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Chance-constrained programming with fuzzy stochastic

coefficients

Farid Aiche · Moncef Abbas · Didier Dubois

Abstract We consider fuzzy stochastic programming problems with a crisp objec-

tive function and linear constraints whose coefficients are fuzzy random variables, in

particular of type L-R. To solve this type of problems, we formulate deterministic

counterparts of chance-constrained programming with fuzzy stochastic coefficients,

by combining constraints on probability of satisfying constraints, as well as their pos-

sibility and necessity. We discuss the possible indices for comparing fuzzy quantities

by putting together interval orders and statistical preference. We study the convexity

of the set of feasible solutions under various assumptions. We also consider the case

where fuzzy intervals are viewed as consonant random intervals. The particular cases

of type L-R fuzzy Gaussian and discrete random variables are detailed.

Keywords Fuzzy random variables · Fuzzy intervals · Random intervals ·

Convexity · Fuzzy stochastic program · Probability · Possibility · Necessity

1 Introduction

The chance-constrained programming method was first introduced by Charnes and

Cooper (1959). The idea was to model linear constraints with random coefficients
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so that their solutions have a sufficiently high probability of being feasible. This

formulation makes it possible to convert stochastic constraints into equivalent deter-

ministic ones. This technique has had in the last years several applications such as the

P-model or minimum risk model, which consists in maximising the probability that

some objective function is attained at least to a predetermined level. A fuzzy counter-

part to chance-constrained programming, namely linear programming with constraints

having fuzzy interval coefficients was proposed by Dubois (1987) and later studied

by others such as Inuiguchi et al. (1992), Inuiguchi and Ramik (2000), where proba-

bility is replaced by possibility or necessity. While the chance-constrained framework

aims at finding solutions valid most of the time, the handling of fuzzy data relies on

the decision-maker’s attitude in front of ambiguity: for instance, necessity dominance

indices try to achieve robustness in front of partial information, a pessimistic attitude

trying to find good solutions that are relevant despite the lack of precision of the data

(Dubois et al. 2001).

However, in practice, we may be faced with situations where, at the same time,

coefficients in an optimisation problem are random variables and their realisations

are not completely known. This is the case when the optimisation problem coeffi-

cients cover a set of possible scenarios (expressing variability of situations where an

optimal decision is to be made), each of which is imprecisely known (for instance,

precision of measured values is limited). When random variables take values that

are known through fuzzy intervals, it leads to the concept of fuzzy random vari-

ables, first introduced by Kwakernaak (1978). Later, other authors like Kruse and

Meyer (1987), Puri and Ralescu (1986), among others studied this concept. Puri

and Ralescu consider a fuzzy random variable as a classical one taking values

on a space of fuzzy sets understood as a metric space of membership functions.

Kwakernaak, as well as Kruse and Meyer, consider a fuzzy random variable as

a function from a probability space to a set of fuzzy intervals, where the latter

restrict the actual values of standard random variables. This is the view adopted

here. Recently Couso and Dubois (2009), Couso and Sánchez (2011) proposed yet

another interpretation of this concept as a conditional possibility measure dom-

inating a set of conditional probabilities, and they compare it to the two other

views.

There exist a number of past works addressing fuzzy and probabilistic features

conjointly in optimisation problems (Chakraborty et al. 1994; Yazini 1987; Qiao and

Wang 1993; Qiao et al. 1994; Wang and Qiao 1993). In fact there are papers dealing

with fuzzy random objective functions (Li et al. 2006; Katagiri et al. 2008; Qiao and

Wang 1993; Qiao et al. 1994; Wang and Qiao 1993) and papers dealing with fuzzy

random coefficients in constraints (Qiao and Wang 1993; Qiao et al. 1994; Wang and

Qiao 1993; Aiche 1995; Luhandjula 1996). This paper focuses on the latter problem,

and more specifically on various ways of turning fuzzy random constraints into deter-

ministic counterparts. Wang and Qiao (1993) study a formulation of multiobjective

linear programming problems with fuzzy random coefficients in the objective and

constraints. However they reduce the problem to standard stochastic programming by

consideringα-cuts of fuzzy coefficients, and defining two sets of constraints, one using

the upper bound of cuts and the other by means of lower bounds of cuts. This is only



one possible way to go, but the systematic choice of lower or upper-bounds of cuts in

both sides of the constraints is somewhat debatable. In Ammar (2009), recently stud-

ied a similar formulation of multiobjective linear programming problems with fuzzy

random coefficients in the objective and constraints. Katagiri et al. (2004) handle

fuzzy number comparisons in fuzzy random bottleneck optimisation using possibility

and necessity of dominance. A similar formulation for multiobjective linear program-

ming is proposed by Li et al. (2006). By nesting possibilistic programming inside

chance-constrained programming, they transform the fuzzy stochastic constraints into

equivalent deterministic ones. Likewise, Iskander (2005) used the standard chance-

constrained approach by transforming stochastic fuzzy problems in the presence of

fuzzy coefficients and random variables into their deterministic equivalent according

to the four possibilistic dominance indices introduced by Dubois and Prade (1983).

To solve the general problem, in Aiche (1995) and Luhandjula (1996) a semi-infinite

approach was proposed in order to convert it to a stochastic one which can solved by

chance-constrained programming (Charnes and Cooper 1959) or a two-stage program-

ming method (Dantzig 1955). Luhandjula (2004) proposed an approach to transform

constraints in the presence of fuzzy random variables into deterministic constraints, by

comparing intervals obtained from prescribed cuts of fuzzy coefficients. Luhandjula

and Gupta (1996) generalize robust programming with interval coefficients to the

fuzzy stochastic framework, turning equality constraint is into fuzzy inclusion con-

straints. These works are surveyed again in Luhandjula (2006). Luhandjula and Joubert

(2010) further investigate optimisation models in a fuzzy stochastic environment and

approaches to convert them into deterministic problems, focusing on the Gaussian

case.

In this paper, we try to organise the possible formulations of random fuzzy con-

straints in a reasoned way. We consider fuzzy stochastic programming problems, with a

precise objective function and linear constraints whose coefficients are represented by

random variables whose values are known through fuzzy intervals, first in the general

case, and then when coefficients are random fuzzy intervals of type L-R. We start by

noticing that the comparison of fuzzy intervals can benefit from techniques that com-

pare intervals and techniques that compare probabilities. This remark leads to revisit

some known methods for comparing fuzzy intervals by combining these two basic

techniques. We then discuss three versions of chance-constrained programming with

fuzzy stochastic coefficients: (i) by combining probability and possibility, or proba-

bility and necessity; (ii) using probability over defuzzified fuzzy quantities; (iii) and

by combining chance-constrained programming and random interval comparisons; in

the latter case a fuzzy interval is viewed as a random interval. We also consider the

particular case of fuzzy intervals of type L-R.

The paper is organised as follows. In the next section, variants of fuzzy random

variables are briefly recalled. In Sect. 3, we recall methods for the comparison of

random numbers, intervals, and fuzzy intervals. In Sect. 4, we present four versions of

chance-constrained programming with fuzzy stochastic coefficients. The conditions

of convexity of the feasible sets obtained via the various formulations are studied. In

the appendix, we recall some relevant basic definitions and properties useful for the

paper.



2 Fuzzy random variables

Fuzzy random variables were first introduced by Kwakernaak (1978).

Definition 1 Let (�, F, P) be a probability space. A fuzzy random variable x̃ is a

function � → F(R) : ω 7→ x̃(ω) from (�, F, P) to a set of fuzzy intervals F(R).

Basic notions and notations for fuzzy intervals are provided in Appendix A. For

x̃(ω) to be a fuzzy interval, we assume that its α-cuts are closed intervals x̃α(ω) =

[xα(ω), xα(ω)], for 0 < α ≤ 1, where xα(ω) = inf{x ∈ R : µx̃(ω)(x) ≥ α}, xα(ω) =

sup{x ∈ R : µx̃(ω)(x) ≥ α}, α > 0, and µx̃(ω)(x) is the membership degree of

x ∈ x̃(ω).

Kwakernaak (1978), as well as Kruse and Meyer later on, consider that a fuzzy

random variable x̃ describes the vague perception of a crisp unobservable original

random variable x . In their view, the degree of membership of a standard random

variable x : � → R to x̃ is computed as µx̃ (x) = infω∈� µx̃(ω)(x(ω)). It represents

the degree of possibility that the random variable x is a representative of x̃ .

In what follows, we restrict to special cases of fuzzy random variables, that are

often used in practice.

1. Discrete fuzzy random variables: Let � = {ω1, . . . , ωr } be a finite probabil-

ity space, equipped with a discrete probability distribution P(ωk) = qk, k =

1, 2, . . . , r and
∑k=r

k=1 qk = 1. A discrete fuzzy random variable x̃ is a fuzzy

random variable, each random realization of which is a fuzzy interval ãk having a

positive probability of being the observed perception, that is, P(x̃(ωk) = ãk) =

qk, k = 1, 2, . . . , r, where ãk, k = 1, 2, . . . , r are fuzzy intervals.

2. Normal fuzzy random variables: Based on the view of Kwakernaak (1978), we

consider an original normally distributed random variable x with a crisp mean µ

and a precise variance σ 2. In practice, the mean µ of x may not be completely

known; it is represented by fuzzy interval µ̃, which represents “around µ”. Then,

following Shapiro (2009), we consider a fuzzy random variable x̃ that is nor-

mally distributed with a fuzzy mean µ̃ and a precise variance σ 2. For each α-cut

µ̃α = [µα, µα] of µ̃, note that xα and xα are crisp normal random variables with

corresponding means µα and µα and precise variance σ 2. Since µα ≤ µ ≤ µα ,

it follows that ∀t ∈ R, Fxα (t) ≤ Fx (t) ≤ Fxα (t), where Fxα , Fx and Fxα are

cumulative distribution functions of xα, x and xα , respectively.

For details see Shapiro (2009).

