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Abstract

In this paper we investigate numerically the model for pedestrian traffic proposed in [B. An-

dreianov, C. Donadello, M.D. Rosini, Crowd dynamics and conservation laws with nonlocal

constraints and capacity drop, Mathematical Models and Methods in Applied Sciences 24 (13)

(2014) 2685-2722] . We prove the convergence of a scheme based on a constraint finite volume

method and validate it with an explicit solution obtained in the above reference. We then per-

form ad hoc simulations to qualitatively validate the model under consideration by proving its

ability to reproduce typical phenomena at the bottlenecks, such as Faster Is Slower effect and the

Braess’ paradox.

Keywords: finite volume scheme, scalar conservation law, non-local point constraint, crowd

dynamics, capacity drop, Braess’ paradox, Faster Is Slower
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1. Introduction

Andreianov, Donadello and Rosini developed in [1] a macroscopic model, called here ADR,

aiming at describing the behaviour of pedestrians at bottlenecks. The model is given by the

Cauchy problem for a scalar hyperbolic conservation law in one space dimension with non-local

point constraint of the form

∂tρ + ∂x f (ρ) = 0 (t, x) ∈ R+ × R, (1a)

ρ(0, x) = ρ̄(x) x ∈ R, (1b)

f (ρ(t, 0±)) ≤ p

(∫

R−

w(x) ρ(t, x) dx

)

t ∈ R+, (1c)
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where ρ(t, x) ∈ [0,R] is the (mean) density of pedestrians in x ∈ R at time t ∈ R+ and ρ̄ : R →

[0,R] is the initial (mean) density, with R > 0 being the maximal density. Then, f : [0,R] →

R+ is the flow considered to be bell-shaped, which is an assumption commonly used in crowd

dynamics. A typical example of such flow is the so-called Lighthill-Whitham-Richards (LWR)

flux [2, 3, 4] defined by

f (ρ) = ρ vmax

(

1 −
ρ

ρmax

)

,

where vmax and ρmax are the maximal velocity and the maximal density of pedestrians respec-

tively. Throughout this paper the LWR flux will be used. Next p : R+ → R+ prescribes the

maximal flow allowed through a bottleneck located at x = 0 as a function of the weighted aver-

age density in a left neighbourhood of the bottleneck and w : R− → R+ is the weight function

used to average the density.

Finally in (1c), ρ(t, 0−) denotes the left measure theoretic trace along the constraint, implicitly

defined by

lim
ε↓0

1

ε

∫ +∞

0

∫ 0

−ε

|ρ(t, x) − ρ(t, 0−)| φ(t, x) dx dt = 0 for all φ ∈ C∞c (R2;R).

The right measure theoretic trace, ρ(t, 0+), is defined analogously.

In the last few decades, the study of the pedestrian behaviour through bottlenecks, namely at

locations with reduced capacity, such as doors, stairs or narrowings, drawn a considerable at-

tention. The papers [5, 6, 7, 8, 9, 10, 11] present results of empirical experiments. However,

for safety reasons, experiments reproducing extremal conditions such as evacuation and stam-

pede are not available. In fact, the unique experimental study of a crowd disaster is proposed

in [12]. The available data show that the capacity of the bottleneck (i.e. the maximum number

of pedestrians that can flow through the bottleneck in a given time interval) can drop when high-

density conditions occur upstream of the bottleneck. This phenomenon is called capacity drop

and can lead to extremely serious consequences in escape situations. In fact, the crowd pressure

before an exit can reach very high values, the efficiency of the exit dramatically reduces and ac-

cidents become more probable due to the overcrowding and the increase of the evacuation time

(i.e. the temporal gap between the times in which the first and the last pedestrian pass through the

bottleneck). A linked phenomenon is the so-called Faster Is Slower (FIS) effect, first described

in [13]. FIS effect refers to the jamming and clogging at the bottlenecks, that result in an increase

of the evacuation time when the degree of hurry of a crowd is high. We recall that the capacity

drop and the FIS effect are both experimentally reproduced in [6, 14]. A further related (partly

counter-intuitive) phenomenon is the so-called Braess’ paradox for pedestrian flows [15]. It is

well known that placing a small obstacle before an exit door can mitigate the inter-pedestrian

pressure and, under particular circumstances, it reduces the evacuation time by improving the

outflow of people.

Note that as it happens for any first order model, see for instance [16, Part III] and the ref-

erences therein, ADR can not explain the capacity drop and collective behaviours at the bottle-

necks. Therefore one of the difficulties we have to face is that the constraint p has to be deduced

together with the fundamental diagram from the empirical observations.

