖f − fh‖

≥ min
h≤3hmin

1

2

‖Kh‖√
n
1An∩Bn

−max
h

‖f − fh‖

≥ ‖K‖
2
√
3

1√
nhmin

1An∩Bn
−max

h
‖f − fh‖
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But maxh ‖f − fh‖ → 0 (since hmax → 0), and nhmin → 1 when n → ∞. Hence

E‖f − f̂ĥ‖ ≥ ‖K‖
2
√
3

P(An ∩Bn)
√

1 + o(1)
− o(1)

which proves that E‖f − f̂ĥ‖ ≥ ‖K‖
4
√
3
for n large enough.

�

7.3 Proof of Lemma 4

To prove Lemma 4, it is sufficient to do computations on integrals. We obtain:

a - if K is the Gaussian kernel,
〈K,K(x.)〉

‖K‖2 =

√

2

1 + x2
.

b - if K is the rectangular kernel,
〈K,K(x.)〉

‖K‖2 =
1

x
∧ 1.

c - if K is the Epanechnikov kernel,

〈K,K(x.)〉
‖K‖2 =

5

4

[

(

1

x
∧ 1

)

− x2

5

(

1

x
∧ 1

)5
]

.

d - if K is the biweight kernel:

〈K,K(x.)〉
‖K‖2 =

1

16

[

21

(

1

x
∧ 1

)

− 6x2

(

1

x
∧ 1

)5

+ x4

(

1

x
∧ 1

)9
]

.

These formulas permit to verify all the assumptions.

�
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