3. Fuzzy random variables of type L-R: Let FL R(R) be the set of fuzzy intervals

ã = (a, a, δa, γ a) of type L-R (Dubois and Prade 1988). Their α-cuts are of the

form [a − L−1(α)δa, a + R−1(α)γ a], where α ∈ (0, 1], the shape functions L

and R are defined on the positive real line [0,∞), non-negative, non-increasing,

and upper semi-continuous, such that L(0) = R(0) = 1, and δa, γ a are positive

real numbers and represent, respectively the left and right spreads of ã. More-

over, L−1(α) = sup {s : L(α) ≥ s} and R−1(α) = sup {s : R(α) ≥ s} . Replac-

ing F(R) by FL R(R) in the previous definition,then x̃ is called fuzzy random var-

iable of type L-R and its realizations denoted by x̃(ω) = (x(ω), x(ω), δx , γ x ).

In other words x̃α(ω) = [x(ω)− L−1(α)δx , x(ω)+ R−1(α)γ x ].



4. Normal fuzzy random variables of type L-R: x̃(ω) = (x(ω), x(ω), δx , γ x ) is a

normal fuzzy random variable of type L-R with fuzzy mean µ̃ = (µ,µ, δx , γ x ),

which is another fuzzy interval of type L-R, and precise variance σ 2. Then, x(ω)

and x(ω) (with x ≤ x) are normal random variables with the corresponding

means µ, µ and the same precise variance σ 2.

5. Discrete fuzzy random variables of type L-R: x̃(ω) = (x(ω), x(ω), δx , γ x ) is

a discrete fuzzy random variable of type L-R and x(ω) and x(ω) (with x ≤ x)

are discrete random variables.

In this paper, we consider fuzzy stochastic programming problems with a determin-

istic objective function and linear constraints where coefficients are fuzzy random

variables, in particular of type L-R, as follows:

(PF S)





max φ(x)∑n
j=1 ãi j (ω)⊙ x j ≤ b̃i (ω), i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n

whereφ(x) is a deterministic objective function, ãi j and b̃i are fuzzy random variables.

And
∑n

j=1, ⊙ denote the generalization of, respectively addition and multiplication

by means of the extension principle (see Appendix A for basic definitions). More-

over, ≤ refers to suitable extensions of the inequality between real numbers to fuzzy

intervals (Dubois and Prade 1988, 1987a). The contribution of this paper is to survey

various approaches to express such inequality constraints for random fuzzy coeffi-

cients of linear expressions. The use of the chance-constrained framework enables

deterministic counterparts of these fuzzy stochastic constraints to be formulated.

3 Comparing uncertain quantities

In order to compare linear expressions that take the form of fuzzy random variables,

one must be in a position to compare intervals, fuzzy intervals and random numbers.

Moreover fuzzy intervals can also be interpreted as nested random intervals (Dubois

and Prade 1987b).

3.1 Comparing intervals

Let
[
a, a

]
and [b, b] be two intervals. Comparing the intervals

[
a, a

]
and [b, b], we

can choose between four basic order relations ≥i , i = 1, . . . , 4, as follows:

1.
[
a, a

]
≥1 [b, b] ⇔ a ≥ b

2.
[
a, a

]
≥2 [b, b] ⇔ a ≥ b

3.
[
a, a

]
≥3 [b, b] ⇔ a ≥ b

4.
[
a, a

]
≥4 [b, b] ⇔ a ≥ b.

As usual>i denotes the strict part of ≥i . The relation ≥1 is the most demanding, ≥4 is

the least demanding, ≥2 and ≥3 are of intermediary strength. In fact, if
[
a, a

]
models



an ill-known value x and [b, b] an ill-known quantity y, x ≥1 y is a robust inequality

since it holds whatever the values of x and y are; x ≥2 y expresses a pessimistic

attitude (if the higher x and y, the better); x ≥3 y expresses an optimistic attitude;

while x ≥4 y expresses an adventurous attitude, since it may well be that y > x when

their values are eventually known.

These relations are known in the literature:

• The strict relation >1 is known to be an interval order (Fishburn 1987), and[
a, a

]
>1

[
b, b

]
⇔ ¬(

[
b, b

]
≥4

[
a, a

]
).

• The simultaneous use of ≥2 and ≥3:

[
a, a

]
�

[
b, b

]
if and only if

[
a, a

]
≥2

[
b, b

]
and

[
a, a

]
≥3

[
b, b

]

is the canonical order induced by the lattice structure of intervals, equipped

with the operations max and min extended to intervals (max([a, a], [b, b]) =

[max(a, b),max(a, b)], and likewise for min):

[
a, a

]
�

[
b, b

]
⇐⇒ max([a, a], [b, b]) = [a, a]

⇐⇒ min([a, a], [b, b]) = [b, b].

We call it lattice interval order.

It makes sense to use the latter ordering when comparing non-independent quantities

x and y. For instance, if x and y depend on a parameter λ, so that x = λa + (1 − λ)a

and y = λb + (1 − λ)b, then x > y,∀λ implies x � y, not x >1 y.

3.2 Statistical preference

Statistical preference measures the probability that a random variable a is greater than

another one b, as P(a > b) = P({(ω, ω′) : a(ω) > b(ω′)}) (David 1963). One of the

two following opposite assumptions is often made:

• independent random variables with continuous density functions pa and pb: then

P(a > b) =
∫

x>y
pa(x)pb(y)dxdy. In the case of independent random variables

a and b, P(a > b) = 1 is generally equivalent to Support (a) >1 Support (b).

• comonotone random variables with a functional link of the form ω = ω′: then

P(a > b) = P({ω : a(ω) > b(ω)}).

Then define a ≥P
α b ⇐⇒ P(a ≥ b) > α. For α > 1

2
, this is the kind of dominance

used in chance-constrained programming.

Another way of handling probabilistic constraints is to replace random coefficients

by their expectations. But this method is sometimes an oversimplification of the real

problem and its solution is not always easy to interpret (it is not clear it always yields

the best solution in the average).



3.3 Comparing fuzzy intervals

There are several methods for comparing fuzzy intervals (Wang and Kerre 2001). Many

were proposed in a rather ad hoc way. Here we consider three approaches, according

to whether fuzzy intervals are viewed as possibility distributions, or as nested random

intervals, or yet are defuzzified. These approaches extend or combine in some way

interval comparisons and statistical preference.

3.3.1 Possibilistic preference

Consider two fuzzy intervals ã and b̃ with membership functions µã and µ
b̃
, respec-

tively. In what follows the abbreviation pos and nec represent, respectively possibility

and necessity (Dubois and Prade 1988). The possibility and necessity of preference of

ã over b̃, denoted, respectively by pos(ã ≥ b̃) and nec(ã > b̃) are defined as follows

[see for instance (Dubois and Prade 1988, 1987a)]

pos(ã ≥ b̃) = sup
x≥y
(min(µã(x), µb̃

(y));

nec(ã > b̃) = 1 − pos(b̃ ≥ ã) = 1 − sup
x≤y
(min(µã(x), µb̃

(y)).

The first of these indices was already proposed by Baas and Kwakernaak (1977). This

approach is the natural counterpart to statistical preference in possibility theory; yet

it is also an extension of interval-related orderings since it is easy to check, if the

supports of ã and b̃ are bounded and their membership functions µã and µ
b̃

are upper

semi-continuous, that it comes down to comparing α-cut intervals ãα and b̃α using

≥4, and ã1−α and b̃1−α using ≥1, respectively (Dubois 1987):

Proposition 1 If ã and b̃ are fuzzy intervals, the following equivalences hold:

• ∀α > 0, pos(ã ≥ b̃) ≥ α ⇐⇒ aα ≥ bα ⇐⇒ ãα ≥4 b̃α,

• ∀α < 1, nec(ã > b̃) > α ⇐⇒ a1−α > b
1−α

⇐⇒ ã1−α >1 b̃1−α .

Proof The first item is obvious. For the second item, nec(ã > b̃) > α ⇐⇒ pos(b̃ ≥

ã) < 1−α. That is supy≥x min(µã(x), µb̃
(y)) < 1−α. Then clearly this is equivalent

to ã1−α ∩ b̃1−α = ∅. As pos(ã ≥ b̃) = 1, ã1−α is on the right hand side of b̃1−α .

As we deal with closed intervals, it follows that ã1−α ∩ b̃1−α = ∅ is equivalent to

ã1−α ⊂ [b
1−α

,+∞), and a1−α 6= b
1−α

. Hence nec(ã > b̃) > α is equivalent to

a1−α > b
1−α

. ⊓⊔

N.B. The case when nec(ã > b̃) = 1 (or equivalently, pos(b̃ ≥ ã) = 0) is special,

as its equivalent formulation in terms of interval ordering depends on the continuity

properties of the membership function. If the support of ã and b̃ are closed intervals (for

instance, if ã and b̃ are closed intervals), nec(ã > b̃) = 1 means inf S(ã) > sup S(b̃),

i.e., S(ã) >1 S(b̃), and the two supports are disjoint. If on the contrary, the member-

ship functions are surjective on the unit interval and continuous, the supports are open

intervals, e.g., S(ã) =
]
a0, a0

[
, where a0 = limα→0 aα and a0 = limα→0 aα . As a



consequence, nec(ã > b̃) = 1 ⇐⇒ pos(b̃ ≥ ã) = 0 ⇐⇒ a0 ≥ b
0
. See Dubois

and Prade (1983) for more details on pathological situations.

To generalize other relations ≥2,≥3 to fuzzy intervals, we first interpret them as

follows in the case of intervals:

[a, a] ≥2 [b, b] : ∀x ∈ [a, a], ∃y ∈ [b, b] : x ≥ y, which encodes a ≥ b;

[a, a] ≥3 [b, b] : ∃y ∈ [b, b],∀x ∈ [a, a] : x ≥ y, which encodes a ≥ b;

(for [a, a] ≥1 [b, b] and [a, a] ≥4 [a, a], we use ∀ twice, and ∃ twice, respectively).