The aim of this paper is to validate ADR by performing simulations in order to show the ability

of the model to reproduce the main effects described above and related to capacity drop that are

FIS and Braess’ paradox. To this end we propose a numerical scheme for the model and prove
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its convergence. The scheme is obtained by adapting the local constrained finite volume method

introduced in [17] to the non-local case considered in ADR, using a splitting strategy.

The paper is organized as follows. In Section 2 we briefly recall the main theoretical results

for ADR. In Section 3 we introduce the numerical scheme, prove its convergence and validate

it with an explicit solution obtained in [1]. In Section 4 we perform simulations to show that

ADR is able to reproduce the Braess’ paradox and the FIS effect. In Subsection 4.3 we combine

local and non-local constraints to model a slow zone placed before the exit. Conclusions and

perspectives are outlined in Section 5.

2. Well-posedness for the ADR model

Existence, uniqueness and stability for the general Cauchy problem (1) are established in [1]

under the following assumptions:

(F) f belongs to Lip ([0,R]; [0,+∞[) and is supposed to be bell-shaped, that is f (0) =

0 = f (R) and there exists σ ∈ ]0,R[ such that f ′(ρ) (σ − ρ) > 0 for a.e. ρ ∈ [0,R].

(W) w belongs to L∞(R−;R+), is an increasing map, ‖w‖L1(R−) = 1 and there exists iw > 0

such that w(x) = 0 for any x ≤ −iw.

(P) p belongs to Lip
(

[0,R] ;
]

0, f (σ)
])

and is a non-increasing map.

The regularity w ∈ L∞(R−;R+) is the minimal requirement needed in order to prove existence

and uniqueness of (1). In this paper, we shall consider continuous w.

The existence of solutions for the Riemann problem for (1) is proved in [18] for piecewise

constant p. However, such hypothesis on p is not sufficient to ensure uniqueness of solutions,

unless the flux f and the efficiency p satisfy a simple geometric condition, see [18] for details.

In the present paper, we consider either continuous nonlinear p or a piecewise constant p that

satisfies such geometric condition.

The definition of entropy solution for a Cauchy problem (1a), (1b) with a fixed a priori time

dependent constraint condition

f (ρ(t, 0±)) ≤ q(t) t ∈ R+ (2)

was introduced in [19, Definition 3.2] and then reformulated in [17, Definition 2.1], see also [17,

Proposition 2.6] and [20, Definition 2.2]. Such definitions are obtained by adding a term that

accounts for the constraint in the classical definition of entropy solution given by Kruzkov in [21,

Definition 1]. The definition of entropy solution given in [1, Definition 2.1] is obtained by

extending these definitions to the framework of non-local constraints.

The following theorem on existence, uniqueness and stability of entropy solutions of the con-

strained Cauchy problem (1) is achieved under the hypotheses (F), (W) and (P).

Theorem 2.1 (Theorem 3.1 in [1]). Let (F), (W), (P) hold. Then, for any initial datum ρ̄ ∈

L∞(R; [0,R]), the Cauchy problem (1) admits a unique entropy solution ρ. Moreover, if ρ′ =

ρ′(t, x) is the entropy solution corresponding to the initial datum ρ̄′ ∈ L∞(R; [0,R]), then for

all T > 0 and L > iw, the following inequality holds

∥

∥

∥ρ(T ) − ρ′(T )
∥

∥

∥

L1([−L,L])
≤ eCT

∥

∥

∥ρ̄ − ρ̄′
∥

∥

∥

L1({|x|≤L+MT })
, (3)

where M = Lip( f ) and C = 2Lip(p)‖w‖L∞(R−).
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The total variation of the solution may in general increase due to the presence of the constraint.

In [1] the authors provide an invariant domain D ⊂ L1 (R; [0,R]) such that if ρ̄ belongs to D,

then one obtains a Lipschitz estimate with respect to time of the L1 norm and an a priori estimate

of the total variation of

Ψ(ρ) = sign(ρ − σ)[ f (σ) − f (ρ)] =

∫ ρ

σ

∣

∣

∣ ḟ (r)
∣

∣

∣ dr.

3. Numerical method for approximation of ADR

In this section we describe the numerical scheme based on finite volume method that we use

to solve (1). Then we prove the convergence of our scheme and validate it by comparison with

an explicit solution of (1). In what follows, we assume that (F), (W) and (P) hold.