The gradual extensions of these relations are then Dubois and Prade (1983):

nec2(ã ≥ b̃) = inf
x

max(1 − µã(x), sup
x≥y

µ
b̃
(y));

pos3(ã > b̃) = sup
x

min(µã(x), inf
y≥x

1 − µ
b̃
(y)).

Note that supy:x≥y µb̃
(y) = 5((−∞, x]) (upper cumulative distribution), which

is µ
b̃
(x) if x ≤ b1, and 1 otherwise. This fuzzy set can be denoted by [b̃,+∞), and

nec2(ã ≥ b̃) is the degree of inclusion of ã in [b̃,+∞). Likewise, infx≤y 1−µ
b̃
(y) =

N ((−∞, x[) (lower cumulative distribution), which is 1 − µ
b̃
(x) if x ≥ b

1
, and 0

otherwise. This fuzzy set can be denoted by ]b̃,+∞); it is lower semi-continuous if

b̃ is u.s.c. Then, pos3(ã > b̃) is the degree of intersection of ã and ]b̃,+∞).

And, as expected, if the supports of ã and b̃ are bounded and their membership

functions µã and µ
b̃

are upper semi-continuous,

Proposition 2 The following equivalences hold if µã and µ
b̃

are upper semi-contin-

uous, with no flat parts but for their cores:

• nec2(ã ≥ b̃) ≥ α > 0 ⇐⇒ a1−α ≥ bα ⇐⇒ ã1−α ≥2 b̃α

• pos3(ã > b̃) ≥ α > 0 ⇐⇒ aα ≥ b
1−α

⇐⇒ ãα ≥3 b̃1−α

Proof We use the following straightforward result: ⊓⊔

Lemma 1 For any two fuzzy sets F,G on a referential S, infs∈S max(1−µF (s),µG(s))

≥ α > 0 if and only if F1−α ⊆ Gα , where F1−α is the strong 1 − α-cut of F.

Then, nec2(ã ≥ b̃) ≥ α > 0 means that ã1−α ⊆ [b̃,+∞)α , which is the same as

a1−α ≥ bα , under the assumptions of the Proposition. Moreover pos3(ã > b̃) ≥ α >

0 reads ãα∩]b̃,+∞)α 6= ∅. Due to the u.s.c. assumption, ]b̃,+∞)α = [b
1−α

,+∞),

hence aα ≥ b
1−α

.

Note that, except for pathological situations described in Dubois and Prade (1983),

equalities nec2(ã ≥ b̃)+ nec2(b̃ ≥ ã) = 1 hold, as well as pos3(ã ≥ b̃)+ pos3(b̃ ≥

ã) = 1 hold (e.g., with continuous membership functions).

3.3.2 Random interval comparisons of fuzzy intervals

Some authors consider a fuzzy interval as a nested random interval (Dubois and Prade

1987b). Namely the α-cut [aα, aα] of a continuous fuzzy interval ã depends on a



random variable ξ on the unit interval, that we can assume uniform (Lebesgue mea-

sure λ). One then considers a fuzzy interval as a mapping from ([0, 1],B, λ) to the set

of closed intervals I(R) : ξ ∈ [0, 1] 7→ [aξ , aξ ]. More generally the end points of the

interval can depend on different random variables ξ and ζ , and the random interval

can be of the form [aξ , aζ ] (Chanas and Nowakowski 1988).

Chanas et al. (1993), Chanas and Zielinski (1999) thus conjointly use interval com-

parisons and statistical preference for the comparison of fuzzy intervals. Namely, they

generalize interval comparisons based on order relations >i , i = 1, 2, 3, 4 to fuzzy

intervals ã and b̃ understood as above.

1. µ1(ã, b̃) = P(aξ > b
ζ
)

2. µ2(ã, b̃) = P(aξ > bζ )

3. µ3(ã, b̃) = P(aξ > b
ζ
)

4. µ4(ã, b̃) = P(aξ > bζ )

This is just the application of definitions proposed in the previous section for random

intervals; ξ and ζ could be independent, comonotonic or coupled by any copula. The

actual form of µi depends on this copula. Two assumptions are considered by Chanas

et al. (1993), Chanas and Zielinski (1999): functionally dependent fuzzy intervals and

independent fuzzy intervals. Namely in the above four relations, they assume either

ξ = ζ or that ξ and ζ are independent (we denote by i D the functionally dependent

case, and i I the latter case).

Proposition 3 Let ã and b̃ be two continuous fuzzy intervals with underlying contin-

uous random variables ξ, ζ .

1. µ1(ã, b̃) = 1 − µ4(b̃, ã)

2. µ1(ã, b̃) ≤ µi (ã, b̃) ≤ µ4(ã, b̃), i ∈ {2, 3}

3. µ1(ã, b̃) > 0 ⇒ µ4(ã, b̃) = 1

4. µ2(ã, b̃) = 1 − µ2(b̃, ã) if P(aξ = bζ ) = 0.

5. µ3(ã, b̃) = 1 − µ3(b̃, ã) if P(aξ = b
ζ
) = 0.

Proof The first item is obvious if one notices that P(aξ = b
ζ
) = 0, due to continuity

assumptions. The second item follows from the relative strength of the relations>i . For

the third, notice that µ1(ã, b̃) > 0 means that aα > b
β

for some ξ = α, ζ = β > 0.

It means that a1 > b1, hence aξ > bζ ,∀ξ, ζ > 0. Finally, the two last properties are

due to the fact that P(a > b)+ P(b > a)+ P(a = b) = 1. ⊓⊔

No assumption of independence between ξ and ζ is needed to obtain these obvious

results, a consequence of which is:

Corollary 1 (Chanas and Zielinski 1999) Let ã and b̃ be two continuous fuzzy intervals

with underlying continuous random variables ξ, ζ . Then µ1(ã, b̃) > 0 H⇒ a1 > b
1

and µ4(ã, b̃) < 1 ⇐⇒ a1 < b1 (or equivalently µ4(ã, b̃) = 1 ⇐⇒ a1 ≥ b1).

It is interesting to notice that counterparts to properties 4 and 5 in Proposition 3 hold for

possibilistic indices pos3 and nec2, as previously recalled: such comparison indices

define reciprocal fuzzy relations.



3.3.3 The case of L-R fuzzy intervals with dependence assumptions

Suppose that the fuzzy intervals have the same shape, up to a homothety, i.e are of the

L-R type, that is, ã = (a, a, δa, γ a) ∈ FL R(R) and b̃ = (b, b, δb, γ b) ∈ FL R(R). In

the whole section L and R are continuous and strictly decreasing. The above fuzzy rela-

tions with the random interval approach can be expressed in the functionally dependent

case (ξ = ζ ) by:

1. µ1D(ã, b̃) = P(a − L−1(ξ)δa > b + R−1(ξ)γ b)

2. µ2D(ã, b̃) = P(a − L−1(ξ)δa > b − L−1(ξ)δb)

3. µ3D(ã, b̃) = P(a + R−1(ξ)γ a > b + R−1(ξ)γ b)

4. µ4D(ã, b̃) = P(a + R−1(ξ)γ a > b − L−1(ξ)δb).

The letter D stands for this dependence assumption. Chanas et al. consider two addi-

tional cases where ξ and ζ are independent random variables with the uniform distri-

bution on interval [0, 1]:

1. µ1I (ã, b̃) = P(a − L−1(ξ)δa > b + R−1(ζ )γ b)

2. µ4I (ã, b̃) = P(a + R−1(ζ )γ a > b − L−1(ξ)δa).

The L-R setting allows for explicit calculations. Namely, since P is a uniform dis-

tribution, then if L and R are strictly decreasing and continuous, one can easily see

that

• If b < a and a−δa < b+γ b then there is a single ξ = α1 such that a−L−1(ξ)δa =

b + R−1(ξ)γ b. It is such that 0 < α1 < 1. If L = R, α1 = L(
a−b

δa+γ b ) hence

µ1D(ã, b̃) = 1 − α1 = 1 − L(
a−b

δa+γ b ) = nec(ã > b̃). Otherwise, if b ≥ a then

µ1D(ã, b̃) = 0 and if a − δa ≥ b + δb, then µ1D(ã, b̃) = 1.

• Since µ1D(ã, b̃) = 1 − µ4D(b̃, ã) then we have µ4D(ã, b̃) = L(
b−a

γ a+δb ) =

pos(ã ≤ b̃), when a < b and a + γ a > b − δa .

So in case 1 and 4 under comonotonic dependence assumption, possibilistic indices

1 and 4 coincide with the random interval ones. There is a condition that is assumed

in the above development: µ1D(ã, b̃) = nec(ã > b̃) is true if the increasing part

of the membership function of ã intersects the decreasing part of the membership

function of b̃ only once. Namely, the set I = {ξ, a − L−1(ξ)δa > b + R−1(ξ)γ b} is

of the form (α1, 1], whose Lebesgue measure is 1−α1. If this condition does not hold

the set I will not be of the form (α1, 1], and its Lebesgue measure will differ from

the degree of necessity of dominance. Similar considerations can be formulated for

µ4D(ã, b̃) = pos(ã ≥ b̃).

Likewise in case 2D and 3D:

• If a ≥ b but a − δa < b − δb one can solve the equation a − L−1(ξ)δa =

b − L−1(ξ)δb. The single solution of which is α2 = L(
a−b

δa−δb ). Thenµ2D(ã, b̃) =

1 − α2 = 1 − L(
a−b

δa−δb )

• In the same way, if a ≤ b but a + γ a > b + γ b, one can solve the equation

a + R−1(ξ)γ a = b + R−1(ξ)γ b, the single solution of which is α3 = R( b−a
γ a−γ b );

so µ3D(ã, b̃) = α3 = R( b−a
γ a−γ b ).