3.1. Non-local constrained finite volume method

Let ∆x and ∆t be the constant space and time steps respectively. We define the points x j+1/2 =

j∆x, the cells K j = [x j−1/2, x j+1/2[ and the cell centers x j = ( j − 1/2)∆x for j ∈ Z. We define

the time discretization tn = n∆t. We introduce the index jc such that x jc+1/2 is the location of the

constraint (a door or an obstacle). For n ∈ N and j ∈ Z, we denote by ρn
j

the approximation of

the average of ρ(tn, · ) on the cell K j, namely

ρ0
j =

1

∆x

∫ x j+1/2

x j−1/2

ρ(x) dx and ρn
j ≃

1

∆x

∫ x j+1/2

x j−1/2

ρ(tn, x) dx if n > 0.

We recall that for the classical conservation law (1a)-(1b), a standard finite volume method

can be written into the form

ρn+1
j = ρn

j −
∆t

∆x

(

F n
j+1/2 − F

n
j−1/2

)

, (4)

where F n
j+1/2

= F
(

ρn
j
, ρn

j+1

)

is a monotone, consistent numerical flux, that is, F satisfies the

following assumptions:

• F is Lipschitz continuous from [0,R]2 to R with Lipschitz constant Lip(F),

• F(a, a) = f (a) for any a ∈ [0,R],

• (a, b) ∈ [0,R]2 7→ F(a, b) ∈ R is non-decreasing with respect to a and non-increasing with

respect to b.

We also recall that in [17] the numerical flux for the time dependent constraint (2) is modified as

follow in order to take into account the constraint condition

F n
j+1/2 =



















F
(

ρn
j
, ρn

j+1

)

if j , jc,

min
{

F
(

ρn
j
, ρn

j+1

)

, qn
}

if j = jc,
(5)

where qn is an approximation of q(tn). In the present paper, when dealing with a Cauchy problem

subject to a non-local constraint of the form (1c) we will use the approximation

qn = p

















∆x
∑

j≤ jc

w(x j) ρ
n
j

















. (6)

Roughly speaking
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• we apply the numerical scheme (4) for the problem (1a)-(1b),

• we apply the numerical scheme (4)-(5) for the problem (1a)-(1b)-(2),

• we apply the numerical scheme (4)-(5)-(6) for the problem (1).

3.2. Convergence of the scheme

Let us introduce the finite volume approximate solution ρ∆ defined by

ρ∆(t, x) = ρn
j for x ∈ K j and t ∈ [tn, tn+1[, (7)

where the sequence (ρn
j
) j∈Z,n∈N is obtained by the numerical scheme (4)-(5). Analogously, we

also define the approximate constraint function

q∆(t) = qn for t ∈ [tn, tn+1[. (8)

First, we prove a discrete stability estimate valid for any domain Q = [0, T ]×R with T > 0, for

the scheme (4)-(5) applied to problem (1a)-(1b)-(2). This estimate can be seen as the equivalent,

in this framework, of the stability result established in [17, Proposition 2.10].

Proposition 3.1. Let ρ be in L∞(R; [0,R]) and q∆, q̂∆ be piecewise constant functions of the

form (8). If ρ∆ and ρ̂∆ are the approximate solutions of (1a)-(1b)-(2) corresponding, respectively,

to q∆ and q̂∆ and constructed by applying the scheme (4)-(5), then we have

‖ρ∆ − ρ̂∆‖L1(Q) ≤ 2T‖q∆ − q̂∆‖L1([0,T ]).

Proof. For notational simplicity, let N = ⌊T/∆t⌋. Let us also introduce (ρ̃n
j
) j∈Z, n∈N defined by,

ρ̃n+1
j = ρn

j −
∆t

∆x

(

F̃ n
j+1/2 − F̃

n
j−1/2

)

, for any j ∈ Z, n ∈ N,

where F̃ n
j+1/2

is defined by

F̃ n
j+1/2 =



















F
(

ρn
j
, ρn

j+1

)

if j , jc,

min
{

F
(

ρn
j
, ρn

j+1

)

, q̂n
}

if j = jc.

Then using the definitions of (ρn
j
) j∈Z,n∈N and (ρ̃n

j
) j∈Z, n∈N, we have for any n = 1, . . . ,N,

ρn
j = ρ̃

n
j if j < { jc, jc + 1}

and

ρn
jc
− ρ̃n

jc
= −
∆t

∆x

(

min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, qn−1
}

+min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, q̂n−1
})

,

ρn
jc+1 − ρ̃

n
jc+1 =

∆t

∆x

(

min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, qn−1
}

−min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, q̂n−1
})