Consequently the membership functions µi D verify the following properties:

µ2D(ã, b̃) =





L(
a−b

δa−δb ) f or a − δa > b − δb and a ≤ b

1 f or a − δa > b − δb and a > b

1 − L(
a−b

δa−δb ) f or a − δa < b − δb and a ≥ b

0 f or a − δa ≤ b − δb and a < b

µ3D(ã, b̃) =





R( a−b
γ a−γ b ) f or a + γ a > b + γ b and a ≤ b

1 f or a + γ a > b + γ b and a > b

1 − R( a−b
γ a−γ b ) f or a + γ a < b + γ b and a ≥ b

0 f or a + γ a > b + γ b and a < b

We can specialize the last items of Proposition 3:

Corollary 2 (Chanas and Zielinski 1999) Let ã = (a, a, δa, γ a) ∈ FL R(R) and

b̃ = (b, b, δb, γ b) ∈ FL R(R) be two fuzzy intervals of type L-R

• If δa 6= δb or a 6= b then µ2D(ã, b̃)+ µ2D(b̃, ã) = 1.

• If γ a 6= γ b or a 6= b then µ3D(ã, b̃)+ µ3D(b̃, ã) = 1.

Indeed if δa = δb and a = b, the left hand side of the fuzzy numbers are equal

and µ2D(ã, b̃) = µ2D(b̃, ã) = 0 while the probability of equality is one. Likewise if

γ a = γ b and, a = b for µ3D(ã, b̃) on the right hand side of the fuzzy numbers.

Proposition 4 Let ã = (a, a, δa, γ a) ∈ FL R(R) and b̃ = (b, b, δb, γ b) ∈ FL R(R)

be two fuzzy intervals of type L-R with L and R strictly decreasing and continuous.

Then, ∀β ∈ [0, 1], β 6= 0, 1:

• if L = R and b < a and a − δa < b + γ b then µ1D(ã, b̃) ≥ β if and only if

a − b − L−1(1 − β)(δa + γ b) ≥ 0

• If a > b but a − δa < b + δb then µ2D(ã, b̃) ≥ β if and only if a − b − L−1(1 −

β)(δa − δb) ≥ 0;

• if a < b but a − γ a > b + γ b then µ3D(ã, b̃) ≥ β if and only if a − b +

R−1(β)(γ a − γ b) ≥ 0;

• if L = R and if b > a and a + γ a > b + δb then µ4D(ã, b̃) ≥ β if and only if

b − a − L−1(β)(γ a + δb) ≤ 0

Proof (For instance)

• We have ∀β ∈ (0, 1] : µ2D(ã, b̃) ≥ β ⇐⇒ 1 − L(
a−b

δa−δb ) ≥ β ⇐⇒

L(
a−b

δa−δb ) ≤ 1 − β and since L is strictly decreasing, thus L−1 is strictly decreas-

ing, then we obtain
a−b

δa−δb ≥ L−1(1−β), then a −b − L−1(1−β)(δa − δb) ≥ 0.

• In the same way µ3D(ã, b̃) ≥ β ⇐⇒ R( b−a
γ a−γ b ) ≥ β and since R is strictly

decreasing, thus R−1 is strictly decreasing, then we obtain b−a
γ a−γ b ≤ R−1(β), then

a − b + R−1(β)(γ a − γ b) ≥ 0. ⊓⊔



Note that for β = 1, µ1D(ã, b̃) = 1 if and only if a−δa ≥ b+γ b, andµ4D(ã, b̃) = 1

if and only if a ≥ b. For the two other indices, Chanas and Zielinski (1999) mention

the following consequence:

Corollary 3 Let ã = (a, a, δa, γ a) ∈ FL R(R) and b̃ = (b, b, δb, γ b) ∈ FL R(R) be

two fuzzy intervals of type L-R with L and R strictly decreasing and continuous. We

have then:

• µ2D(ã, b̃) ≥ 1
2

⇐⇒ a − b − L−1( 1
2
)(δa − δb) ≥ 0;

• µ3D(ã, b̃) ≥ 1
2

⇐⇒ a − b + R−1( 1
2
)(γ a − γ b) ≥ 0;

This result uses the value 1/2 as a threshold due the fact that µ2D, µD3 are reciprocal

relations (see Corollary 2). So only if µi D(ã, b̃) ≥ α > 1
2
, i = 2, 3 does it mean that

ã dominates b̃.

The other assumption used by Chanas et al. is that the cuts of ã and b̃ are induced

by two independent random variables ξ and ζ on the unit interval. It is the case of two

fuzzy intervals supplied by independent sources. One then speaks of fuzzy intervals

with independent confidence levels. The explicit calculation of indices can also be

carried out. For instance, if b < a and a − δa < b + γ b then µ1I (ã, b̃) is the surface

above the line defined by a − δa L−1(ξ) = b + γ b R−1(ζ ) in the unit square. Namely

we must have a − δa L−1(ξ) < b + γ b R−1(ζ ) to have overlapping cuts. Hence

µ1I (ã, b̃) = 1 −

1∫

0

R

(
min

(
1,max

(
0,

a − b − δa L−1(ξ)

γ b

)))
dξ.

When L and R are linear, it is possible to compute an explicit value analytically. More-

over, the two events {ξ : a − L−1(ξ)δa > b − L−1(ξ)δb} and {ζ : a + R−1(ζ )γ a >

b+ R−1(ζ )γ b} being independent, a valued extension of the canonical interval-lattice

order relation ≻ can be defined as follows:

µI
≻(ã, b̃) = µ2D(ã, b̃) · µ3D(ã, b̃).

3.3.4 Ordering fuzzy quantities via scalar representatives

Another approach to compare fuzzy intervals consists in choosing real numbers that

may represent them, and rank the fuzzy intervals accordingly. This process is often

called defuzzification, even if defuzzifying a fuzzy interval should yield an interval

(Ogura et al. 2001). The latter view is the natural one if we admit that fuzzy intervals

represent incomplete information. Then the selection process is as follows:

• Compute an interval I (ã) from a fuzzy interval ã. In agreement with the random

interval view, it is natural to define this interval as the interval average (Dubois

and Prade 1987b; Ogura et al. 2001): I (ã) = [
∫ 1

0 aαdα,
∫ 1

0 aαdα].

• Select an element in this interval: It depends on the attitude of the decision-

maker (that is, optimistic or pessimistic). This element can be of the form σ(ã) =

λ inf I (ã)+ (1 − λ) sup I (ã). This is the well-known Hurwicz criterion.



This approach can be found in the literature in various forms. The older proposal of

this kind is due to Yager (1978, 1980, 1993) where λ = 1/2, i.e. the midpoint of

the mean interval is chosen. Fortemps and Roubens method (Fortemps and Roubens

1996) comes down to ranking fuzzy intervals according to the same scalar substitute

as Yager. The most general case including the decision-maker attitude via the choice

of λ corresponds to the approach proposed independently by de Campos and Gonzalez

Munoz (1989) and Liou and Wang (1992). The linearity of the indices stemming from

the above approach is well-known:

• σ(ã + b̃) = σ(ã)+ σ(ã).

• σ(r ã) = rσ(ã), r is a real number.

However, turning a fuzzy interval into a single number can be debatable in some

situations as it gets rid of the information concerning uncertainty.

4 Various formulations of fuzzy chance constraints

We consider a set of linear constraints bearing on n variables represented by a matrix

A(m × n) and a vector b(m × 1) whose components are, respectively ai j and bi . The

constraints of the fuzzy stochastic problem (PF S) can be written as follows:

b̃i (ω) ≥

n∑

j=1

ãi j (ω)⊙ x j , (1)

x j ≥ 0, j = 1, . . . , n (2)

∑n
j=1 and ⊙ represent, for given ω ∈ �, the addition of fuzzy intervals of type L-R

and their multiplication by a real number, respectively (see Appendix A). Note that

here we assume that ω is a scenario where the coefficients of matrix A and b are

simultaneously determined, but ill-observed. The order relation ≥ must then be given

a meaning. When ãi j (ω) = (ai j (ω), ai j (ω), δ
a
i j , γ

a
i j ) and b̃i = (bi (ω), bi (ω), δ

b
i , γ

b
i )

are fuzzy random variables of type L-R, then

n∑

j=1

ãi j (ω)⊙ x j =




n∑

j=1

ai j (ω)x j ,

n∑

j=1

ai j (ω)x j ,

n∑

j=1

δa
i j x j ,

n∑

j=1

γ a
i j x j




is also of type L − R. In what follows, A (resp. b) is deterministic, fuzzy, stochastic or

fuzzy stochastic according to whether the coefficients ai j (resp. bi ) are, respectively

deterministic, fuzzy intervals, random variables or fuzzy random variables.

Deterministic counterparts of constraints in the chance-constrained fuzzy program-

ming problem will then take the following form:

P


ρ(b̃i (ω),

n∑

j=1

ãi j (ω)⊙ x j ) ≥ βi


 ≥ pi , i = 1, . . . ,m



where ρ(ã, b̃) evaluates the degree of confidence to which the coefficient restricted

by ã is greater than the coefficient restricted by b̃.

In order to convert fuzzy stochastic constraints of (PF S), into deterministic ones,

we consider four versions, according to the choice of ρ. We can use the degrees

of possibility, of necessity of preference, or the Chanas et al. indices of stochastic

preference for random intervals. We can also let ρ(ã, b̃) encode the comparison of

scalar substitutes of fuzzy intervals. In the following we use membership functions

that satisfy assumptions needed for ensuring the application of the results in previous

sections.

4.1 Combining probability and possibility

A fuzzy-stochastic constraint in problem (PF S) can be expressed using possibility of

dominance as:

(Pp) :





max φ(x)

P
(
ω : pos(

∑n
j=1 ãi j (ω)⊙ x j ≤ b̃i (ω)) ≥ βi

)
≥ pi , i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n

where P and pos denote, respectively probability and possibility. This formulation,

used for instance by Katagiri et al. (2004) is very weak since even if βi = pi = 1

there is no certainty about the satisfaction of this constraint.

A feasible solution x0 = (x0
1 , x0

2 , . . . , x0
n ) ≥ 0 to problem (Pp) is called pro-pos

feasible.