,

which implies that

∣

∣

∣ρn
jc
− ρ̃n

jc

∣

∣

∣ ≤
∆t

∆x

∣

∣

∣qn−1 − q̂n−1
∣

∣

∣,
∣

∣

∣ρn
jc+1 − ρ̃

n
jc+1

∣

∣

∣ ≤
∆t

∆x

∣

∣

∣qn−1 − q̂n−1
∣

∣

∣.
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Therefore we deduce that, for any n = 1, . . . ,N,

∑

j∈Z

∣

∣

∣ρn
j − ρ̃

n
j

∣

∣

∣ ≤ 2
∆t

∆x

∣

∣

∣qn−1 − q̂n−1
∣

∣

∣. (9)

Besides, observe that the modification of the numerical flux at the interface x jc+1/2 introduced

in (5) does not affect the monotonicity of the scheme (4)-(5) (see [17, Proposition 4.2]). There-

fore, for any n = 1, . . . ,N, we have
∑

j∈Z

∣

∣

∣ρ̃n
j − ρ̂

n
j

∣

∣

∣ ≤
∑

j∈Z

∣

∣

∣ρn−1
j − ρ̂n−1

j

∣

∣

∣. (10)

Hence thanks to (9) and (10), we can write

∑

j∈Z

|ρ1
j − ρ̂

1
j | ≤

∑

j∈Z

|ρ1
j − ρ̃

1
j | +

∑

j∈Z

|ρ̃1
j − ρ̂

1
j | ≤ 2

∆t

∆x

∣

∣

∣q0 − q̂0
∣

∣

∣ +
∑

j∈Z

|ρ0
j − ρ̂

0
j | = 2

∆t

∆x

∣

∣

∣q0 − q̂0
∣

∣

∣.

Then an induction argument shows that for any n = 1, . . . ,N,

∑

j∈Z

∣

∣

∣ρn
j − ρ̂

n
j

∣

∣

∣ ≤ 2
∆t

∆x

n−1
∑

k=0

|qk − q̂k | ≤
2

∆x
‖q∆ − q̂∆‖L1([0,tn]).

In conclusion, we find that

‖ρ∆ − ρ̂∆‖L1(Q) = ∆t∆x

N
∑

n=1

∑

j∈Z

|ρn
j − ρ̂

n
j | ≤ 2‖q∆ − q̂∆‖L1([0,T ])

N
∑

n=1

∆t ≤ 2T‖q∆ − q̂∆‖L1([0,T ])

and this ends the proof.

Let us now notice that as in [17, Proposition 4.2], under the CFL condition

Lip(F)
∆t

∆x
≤

1

2
, (11)

we have the L∞ stability of the scheme (4)-(5)-(6) that is

0 ≤ ρ∆(t, x) ≤ R for a.e. (t, x) ∈ Q. (12)

This stability result allows to prove the statement below.

Proposition 3.2. Let q∆ be defined by (6)-(8). Then under the CFL condition (11), for any T > 0,

there exists C > 0 only depending on T , f , F, p, w and R such that:

|q∆|BV([0,T ]) ≤ C. (13)

Proof. Let N = ⌊T/∆t⌋ and jw be an integer such that supp(w) ⊂ ∪
jw≤ j≤ jc

K j. Then for any

n = 0, . . . ,N − 1, we have

∣

∣

∣qn+1 − qn
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

p

















∆x
∑

jw≤ j≤ jc

w(x j)ρ
n+1
j

















− p

















∆x
∑

jw≤ j≤ jc

w(x j)ρ
n
j

















∣

∣

∣

∣

∣

∣

∣

∣

≤ ∆x Lip(p)

∣

∣

∣

∣

∣

∣

∣

∣

∑

jw≤ j≤ jc

w(x j)(ρ
n+1
j − ρn

j )

∣

∣

∣

∣

∣

∣

∣

∣

= ∆t Lip(p)

∣

∣

∣

∣

∣

∣

∣

∣

∑

jw≤ j≤ jc

w(x j)
(

F n
j+1/2 − F

n
j−1/2

)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Now, using a summation by part, we have

∑

jw≤ j≤ jc

w(x j)
(

F n
j+1/2 − F

n
j−1/2

)

= w(x jc )F
n
jc+1/2 − w(x jw )F jw−1/2 −

∑

jw≤ j≤ jc−1

(

w(x j+1) − w(x j)
)

F n
j+1/2.

Then, it follows that

|qn+1 − qn| ≤ ∆t Lip(p) ‖w‖L∞(R−;R)

∑

jw−1≤ j≤ jc

|F n
j+1/2|.

Now, from (5), for any j ∈ Z we have the estimate

∣

∣

∣F n
j+1/2

∣

∣

∣ ≤
∣

∣

∣F(ρn
j , ρ

n
j+1)

∣

∣

∣ ≤
∣

∣

∣F(ρn
j , ρ

n
j+1) − F(ρn

j , ρ
n
j)
∣

∣

∣ +
∣

∣

∣ f (ρn
j )
∣

∣

∣

≤ Lip(F)
∣

∣

∣ρn
j+1 − ρ

n
j

∣

∣

∣ + Lip( f )
∣

∣

∣ρn
j

∣

∣

∣ ≤ R
(

Lip(F) + Lip( f )
)

.

Hence we deduce that

|q∆|BV([0,T ]) =

N−1
∑

n=0

∣

∣

∣qn+1 − qn
∣

∣

∣ ≤ C,

where C = ( jc − jw + 2) T R Lip(p) ‖w‖L∞(R−;R)

(

Lip(F) + Lip( f )
)

.

We are now in a position to prove a convergence result for the scheme (4)-(5)-(6).

Theorem 3.1. Under the CFL condition (11), the constrainted finite volume scheme (4)-(5)-(6)

converges in L1(Q) to the unique entropy solution to (1).

Proof. Let (ρ∆, q∆) be constructed by the scheme (4)-(5)-(6). Proposition 3.2 and Helly’s lemma

give the existence of a subsequence, still denoted q∆ and a constraint function q ∈ L∞([0, T ])

such that q∆ converges to q strongly in L1([0, T ]) as ∆t → 0. Let ρ ∈ L∞(R+ × R; [0,R]) be the

unique entropy solution to (1a)-(1b)-(2) associated to q. It remains to prove that the subsequence

ρ∆ converges to ρ strongly in L1(Q) as ∆t, ∆x → 0. The uniqueness of the entropy solution

to (1a)-(1b)-(2) will then imply that the full sequence ρ∆ converges to ρ and, as a consequence,

the full sequence q∆ converges to q = p
(∫

R−
w(x) ρ(t, x) dx

)

.

Let q̂∆ be a piecewise constant approximation of q such that q̂∆ converges to q strongly in

L1([0, T ]). Furthermore, we also introduce ρ̂∆ constructed by the scheme (4)-(5) and associ-

ated to q̂∆. Now we have

‖ρ − ρ∆‖L1(Q) ≤ ‖ρ − ρ̂∆‖L1(Q) + ‖ρ∆ − ρ̂∆‖L1(Q).

But, thanks to [17, Theorem 4.9], under the CFL condition (11), ‖ρ − ρ̂∆‖L1(Q) tends to 0 as ∆t,

∆x → 0. Furthermore, thanks to Proposition 3.1, we have

‖ρ∆ − ρ̂∆‖L1(Q) ≤ 2 T ‖q∆ − q̂∆‖L1([0,T ])

which also shows that ‖ρ∆ − ρ̂∆‖L1(Q) tends to 0 as ∆t, ∆x → 0.
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Figure 1: The functions [ρ 7→ f (ρ)] and [ξ 7→ p(ξ)] as in Section 3.3.

(a) The solution in the (t, x, ρ)-coordinates. (b) The solution in the (x, t)-coordinates.

(c) The solution in the (t, x, ρ)-coordinates for

0 ≤ t ≤ 15.

(d) The solution in the (t, x, ρ)-coordinates for

85 ≤ t ≤ 87.5.

Figure 2: Representation of the solution constructed in [1, Section 6] and described in Subsection 3.3.
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3.3. Validation of the numerical scheme

We propose here to validate the numerical scheme (4)-(5)-(6) using the Godounov numerical

flux (see e.g. [22, 23]) which will be used in the remaining of this paper:

F(a, b) =



















min
[a,b]

f if a ≤ b,

max
[b,a]

f if a > b.

We consider the explicit solution to (1) constructed in [1, Section 6] by applying the wave front

tracking algorithm. The set up for the simulation is as follows. Consider the domain of computa-

tion [−6, 1], take a normalized flux f (ρ) = ρ(1−ρ) (namely the maximal velocity and the maximal

density are assumed to be equal to one) and a linear weight function w(x) = 2(1 + x) χ[−1,0](x).

Assume a uniform distribution of maximal density in [xA, xB] at time t = 0, namely ρ̄ = χ[xA,xB].

The efficiency of the exit, p, see Figure 1, is of the form

p(ξ) =



















p0 if 0 ≤ ξ < ξ1,

p1 if ξ1 ≤ ξ < ξ2,

p2 if ξ2 ≤ ξ ≤ 1.