Proposition 5 The set of pro-pos feasible solutions to problem (Pp), denoted by

X i
p(pi , βi ) can be written as follows:

1. If ãi j (ω) and b̃i (ω) are fuzzy random variables then:

X i
p(pi , βi ) = {x ≥ 0 : P(ω :

∑n
j=1 a

βi

i j (ω)x j ≤ b
βi

i (ω)) ≥ pi }, i = 1, . . . ,m

where a
βi

i j (ω) and b
βi

i (ω) are, respectively lower and upper bounds of the corre-

sponding ã
βi

i j (ω) and b̃
βi

i (ω).

2. If ãi j (ω) = (ai j (ω), ai j (ω), δ
a
i j , γ

a
i j ) and b̃i (ω) = (bi (ω), bi (ω), δ

b
i , γ

b
i ) are

fuzzy random variables of type L − R, then:

X i
p(pi , βi ) = {x ≥ 0 : P(ω :

∑n
j=1(ai j (ω) − L−1(βi )δ

a
i j )x j ≤ bi (ω) +

R−1(βi )γ
b
i ) ≥ pi }, i = 1, . . . ,m.

The proof is obvious, it is enough to use properties of possibility measures given

in Dubois (1987) and recalled in Sect. 3.3.1. The brittle nature of the solutions to

this constraint is clear as it means that it is satisfied as soon its least demanding

crisp counterpart is satisfied; but there is no guarantee that it will be the case in

practice.



4.2 Combining probability and necessity

A fuzzy-stochastic constraint in problem (PF S) can be expressed using necessity of

dominance as:

(Pn) :





max φ(x)

P{ω : nec(
∑n

j=1 ãi j (ω)⊙ x j ≤ b̃i (ω)) ≥ βi } ≥ pi , i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n

where P and nec denote, respectively probability and necessity. This deterministic

expression of the constraint ensures its robustness to level βi together with its frequent

satisfaction according to level pi . A feasible solution x0 = (x0
1 , x0

2 , . . . , x0
n ) ≥ 0 to

problem (Pn) is called pro-nec feasible.

Proposition 6 The set of pro-nec feasible solutions to problem (Pn), denoted by

X i
n(pi , βi ), can be written as follows:

1. If ãi j (ω) and b̃i (ω) are fuzzy random variables then:

X i
n(pi , βi ) = {x ≥ 0 : P(ω :

∑n
j=1 a

1−βi

i j (ω)x j ≤ b
1−βi

i (ω)) ≥ pi }, i =

1, . . . ,m

where a
1−βi

i j (ω) and b
1−βi

i (ω) are, respectively lower and upper bounds of the

corresponding ã
1−βi

i j (ω) and b̃
1−βi

i (ω).

2. If ãi j (ω) = (ai j (ω), ai j (ω), δ
a
i j , γ

a
i j ) and b̃i (ω) = (bi (ω), bi (ω), δ

b
i , γ

b
i ) are

fuzzy random variables of type L − R, then:

X i
n(pi , βi ) = {x ≥ 0 : P(ω :

∑n
j=1(ai j (ω) + R−1(1 − βi )γ

a
i j )x j ≤ bi (ω) −

L−1(1 − βi )δ
b
i ) ≥ pi }, i = 1, . . . ,m.

The proof is obvious (it is enough to use properties of necessity given in Dubois

(1987) and recalled in Sect. 3.3.1). The robust nature of the solutions to this constraint

is clear as it means that its solution is probably feasible, whatever the actual value of

the coefficients in the 1 − βi cuts of the fuzzy sets ãi j (ω) and b̃i (ω), when ω is fixed.

Note that the same type of reasoning can be followed for handling indices nec2 and

pos3 when comparing fuzzy numbers. However, the meaning of solutions will again

differ. Indeed using the latter indices comes down to assuming that all coefficients

take pessimistic or optimistic values simultaneously. Propositions similar to the above

ones can be written using Proposition 2.

4.3 Combining probability and scalar indices for ordering of fuzzy quantities

Due to the assumed linearity of the defuzifying operation σ , the problem then writes:

(Pσ )





max φ(x)

P{ω :
∑n

j=1 σ(ãi j (ω))x j ≤ σ(b̃i (ω))} ≥ pi , i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n



where P denote probability and σ(ã) is a scalar substitute of ã. It is obvious

that σ(ãi j (ω)) and σ(b̃i (ω)) are real random variables. The problem then comes

down to standard chance-constrained programming. A feasible solution x0 =

(x0
1 , x0

2 , . . . , x0
n ) ≥ 0 to problem (Pσ ) is called pro-σ feasible. The set of pro − σ

feasible solutions to problem (Pσ ) is denoted by X i
σ (pi ). This drastic simplifi-

cation comes along with difficulties to interpret the solution to such a formula-

tion. Indeed if σ is given by a defuzzification scheme that has no clear ratio-

nale, then the obtained solution cannot be interpreted. If σ computes an Hurwicz-

like substitute depending on a coefficient of pessimism λ, it is easier to interpret,

but it highlights the fact that replacing a fuzzy interval by a crisp number is the

responsibility of the decision-maker, and has no objectively defendable justifica-

tion.

4.4 Combining chance-constrained programming and random interval comparison

Now we assume that in each scenario ω, there is a random process that governs the

definition of interval coefficients in problem (PF S), which now takes the form:

(Pµk
) :





max φ(x)

P{ω : µk(b̃i (ω),
∑n

j=1 ãi j (ω)⊙ x j ) ≥ βi } ≥ pi , i = 1, . . . ,m; k

= 1D, 2D, 3D, 4D, 1I, 4I.

x j ≥ 0, j = 1, . . . , n

where the indices µk are stochastic extensions of some interval-related ordering.

A feasible solution x0 = (x0
1 , x0

2 , . . . , x0
n ) ≥ 0 to problem (Pµk

) is called pro-

µk feasible. The set of pro-µk feasible solutions to problem (Pµk
) is denoted by

X i
µk
(pi , βi ). We restrict to the case of functionally related random variables underly-

ing the fuzzy coefficients, and distinguish the case of fuzzy ordering relations gener-

alizing interval orderings (case k = 1D, 4D) from the case when they are recip-

rocal (k = 2D, 3D). In the latter case, we need βi ≥ 1
2

to make sense of the

inequality.

Cases 2D and 3D Based on the definition of Xµk
(pi , βi ) and Corollary 1, we will

rewrite the feasible sets X i
µk
(pi , βi ), k = 2D, 3D, βi ≥ 1

2
as follows:

Proposition 7 Let b̃i (ω) = (bi (ω), bi (ω), δ
b
i , γ

b
i ) and ãi j (ω) = (ai j (ω), ai j (ω),

δa
i j , γ

a
i j ) be fuzzy random variables of the type L − R. Under assumptions of Corol-

lary 2 and βi ≥ 1
2

, we have:

• X i
µ2D

(pi , βi ) = {x ≥ 0 : P(ω :
∑n

j=1(ai j (ω) − L−1(1 − βi )δ
a
i j )x j ≤ bi (ω) −

L−1(1 − βi )δ
b
i ) ≥ pi }.

• X i
µ3D

(pi , βi ) = {x ≥ 0 : P(ω :
∑n

j=1(ai j (ω) + R−1(βi )γ
a
i j )x j ≤ bi (ω) +

R−1(βi )γ
b
i ) ≥ pi }.



Proof We do not need βi ≥ 1
2

in the proof. By definition for i = 1, . . . ,m:

X
i
µ2D

(pi , βi ) =



x = (x1, x2, . . . , xn) ≥ 0 : P


ω : µ2(b̃i (ω),

n∑

j=1

ãi j (ω)⊙ x j ) ≥ βi


 ≥ pi





X
i
µ3D

(pi , βi ) =



x = (x1, x2, . . . , xn) ≥ 0 : P


ω : µ3(b̃i (ω),

n∑

j=1

ãi j (ω)⊙ x j ) ≥ βi


 ≥ pi





Then, from Proposition 4, we get, for i = 1, . . . ,m:

µ2D


b̃i (ω),

n∑

j=1

ãi j (ω)⊙ x j


 ≥ βi ⇔

n∑

j=1

(ai j (ω)− L−1(1 − βi )δ
a
i j )x j ≤ bi (ω)− L−1(1 − βi )δ

b
i

µ3D


b̃i (ω),

n∑

j=1

ãi j (ω)⊙ x j


 ≥ βi ⇔

n∑

j=1

(ai j (ω)+ R−1(βi )γ
a
i j )x j ≤ bi (ω)+ R−1(βi )γ

b
i

It follows for k = 2D, 3D that:

P


µ2D


b̃i ,

n∑

j=1

ãi j ⊙ x j


 ≥ βi


 =P


{ω :

n∑

j=1

(ai j (ω)−L−1(1−βi )δ
a
i j )x j ≤ bi (ω)−L−1(1−βi )δ

b
i }




P


µ3D


b̃i ,

n∑

j=1

ãi j ⊙ x j


 ≥ βi


 = P


ω :

n∑

j=1

(ai j (ω)+ R−1(βi )γ
a
i j )x j ≤ bi (ω)+ R−1(βi )γ

b
i




Cases 1D and 4D For a given ω ∈ �, from Proposition 4, we get:

∀1 ≥ βi > 0, µ4 D(b̃i (ω),
∑n

j=1(ãi j (ω) ⊙ x j ) ≥ βi ⇐⇒
∑n

j=1(ai j (ω) −

L−1(βi )δ
a
i j )x j ≤ bi (ω)+ R−1(βi )γ

b
i .

Consequently {x ≥ 0 : P(µ4 D(b̃i (ω),
∑n

j=1 ãi j (ω) ⊙ x j ) ≥ βi ) ≥ pi } = {x ≥ 0 :

P(ω :
∑n

j=1(ai j (ω)− L−1(βi )δ
a
i j )x j ≤ bi (ω)+ R−1(βi )γ

b
i ) ≥ pi }. ⊓⊔

Likewise, for k = 1D, we get ∀βi < 1, µ1D(b̃i (ω),
∑n

j=1 ãi j (ω) ⊙ x j ) ≥ βi

in the form
∑n

j=1(ai j (ω) + R−1(1 − βi )γ
a
i j )x j ≤ bi (ω) − L−1(1 − βi )γ

b
i . Con-

sequently, {x ≥ 0 : P(µ1D(b̃i (ω),
∑n

j=1(ãi j (ω) ⊙ x j ) ≥ βi ) ≥ pi } = {x ≥ 0 :

P(ω :
∑n

j=1(ai j (ω) + R−1(1 − βi )γ
a
i j )x j ≤ bi (ω) − L−1(1 − βi )γ

b
i .) ≥ pi }. Of

course, if βi = 1, the feasible set reduces to {x ≥ 0 : P(ω :
∑n

j=1(ai j (ω)+ γ
a
i j )x j ≤

bi (ω)− γ b
i .) ≥ pi }.

Remark We can easily see that: X i
p(pi , βi ) = X i

µ4D
(pi , βi ) and X i

n(pi , βi ) =

X i
µ1D

(pi , βi ).

Optimal solutions to such problems are defined as usual, since the various problems

come down to checking the feasibility of deterministic constraints.



5 Convexity of feasible sets

The feasible sets induced by fuzzy chance constraints can be convex, under some

conditions as follows:

Theorem 1 If the requested probability levels are extreme, i.e. pi = 0 or pi = 1,

then:

• X i
σ (pi ) is convex.

• X i
µ2D

(pi , βi ) and X i
µ3D

(pi , βi ) are convex, for βi ≥ 1
2

.

• X i
p(pi , βi ) and X i

n(pi , βi ) are convex ∀βi ∈ (0, 1].

Proof Obvious, it is enough to apply Theorem 5 of Appendix B.

Taking account of the conditions for the convexity of feasible sets resulting from

the application of the chance-constrained programming method (Charnes and Cooper

1959) to linear stochastic programming and relying on results in Sect. 4, we distin-

guish the cases where A is deterministic or fuzzy and those where A is stochastic or

fuzzy stochastic.

5.1 Subcases where A is deterministic or fuzzy

We consider the sub-case where A is fuzzy and b is fuzzy stochastic and its compo-

nents can be fuzzy random variables or L-R-fuzzy random variables. Based on the

expression of sets of feasible solutions to chance constraints given in Sect. 4, and

Theorem 5 of Appendix B, we establish the convexity of feasible sets:

Theorem 2 If the components of the matrix A(m × n) are fuzzy intervals ãi j and

those of the vector b(m × 1) are fuzzy random variables b̃i (ω), then: ∀βi ∈ (0, 1] and

∀pi ∈ [0, 1], the feasible sets X i
p(pi , βi ), X i

n(pi , βi ) and X i
σ (pi ) are convex for all

probability distributions of b
βi

i , b
1−βi

i and defuzzifications σ(b̃i ), respectively.

Proof Since ãi j are fuzzy intervals, we replace a
βi

i j (ω) by a
βi

i j in X i
p(pi , βi ), it follows

that ∀βi ∈ (0, 1] and ∀pi ∈ [0, 1]:

x ∈ X i
p(pi , βi ) ⇐⇒ P(ω :

∑n
j=1 a

βi

i j x j ≤ b
βi

i (ω)) ≥ pi ⇔

1 − P(ω :
∑n

j=1 a
βi

i j (ω)x j ≥ b
βi

i (ω)) ≥ pi ⇔ 1 − 9
b
βi
i

(
∑n

j=1 a
βi

i j x j ) ≥ pi ⇔

∑n
j=1 a

βi

i j x j ≤ 9−1

b
βi
i

(1− pi )where9
b
βi
i

is the cumulative distribution of b
βi

i . Replac-

ing P(ω :
∑n

j=1 a
βi

i j x j ≤ b
βi

i (ω)) ≥ pi by
∑n

j=1 a
βi

i j x j ≤ 9−1

b
βi
i

(1− pi ) in X i
p(pi , βi ),

we can easily see that ∀βi ∈ (0, 1] and ∀pi ∈ [0, 1]: X i
p(pi , βi ) is convex for all prob-

ability distributions of b
βi

i . ⊓⊔

The proof is the same for the two other feasible sets; it is enough to replace, in this

proof:

• a
βi

i j and b
βi

i (ω) by a
1−βi

i j and b
1−βi

i (ω), respectively, for X i
n(pi , βi ).



• a
βi

i j and b
βi

i (ω) by σ(ãi j ) and σ(b̃i (ω)), respectively, for X i
σ (pi ).

These results still hold for the case of fuzzy intervals of type L-R.

Corollary 4 If ãi j are fuzzy intervals of type L-R and b̃i (ω) are fuzzy random

variables of type L-R, then ∀βi ∈ (0, 1] and ∀pi ∈ [0, 1], the feasible sets

X i
p(pi , βi ), X i

n(pi , βi ) are convex for all probability distributions of bi and bi .

Proof x ∈ X i
p(pi , βi ) ⇐⇒ P{ω :

∑n
j=1(ai j (ω) − L−1(βi )δ

a
i j )x j ≤ bi (ω) +

R−1(βi )γ
b
i } ≥ pi and we have P{ω :

∑n
j=1(ai j (ω) − L−1(βi )δ

a
i j )x j ≤ bi (ω) +

R−1(βi )γ
b
i } = 1 − P{ω :

∑n
j=1(ai j (ω)− L−1(βi )δ

a
i j )x j − R−1(βi )γ

b
i ≥ bi (ω)} =

1 −9bi
(
∑n

j=1(ai j (ω)− L−1(βi )δ
a
i j )x j − R−1(βi )γ

b
i }).

Thus, x ∈ X i
p(pi , βi ) ⇐⇒

∑n
j=1(ai j (ω)−L−1(βi )δ

a
i j )x j −R−1(βi )γ

b
i ≤ ψ−1

bi
(1−

pi ) where9bi
is the cumulative distribution of bi .We can easily see that ∀βi ∈ (0, 1]

and ∀pi ∈ [0, 1], X i
p(pi , βi ) is convex for all probability distributions of bi . ⊓⊔

The proof is the same for the feasible set X i
n(pi , βi ); it is enough to replace ai j −

L−1(βi )δ
a
i j and bi (ω)+R−1(βi )γ

b
i by ai j +R−1(1−βi )γ

a
i j and bi (ω)−L−1(1−βi )δ

b
i .

Proposition 8 If ãi j are fuzzy intervals of type L-R and b̃i (ω) are fuzzy random vari-

ables of type L-R, then ∀pi ∈ [0, 1], the feasible sets X i
µ2D

(pi , βi ) and X i
µ3D

(pi , βi )

are convex for all probability distributions of bi and bi , and βi ≥ 1
2

.

Proof The proof is the same as the one of the previous Corollary; it is enough to

replace:

• ai j − L−1(βi )δ
a
i j and bi (ω) + R−1(βi )γ

b
i by ai j − L−1(βi )δ

a
i j and bi (ω) −

L−1(βi )δ
b
i , respectively for X i

µ2D
(pi , βi ).

• ai j − L−1(βi )δ
a
i j and bi (ω)+ R−1(βi )γ

b
i by ai j + R−1(βi )γ

a
i j , and bi (ω)+

R−1(βi )γ
b
i , respectively for X i

µ3D
(pi , βi ).

5.2 Subcases where A is stochastic or fuzzy stochastic

We consider the more general sub-case where both A and b are fuzzy stochastic first

assuming, the components of A and b are fuzzy random variables. And then when

they are fuzzy random variables of type L − R. Based on the previous Sect. 4, the

expression of feasible sets, and Theorem 5 of Appendix B, we distinguish the case of

normal fuzzy random variables (resp. of type L-R) and discrete fuzzy random vari-

ables (resp. of type L-R) and we establish the convexity of the corresponding feasible

sets as follows:

5.2.1 The components of A and b are fuzzy random variables

• Case of normal fuzzy random variables



Theorem 3 If the components of the matrix A(m × n) and the vector b(m ×

1), ãi1, ãi2, . . . , ãin, and b̃i , respectively, are normal fuzzy random variables

whose means µ̃i1, µ̃i2, . . . , µ̃in, λ̃i are fuzzy intervals and whose variances

σ 2
i1, σ

2
i2, . . . , σ

2
in, δ

2
i , respectively are precise, then ∀βi ∈ (0, 1] and for pi >

1
2
,

the feasible sets X i
p(pi , βi ) and X i

n(pi , βi ) are convex.

Proof From Sect. 2, item 2, on the one hand, a
βi

i1, a
βi

i2, . . . , a
βi

in, b
βi

i are nor-

mal random variables with means µ
βi

i1, µ
βi

i2, . . . , µ
βi

in, λ
βi

i and precise variances

σ 2
i1, σ

2
i2, . . . , σ

2
in, δ

2
i , respectively. And on the other hand, a

1−βi

i1 , a
1−βi

i2 , . . . ,

a
1−βi

in , b
1−βi

i are normal random variables with means µ
1−βi

i1 , µ
1−βi

i2 , . . . , µ
1−βi

in ,

λ
1−βi

i and precise variances σ 2
i1, σ

2
i2, . . . , σ

2
in, δ

2
i , respectively. ⊓⊔

Then from Theorem 5 in Appendix B, for ∀βi ∈ (0, 1] and for pi >
1
2
, the feasible

sets X i
p(pi , βi ) and X i

n(pi , βi ) are convex.

• Case of discrete fuzzy random variables

Theorem 4 Let� be a finite space with probability distribution P(ωk) = qk, k =

1, 2, . . . , r and
∑k=r

k=1 qk = 1. If ai1, ai2, . . . , ain, bi are n + 1 discrete random

variables based on �, then ∀βi ∈ (0, 1] and for pi > 1 − mink∈(1,2,...,r) qk, the

feasible sets X i
p(pi , βi ), X i

n(pi , βi ) and X i
σ (pi ) are convex.