The explicit solution ρ corresponding to the values

p0 = 0.21, p1 = 0.168, p2 = 0.021, ξ1 ∼ 0.566,

xA = −5.75, xB = −2, ξ2 ∼ 0.731,

is represented in Figure 2. The above choices for the flux f and the efficiency p ensure that the

solution to each Riemann problem is unique, see [18]. We defer to [1, Section 6] for the details

of the construction of the solution ρ and its physical interpretation.

A qualitative comparison between the numerically computed solution x 7→ ρ∆(t, x) and the ex-

plicitly computed solution x 7→ ρ(t, x) at different fixed times t is in Figure 3. We observe good

agreements between x 7→ ρ(t, x) and x 7→ ρ∆(t, x). The parameters for the numerically computed

solution are ∆x = 3.5 × 10−4 and ∆t = 7 × 10−5.

A convergence analysis is also performed for this test. We introduce the relative L1-error for the

density ρ, at a given time tn, defined by

En
L1 =

















∑

j

∣

∣

∣ρ(tn, x j) − ρ
n
j

∣

∣

∣

















/

















∑

j

∣

∣

∣ρ(tn, x j)
∣

∣

∣

















.

In Table 1, we computed the relative L1-errors for different numbers of space cells at the fixed

time t = 10. We deduce that the order of convergence is approximatively 0.906. As in [17], we

observe that the modification (5) of the numerical flux does not affect the accuracy of the scheme.

4. Numerical simulations

This section is devoted to the phenomenological description of some collective effects in crowd

dynamics related to capacity drop, namely the Braess’ paradox and the Faster Is Slower (FIS)

effect.
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Figure 3: With reference to Subsection 3.3: The numerically computed solution x 7→ ρ∆(t, x) and the explicitly computed

solution x 7→ ρ(t, x) at different fixed times t.
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Number of cells L1-error

625 9.6843× 10−3

1250 6.2514× 10−3

2500 3.4143× 10−3

5000 1.3172× 10−3

10000 1.03 × 10−3

20000 4.2544× 10−4

Order 0.906

Table 1: Relative L1-error at time t = 10.

4.1. Faster is Slower effect

The FIS effect was first described in [13, 24] in the context of the room evacuation problem.

The authors studied the evolution of the evacuation time as a function of the maximal velocity

reached by the pedestrians, and they shown that there exists an optimal velocity for which the

evacuation time attains a minimum. Therefore, any acceleration beyond the optimal velocity

worses the evacuation time. Following the studies above, the curve representing the evacuation

time as a function of the average velocity takes a characteristic shape [24, Figure 1c].

The first numerical tests we performed aim to verify if such shape is obtained starting from the

ADR model. To this end, we consider the corridor modeled by the segment [-6,1], with an exit

at x = 0. We consider the flux f (ρ) = ρ vmax (1 − ρ) where vmax is the maximal velocity of the

pedestrians and the maximal density is equal to one. We use the same weight function as for the

validation of the scheme, w(x) = 2(1 + x)χ[−1,0](x) and, the same initial density, ρ̄ = χ[−5.75,−2].

The efficiency of the exit p is now given by the following continuous function

p(ξ) =







































p0 if 0 ≤ ξ < ξ1,

(p0 − p1)ξ + p1ξ1 − p0ξ2

ξ1 − ξ2
if ξ1 ≤ ξ < ξ2,

p1 if ξ2 ≤ ξ ≤ 1,

(14)

where

p0 = 0.24, p1 = 0.05, ξ1 = 0.5, ξ2 = 0.9.

The space and time steps are fixed to ∆x = 5× 10−3 and ∆t = 5× 10−4. In Figure 4 are plotted

the flux f corresponding to the maximal velocity vmax = 1 and the above efficiency of the exit.

Figure 5 represents the evacuation time as a function of the maximal velocity vmax, as vmax

varies in the interval [0.1, 5]. As we can observe, the general shape described above is recovered.

The numerical minimal evacuation time is 19.007 and is obtained for vmax = 1.

In addition, we reported in Figure 6 the density at the exit as a function of time for different

values of the maximal velocity vmax around the optimal one. We notice that the maximal density

at the exit and the time length where the density is maximal increase with the velocity. This

expresses the jamming at the exit that leads to the FIS effect.

Then we performed some series of tests to see how the general shape obtained in Fig-

ure 5 changes with respect to variations of the parameters of the model. In Figure 8 (a),
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Figure 4: The normalized flux ρ→ f (ρ) and the constraint ξ → p(ξ) defined in (14).
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Figure 5: With reference to Subsection 4.1: Evacuation time as a function of the velocity vmax.

we show this variation when we consider different initial densities, namely, ρ̄, ρ̄1 and ρ̄2 with

ρ̄1(x) = 0.8χ[−5.75,−2] and ρ̄2(x) = 0.6χ[−5.75,−2]. The general shape of the curves is conserved.