Proof Let ãi j (ω) and b̃i (ω) be discrete fuzzy random variables. Then, for k ∈

{1, 2, . . . , r}, P(ãi j (ωk) = θ̃i jk) = P(b̃i (ωk) = η̃ik) = qk, where θ̃i jk and η̃ik

are fuzzy intervals. ⊓⊔

Then a
βi

i j (ω), b
βi

i (ω), a
1−βi

i j (ω) and b
1−βi

i (ω) are discrete random variables such

that: P(a
βi

i j (ωk) = θ
βi

i jk) = P(b
βi

i (ωk) = η
βi

ik ) = P(a
1−βi

i j (ωk) = θ
1−βi

i jk ) =

P(b
1−βi

i (ωk) = η
1−βi

ik = pk, where θ
βi

i jk and η
βi

ik are, respectively the lower and

upper bounds of the βi -cut of the corresponding θ̃i jk and η̃ik . And θ
1−βi

i jk and

η
1−βi

ik are, respectively the lower and upper bounds of the (1 − βi )-cut of the

corresponding θ̃i jk and η̃ik .

In addition, σ(ãi j (ω)) and σ(b̃i (ω)) are discrete real random variables such that

P(σ (ãi j (ωk)) = σ(θ̃i jk)) = qk and P(σ (b̃i (ωk)) = σ(η̃ik)) = qk,where σ(θ̃i jk)

and σ(η̃ik) are real numbers.

Consequently, from Theorem 5, in Appendix B, we conclude that: ∀βi ∈ (0, 1]

and for pi > 1 − mink∈(1,2,...,r) qk, the feasible sets X i
p(pi , βi ), X i

n(pi , βi ) and

X i
σ (pi ) are convex.

5.2.2 The components of A and b are fuzzy random variables of type L-R

• Case of normal fuzzy random variables of type L-R

Corollary 5 Let (�, F, P) be a probability space and ãi j = (ai j , ai j , δ
a
i j , γ

a
i j ) and

b̃i (ω) = (bi (ω), bi (ω), δ
b
i , γ

b
i ) be normal fuzzy random variables of type L-R such

that:



1. ai1, ai2, . . . , ain, bi are normal random variables with means µ
i1
, µ

i2
, . . . ,

µ
in
, λi and variances σ 2

i1, σ
2
i2, . . . , σ

2
in, δ

2
i , respectively.

2. ai1, ai2, . . . , ain, bi are normal random variables with meansµi1, µi2, . . . , µin,

λi and variances σ 2
i1, σ

2
i2, . . . , σ

2
in, δ

2
i , respectively.

Then for pi >
1
2

:

– X i
p(pi , βi ) and X i

n(pi , βi ) are convex ∀βi ∈ (0, 1].

– X i
µ2D

(pi , βi ) and X i
µ3D

(pi ,
1
2
) are convex.

Proof This is a particular case of Theorem 3, as ãi j (ω) = (ai j (ω), ai j (ω), δ
a
i j , γ

a
i j )

and b̃i (ω) = (bi (ω), bi (ω), δ
b
i , γ

b
i ) are normal fuzzy random variables of type L-R,

thus, we only make the specific calculations explicit:

1. on the one hand, b
βi

i = bi + R−1(βi )γ
b
i is a normal real random variable with

meanλ
βi

i = λi +R−1(βi )γ
b
i and variance δ2

i and for j = 1, 2, . . . , n : a
βi

i j = ai j −

L−1(βi )δ
a
i j are normal real random variables with meansµ

βi

i j = µ
i j

−L−1(βi )δ
a
i j

and variances σ 2
i j .

2. And on the other hand, b
1−βi

i = bi − L−1(1 − βi )δ
b
i is a normal real random

variable with mean λ
1−βi

i = λi − L−1(1 − βi )δ
b
i and variance δ2

i and for j =

1, 2, . . . , n : a
1−βi

i j = ai j + R−1(1 − βi )γ
a
i j are normal real random variables

with means µ
1−βi

i j = µi j + R−1(1 − βi )γ
a
i j and variances σ 2

i j .

Then we conclude that ∀βi ∈ (0, 1] and for pi > 1
2
, the feasible sets

X i
p(pi , βi ), X i

n(pi , βi ) are convex.

3. By replacing, in the proof of Theorem 3, b
βi

i by b
βi

i , thus λ
βi

i by λ
βi

i on the one

hand. And on the other hand b
1−βi

i by b
1−βi

i , thus λ
1−βi

i by λ
1−βi

i and taking

account of the L-R particularity of ãi j and b̃i , i.e. ( b
1−βi

i = bi + R−1(1−βi )γ
b
i ,

λ
1−βi

i = λi + R−1(1 − βi )γ
b
i , a

1−βi

i j = ai j + R−1(1 − βi )γ
a
i j , µ

1−βi

i j =

µi j + R−1(1 − βi )γ
a
i j , b

βi

i = bi − L−1(βi )δ
b
i , λ

βi

i = λi − L−1(βi )δ
b
i , a

βi

i j =

ai j − L−1(βi )δ
a
i j , µ

βi

i j = µ
i j

− L−1(βi )δ
a
i j .)

We conclude that for pi >
1
2
, the feasible sets X i

µ2D
(pi , βi ) and X i

µ3D
(pi , βi )

are convex ∀βi ≥ 1
2

. ⊓⊔

• Case of discrete fuzzy random variables of type L-R

We again specialize the previous result using the additional shape assumption for

fuzzy intervals.

Corollary 6 Let � be a finite space with probability distribution P(ωk) = qk, k =

1, 2, . . . , r and
∑k=r

k=1 qk = 1, and ai1, ai2, . . . , ain, bi are n+1 discrete random vari-

ables based on�. Let ãi j = (ai j , ai j , δ
a
i j , γ

a
i j ) and b̃i (ω) = (bi (ω), bi (ω), δ

b
i , γ

b
i ) be

discrete fuzzy random variables of the type L−R.Then for pi > 1−mink∈(1,2,...,r) qk :



– X i
p(pi , βi ) and X i

n(pi , βi ) are convex ∀βi ∈ (0, 1).

– X i
µ2D

(pi , βi ) and X i
µ3D

(pi , βi ) are convex for βi ≥ 1
2

.

Proof Since ãi j = (ai j , ai j , δ
a
i j , γ

a
i j ) and b̃i (ω) = (bi (ω), bi (ω), δ

b
i , γ

b
i ) are discrete

fuzzy random variables of the type L − R, thus ai j (ω), ai j (ω), bi (ω) and bi (ω) are

real discrete random variables. then it is obvious that: ai j (ω)− L−1(βi )δ
a
i j , ai j (ω)+

R−1(1 − βi )γ
a
i j , bi (ω) − L−1(1 − βi )δ

b
i , bi (ω) − L−1(βi )δ

b
i , bi (ω) + R−1(βi )γ

b
i

and bi (ω)+ R−1(1 − βi )γ
b
i are discrete random variables. ⊓⊔

Consequently from Theorem 5 in Appendix B, ∀βi ∈ (0, 1] and for pi > 1 −

mink∈(1,2,...,r) qk, the feasible sets X i
p(pi , βi ), X i

n(pi , βi ), are convex, and for βi ≥
1
2
, X i

µ2D
(pi , βi ) and X i

µ3D
(pi , βi ) are convex.

6 Example

Consider the fuzzy stochastic linear program:

(P1
f s)

′ :





max x1 + 2x2

ã11x1 + ã12x2 ≤ b̃1(ω)

ã21x1 + ã22x2 ≤ b̃2(ω)

x1 ≥ 0, x2 ≥ 0

where (ãi j )i, j=1,2 are fuzzy intervals with piecewise linear membership functions;

(b̃i )i=1,2 are discrete fuzzy random variables with discrete probability distribution

P(ω1) = 0.25, P(ω2) = 0.75;, letting � = {ω1, ω2}.

1. Case where (ãi j )i, j=1,2 are triangular fuzzy intervals and (b̃i )i=1,2 are discrete

fuzzy random variables.

ã11 = 1̃, ã12 = 3̃

ã21 = 2̃, ã22 = 4̃.

P(b̃1(ω1) = 1̃) = P(b̃2(ω1) = 2̃) = 0.25 and

P(b̃1(ω2) = 3̃) = P(b̃2(ω2) = 4̃) = 0.75. where, for m = 1, 2, 3, 4, m̃ is a

fuzzy interval with membership function µm̃ defined as follows:

µm̃(x) =





0 x < m − 1,

x − m + 1 m − 1 ≤ x < m,

1 m ≤ x < m + 1,

−x + m + 2 m + 1 ≤ x ≤ m + 2,

0 x > m + 2.

To solve the fuzzy stochastic program (P1
f s)

′, we apply chance-constrained pro-

gramming with fuzzy stochastic coefficients as follows:

• by combining probability and possibility with p1 = p2 = 0.75 and β1 =

β2 = 0.8, we have:

P(b
0.8

1 (ω1) = 2.2) = P(b
0.8

2 (ω1) = 3.2) = 0.25 and



P(b
0.8

1 (ω2) = 4.2) = P(b
0.8

2 (ω2) = 5.2) = 0.75,

a0.8
11 = 0.8, a0.8

12 = 2.8, a0.8
21 = 1.8, a0.8

22 = 3.8.

We obtain:

(P1
p )

′ :





max x1 + 2x2

0.8x1 + 2.8x2 ≤ 9−1

b
0.8
1

(0.25) = 2.2

1.8x1 + 3.8x2 ≤ 9−1

b
0.8
2

(0.25) = 3.2

x1 ≥ 0, x2 ≥ 0

where9−1
bi
, i = 1, 2 are the inverse functions of the corresponding distribu-

tion function of bi .

We obtain the solution x0 = ( 11
4
, 0) which is (0.75,0.8) Pro-pos optimal for

(P1
f s)

′.

• by combining probability and necessity with p1 = p2 = 0.75 and β1 =

β2 = 0.8, we have:

P(b0.2
1 (ω1) = 0.2) = P(b0.2

2 (ω1) = 1.2) = 0.25 and

P(b0.2
1 (ω2) = 2.2) = P(b0.2

2 (ω2) = 3.2) = 0.75,

a0.2
11 = 2.8, a0.2

12 = 4.8, a0.2
21 = 3.8, a0.2

22 = 5.8.