We observe that the evacuation time increases with the initial amount of pedestrians while the

optimal velocity decreases as the initial amount of pedestrians increases. The minimal evacua-

tion time and the corresponding optimal maximal velocity are 12.259 and 1.07 for ρ̄2 and 15.691

and 1.03 for ρ̄1.

Next we explore the case where the efficiency of the exit varies. We consider the function

p defined in (14) and the modification pβ such that pβ(ξ) = p(βξ). In Figure 7, we plotted the

functions p, pβ for β = 0.8 and β = 0.9. Then, in Figure 8 (b) are plotted the evacuation time

curves corresponding to these three efficiencies of the exit. As minimum evacuation times, we

obtain 18.586 and 18.827 for β = 0.8, 0.9 respectively. As expected, the minimal evacuation time

increases with lower efficiency of the exit. The corresponding velocities are approximatively 1.06

and 1.02 respectively.

Finally, we change the location of the initial density. In addition to the corridor [−6, 1], we

consider two other corridors modeled by the segments [−12, 1] and [−20, 1]. In these two cor-

ridors we take as initial densities ρ̄3(x) = χ[−11.75,−8] and ρ̄4(x) = χ[−19.75,−16] respectively. We

have reported the obtained evacuation time curves in Figure 8 (c). As expected, the minimal

evacuation time increases with the distance between the exit and the initial density location.
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Figure 6: With reference to Subsection 4.1: Densities at the exit as a function of time for different velocities.
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Figure 7: With reference to Subsection 4.1: The efficiencies ξ → pβ(ξ) for β = 0.8, 0.9, 1.

4.2. Braess’ paradox

The presence of obstacles, such as columns upstream from the exit, may prevent the crowd

density from reaching dangerous values and may actually help to minimize the evacuation time,

since in a moderate density regime the full capacity of the exit can be exploited. From a micro-

scopic point of view, the decrease of the evacuation time may seem unexpected, as some of the

pedestrians are forced to chose a longer path to reach the exit.

The ADR model is able to reproduce the Braess’ paradox for pedestrians, as we show in

the following simulations. We consider, as in the previous subsection, the corridor modeled by

the segment [−6, 1] with an exit at x = 0. We compute the solution corresponding to the flux

f (ρ) = ρ(1−ρ), the initial density ρ̄(x) = χ[−5.75,−2](x), the efficiency of the exit p of the form (14)

with the parameters

p0 = 0.21, p1 = 0.1, ξ1 = 0.566, ξ2 = 0.731

and the same weight function w(x) = 2(1 + x)χ[−1,0](x). The space and time steps are fixed to

∆x = 5×10−3 and ∆t = 5×10−4. Without any obstacle, the numerical evacuation time is 29.496.

In these following simulations we place an obstacle at x = d, with −2 < d < 0. The obstacle

reduces the capacity of the corridor and can be seen as a door, which we assume larger than the
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Figure 8: With reference to Subsection 4.1: Evacuation time as a function of vmax for different parameters of the model.

one at x = 0. Following these ideas we define an efficiency function pd(ξ) = 1.15p(ξ) and a

weight function wd(x) = 2(x − d + 1)χ[d−1,d](x) associated to the obstacle.

In Figure 9 we have reported the evolution of the evacuation time when the position of the

obstacle varies in the interval [−1.9,−0.01] with a step of 0.01. We observe that for −1.8 ≤ d ≤

−1.72, the evacuation time is lower than in the absence of the obstacle. The optimal position

of the obstacle is obtained for d = −1.72 and the corresponding evacuation time is 24.246. We

compare in Figure 10 five snapshots of the solution without obstacle and the solutions with an

obstacle placed at d = −1.72 and d = −1.85. This latter location corresponds to a case where

the evacuation time is greater than the one without an obstacle. In these snapshots, we see that

the obstacle placed at d = −1.85 becomes congested very soon. This is due to the fact that

the obstacle is too close to the location of the initial density. When the obstacle is placed at

d = −1.72, it delays the congestion at the exit.

4.3. Zone of low velocity

In this section, we perform a series of simulations where the obstacle introduced in Subsec-

tion 4.2 is now replaced by a zone where the velocity of pedestrians is lower than elsewhere in

the domain. The effect we want to observe here is similar to the one we see in Braess’ Paradox.
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Figure 9: With reference to Subsection 4.2: Evacuation time as a function of the position of the obstacle.

Namely we prevent an high concentration of pedestrians in front of the exit by constraining their

flow in an upstream portion of the corridor. In this case however the constraint is local, as the

maximal value allowed for the flow only depends on the position in the corridor.

We consider again the corridor modeled by the segment [−6, 1] with an exit at x = 0. The

efficiency of the exit and the initial density are the same as in the previous subsection. Assume

that the slow zone is of size one and is centred at x = d, where −1.9 ≤ d ≤ 0. Define the

following function

k(x) =



















































1 if x ≤ d − 0.5,

−2(x − d) if d − 0.5 ≤ x ≤ d,

2(x − d) if d ≤ x ≤ d + 0.5,

1 if x ≥ d + 0.5,

(15)

and the following velocity v(x, ρ) = [λ + (1 − λ) k(x)] vmax (1 − ρ), where λ ∈ [0, 1] and vmax ≥ 1

is the maximal velocity. With such velocity, the maximal velocity of pedestrians decreases in the

interval [d−0.5, d], reaching its minimal value λ vmax at x = d. Then the velocity increases in the

interval [d, d + 0.5] reaching the maximum value vmax, that corresponds to the maximal velocity

away from the slow zone. Finally we consider the flux f (x, ρ) = ρ v(x, ρ) and the space and time

steps are fixed to ∆x = 5 × 10−3 and ∆t = 5 × 10−4.

Figure 11 (a) shows the evolution of the evacuation time as a function of the parameter λ varying

in the interval [0.1, 1] when the center of the slow zone is fixed at d = −1.5. We observe that the

optimal minimal velocity in the slow zone is for λ = 0.88 and the corresponding evacuation time

is 20.945. Recalling that without the slow zone the evacuation time is 29.496, we see that the

introduction of the slow zone allows to reduce the evacuation time. In Figure 11 (b), we show

the evolution of the evacuation time when varying the center of the slow zone d in the interval

[−1.9, 0] and when the minimal and the maximal velocities are fixed and correspond to λ = 0.88

and vmax = 1. We observe here that, unlike in the Braess paradox tests case, the evacuation time

does not depend on the location of the slow zone, except when this latter is close enough to the

exit. Indeed, when the slow zone gets too close to the exit, the evacuation time grows. This is

due to the fact that pedestrians do not have time to speed up before reaching the exit.
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Figure 10: With reference to Subsection 4.2: Braess paradox simulations: density profiles at times t = 1 (first line), t = 7

(second line), t = 15 (third line), t = 19 (fourth line) and t = 24.246 (last line).
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Figure 11: With reference to Subection 4.3: Evacuation time as a function of different parameters of the model.
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Fix now d = −1.5 and λ = 0.88 and assume that vmax varies in the interval [0.1, 5]. The

evolution of the evacuation time as a function of vmax is reported in Figure 11 (c). We observe

that we get the characteristic shape already obtained in the FIS effect.

Finally we present in Figure 12 five snapshots for three different solutions. The first two

solutions are the ones computed in Subsection 4.2, without obstacle and with an obstacle located

at d = −1.72 respectively. The third solution is computed with a zone of low velocity centered

at d = −1.72, λ = 0.88 and vmax = 1. In order to have a good resolution of this third solution,

the space and time steps where fixed to ∆x = 3.5 × 10−4 and ∆t = 7 × 10−5.We note that in the

case where a zone of low velocity is placed in the domain, we do not see the capacity drop, as

the density of pedestrians never attains very high values in the region next to the exit.

5. Conclusions

Qualitative features that are characteristic of pedestrians’ macroscopic behaviour at bottle-

necks (Faster is Slower, Braess’ paradox) are reproduced in the setting of the simple scalar model

with non-local point constraint introduced in [1]. These effects are shown to be persistent for

large intervals of values of parameters. The validation is done by means of a simple and robust

time-explicit splitting finite volume scheme which is proved to be convergent, with experimental

rate close to one.

The results presented in this paper allow to consider more complex models. Indeed, as ADR

is a first order model, it is not able to capture more complicated effects related to crowd dynam-

ics. Typically, ADR fails to reproduce the amplification of small perturbations. This leads to

consider second order model such as the model proposed by Aw, Rascle and Zhang [25, 26] in

the framework of vehicular traffic.

Another extension of this work is to consider the ADR model with constraints that are non-

local in time. Such constraints allow to tackle optimal management problems in the spirit of

[27, 28].

Finally, this work can also be extended to two-dimensional models where experimental vali-

dations may be possible.
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Figure 12: With reference to Subsection 4.3: Braess’ paradox and zone of low velocity simulations: density profiles at

times t = 1 (first line), t = 7 (second line), t = 15 (third line), t = 19 (fourth line) and t = 20.945 (last line).
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