We obtain

(P1
n )

′ :





max x1 + 2x2

2.8x1 + 4.8x2 ≤ 9−1

b0.2
1

(0.25) = 0.2

3.8x1 + 5.8x2 ≤ 9−1

b0.2
2

(0.25) = 1.2

x1 ≥ 0, x2 ≥ 0

where9−1
bi
, i = 1, 2 are the inverse functions of the corresponding distribu-

tion function of bi .

We obtain the solution x0 = (0, 1
24
) which is (0.75,0.8) Pro-nec optimal for

(P1
f s)

′.

2. Case where (ãi j )i, j=1,2 are trapezoidal fuzzy intervals and b̃i=1,2 are discrete

fuzzy random variables:

Let ã11 = (1, 2, 1, 1)L−R, ã12 = (3, 4, 1, 1)L−R, ã21 = (2, 3, 1, 1)L−R, ã22 =

(4, 5, 1, 1)L−R , and b̃i (ω) = (bi (ω), bi (ω), 1, 1), i = 1, 2 such that:

P(b̃1(ω1) = γ̃ 1
1 ) = P(b̃2(ω1) = γ̃ 1

2 ) = 0.25, and

P(b̃1(ω2) = γ̃ 2
1 ) = P(b̃2(ω2) = γ̃ 2

2 ) = 0.75

with γ 1
1 = (1, 2, 1, 1)L−R, γ

2
1 = (3, 4, 1, 1)L−R, γ

1
2 = (2, 3, 1, 1)L−R, γ

2
2 =

(4, 5, 1, 1)L−R, where L(x) = max(0, 1 − x) and L = R.

To solve the fuzzy stochastic program (P1
f s)

′, we apply chance-constrained pro-

gramming with fuzzy stochastic coefficients by combining chance constrained

programming and random interval comparison with p1 = p2 = 0.75 and β1 =

β2 = 0.8. We obtain:



• by combining probability and µ2D,

(P1
µ2D

)′ :





max x1 + 2x2

0.2x1 + 2.2x2 ≤ 9−1
1 (0.25) = 0.2

1.2x1 + 3.2x2 ≤ 9−1
2 (0.25) = 1.2

x1 ≥ 0, x2 ≥ 0

where9−1
i , i = 1, 2 are the inverse functions of the corresponding distribu-

tion function of bi − L−1(0.2).

The solution is x0 = (1, 0)which is (0.75,0.8) Pro−µ2D optimal for (P1
f s)

′.

• by combining probability and µ3D,

(P1
µ3D

)′ =





max x1 + 2x2

2.2x1 + 4.2x2 ≤ 8−1
1 (0.25) = 2.2

3.2x1 + 5.2x2 ≤ 8−1
2 (0.25) = 3.2

x1 ≥ 0, x2 ≥ 0

where8−1
bi
, i = 1, 2 are the inverse functions of the corresponding distribu-

tion function of bi + L−1(0.8) (because L = R).

The solution x0 = (0, 8
13
) which is (0.75,0.8)Pro −µ3D optimal for (P1

f s)
′.

7 Conclusion

In this paper, we have considered a fuzzy stochastic programming problem with a

crisp objective function and fuzzy stochastic linear constraints, i.e. constraints involv-

ing fuzzy random variables or random variables and fuzzy intervals, in the general

case, and fuzzy random variables of type L-R or random variables and fuzzy inter-

vals of type L-R as a particular case. In order to convert these constraints into their

deterministic equivalent, we have exploited various methods for comparing fuzzy

intervals. Moreover, we have established conditions for the convexity of the feasible

sets resulting from this transformation. The approach can be applied in the case where

the right-hand side of constraints is fuzzy stochastic, stochastic, fuzzy, or determin-

istic with the same for its left-hand side. In the case where there is no fuzzy random

variable in constraints, but only random variables or only fuzzy intervals, the proposed

method, respectively reduces, when possibility theory comparison indices are used,

to chance-constrained programming with stochastic coefficients due to Charnes and

Cooper (1959) or to possibilistic programming with fuzzy coefficients due to Dubois

(1987). The approach of Chanas and colleagues turns fuzzy programming with ill-

known constraint coefficients into a fusion of interval linear programming and chance-

constrained programming, which may coincide with a possibilistic approach in the case

of comonotonic dependence.

In this paper we did not consider fuzzy random linear criteria. One reason is that the

definition of optimal solutions cannot use the fuzzy interval comparison techniques

right away. In the case of constraints, the left-hand side and the right-hand side of a



linear constraint correspond to non-related quantities. However, fuzzy random solu-

tion evaluations pertaining to two crisp solutions x and x ′ are no longer unrelated and

cannot be compared by the techniques described above (see the discussion in Inuiguchi

(2007)): they have to be adapted to account for such a relationship.

Other formulations of fuzzy stochastic programming are possible. One formulation

of constraints with random coefficients may rely on stochastic dominance: namely,

comparing cumulative distributions of both sides of the constraints, as an alternative to

the chance-constrained approach that is based on statistical preference. The stochas-

tic dominance approach to the comparison of random fuzzy intervals is described in

Aiche and Dubois (2010). This would allow us to extend interval linear programming

to coefficients described by p-boxes and other practical representations of uncertain

quantities (Destercke et al. 2008).

Appendices

Appendix A: Fuzzy intervals

A fuzzy interval ã is a fuzzy set of real numbers characterised by its membership

function µã : R −→ [0, 1], such that:

• there is at least one element x ∈ R such that µã(x) = 1.

• the fuzzy set is convex:µã(λx1+(1−λ)x2) ≥ min(µã(x1), µã(x2)),∀x1, x2 ∈ R

and ∀λ ∈]0, 1].

A fuzzy interval ã is often called a fuzzy number if there is only one element x ∈ R

such thatµã(x) = 1. In this paper we assume thatµã is upper semi-continuous (u.s.c.).

Equivalently, the α-cut of a fuzzy interval ã is a closed interval in R of the form:

ãα = {x ∈ R : µã(x) ≥ α} =
[
aα, aα

]

where α > 0, aα = inf{x ∈ R : µã(x) ≥ α} and aα = sup{x ∈ R : µã(x) ≥ α}. In

particular, the core of the fuzzy interval is ã1 =
[
a1, a1

]
, denoted by

[
a, a

]
, for short.

The strong α-cut of a fuzzy interval ã is ãᾱ = {x ∈ R : µã(x) > α} for α < 1. The

support of a fuzzy interval ã is its strong 0-cut S(ã) = {x ∈ R : µã(x) > 0}.

The addition ã ⊕ b̃ of two fuzzy intervals is defined by its membership function:

µ
ã

⊕
b̃
(z) = sup

x,y:x+y=z
min(µã(x), µb̃

(y));

the multiplication λã of a fuzzy interval by a constant λ 6= 0 is defined by its mem-

bership function:

µλã(x) = µã(x/λ).

Moreover 0ã = 0. The α-cut of fuzzy intervals ã and b̃ verify the following properties:

• (ã + b̃)α = ãα + b̃α

• (λb̃)α = λb̃α, λ ∈ R.



A fuzzy interval of the L-R type is a fuzzy interval whose membership function µã

is defined by: (see Dubois and Prade 1988)

µã(x) =





1 for x ∈
[
a, a

]
,

L(
a−x

αa
) for x ≤ a,

R( x−a
βa
) for x ≥ a.

Shape functions L and R are non-negative, defined on the positive real line [0,∞),

non-increasing, and such that L(0) = R(0) = 1. Coefficients αa and βa are, respec-

tively left and right spreads. Let FL R(R) be a set of fuzzy intervals of type L-R. Then

ã ∈ FL R(R) is denoted by

ã = (a, a, αa, βa)L−R

Arithmetic operations on fuzzy intervals of the L-R type are well-known:

• ã ⊕ b̃ = (a + b, a + b, αa + αb, βa + βb)L−R

• λ⊙ (a, a, αa, βa)L−R = (λa, λa, λαa, λβa)L−R if λ > 0

Please refer to Dubois and Prade (1988, 1987a), Dubois et al. (2000) for details and

bibliography on fuzzy intervals.

Appendix B: Linear stochastic programming

We recall known results on convexity of stochastic linear programs of the form:

(PS) :





max φ(x)∑n
j=1 ai j (ω)x j ≤ bi (ω), i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n

where φ(x) is a deterministic linear objective function, ai j and bi are random vari-

ables. By applying the chance-constrained programming method due to Charnes and

Cooper (1959), we obtain the following deterministic program:

(PD) :





max φ(x)

P({ω :
∑n

j=1 ai j (ω)x j ≤ bi (ω)}) ≥ pi , i = 1, . . . ,m

x j ≥ 0, j = 1, . . . , n

Let X i (pi ) = {x ≥ 0 : P({ω :
∑n

j=1 ai j (ω)x j ≤ bi (ω)}) ≥ pi }, i = 1, . . . ,m be

the set of feasible solutions for (PD).

Theorem 5 (Kall 1978) Under the following conditions, the set of feasible solutions

X i (pi ) is convex.

1. The feasible sets X i (0) and X i (1) are convex.



2. If ai j are deterministic, then the feasible sets X i (pi ) is convex for all probability

distributions of bi .

3. If ai1, ai2, . . . , ain, bi are n + 1 normal random variables with means µi1,

µi2, . . . , µin, λi and variances σ 2
i1, σ

2
i2, . . . , σ

2
in, δ

2
i , respectively. Then: for

pi >
1
2

the feasible set X i (pi ) is convex.

4. Let� be a finite space with probability distribution P(ωk) = qk, k = 1, 2, . . . , r

and
∑k=r

k=1 qk = 1. If ai1, ai2, . . . , ain, bi are n + 1 discrete random variables

based on�, then, for pi > 1−mink∈(1,2,...,r) qk the feasible set X i (pi ) is convex.
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