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Abstract. We present a new “cover and decomposition” attack on the
elliptic curve discrete logarithm problem, that combines Weil descent
and decomposition-based index calculus into a single discrete logarithm
algorithm. This attack applies, at least theoretically, to all composite
degree extension fields, and is particularly well-suited for curves defined
over Fp6 . We give a real-size example3 of discrete logarithm computations
on a curve over a 156-bit degree 6 extension field, which would not have
been practically attackable using previously known algorithms. A shorter
version of this work was presented at the EUROCRYPT 2012 conference.
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1 Introduction

Elliptic curves are used in cryptography to provide groups where the discrete
logarithm problem is thought to be difficult. We recall that given a finite group G
(written additively) and two elements P,Q ∈ G, the discrete logarithm problem
(DLP) consists in computing, when it exists, an integer x such that Q = xP .
When elliptic curves are used in cryptographic applications, the DLP is usually
considered to be as difficult as in a generic group of the same size [32]. As a
consequence, for a given security level, the key size is much smaller than for
other popular cryptosystems based on factorization or discrete logarithms in
finite fields. The first elliptic curves considered in cryptography were defined over

3 This work was granted access to the HPC resources of CCRT under the allocation
2010-t201006445 made by GENCI (Grand Equipement National de Calcul Intensif).
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either binary or prime fields [21, 25]. But to speed up arithmetic computations,
it has been proposed to use various forms of extension fields. In particular,
Optimal Extension Fields have been proposed in [4] to offer high performances
in hardware implementations. They are of the form Fpd where p is a pseudo-
Mersenne prime and d is such that there exists an irreducible polynomial of the
form Xd − ω ∈ Fp[X ]. In most examples, the degree d of the extension is rather
small. However, when curves defined over extension fields are considered, some
non-generic attacks, such as the Weil descent or decomposition attacks, can be
applied. The first one aims at transferring the DLP from E(Fqn) to the Jacobian
of a curve C defined over Fq and then uses index calculus on this Jacobian [2,
12, 15] to compute the logarithm; it works well when the genus of the curve
C is small, ideally equal to n, but this occurs quite infrequently in practice.
Many articles have studied the scope of this technique (cf. [7, 10, 11, 14, 16]), but
even on vulnerable curves, the Weil descent approach is often just a little more
efficient than generic attacks on the DLP. Decomposition-based index calculus,
or decomposition attack, is a more recent algorithm (see [9, 13, 18, 27]), which
applies equally well to all (hyper-)elliptic curves defined over an extension field.
Its asymptotic complexity is promising, but in practice, due to large hidden
constants in the complexity, it becomes better than generic attacks for group
sizes too large to be threatened anyway.

In this article, we combine both techniques into a cover and decomposition
attack, which applies as soon as the extension degree is composite. The idea is
to first transfer the DLP to the Jacobian of a curve defined on an intermediate
field, then use the decomposition method on this sub-extension instead of the
classical index calculus. This new attack is not a mere theoretical possibility:
we give concrete examples of curves defined over Fp6 that are practically secure
against all other attacks, but for which our method allows to solve the DLP in
a reasonable time. In particular, we have been able to compute logarithms on
a 154-bit elliptic curve group defined over a degree 6 extension field in about
10 days real-time, using approximately 385 000 CPU.hours.

The paper is organized as follows: first we briefly recall the principles of Weil
descent and of the decomposition method. We then give an explicit description
of our attack in Section 3, introducing a useful variant of the decomposition step
that is particularly efficient for Jacobians of hyperelliptic curves defined over
quadratic extensions. We study in Section 4 and 5 the case of elliptic curves
defined over Fp6 and Fp4 , list all the potentially vulnerable curves and give a
complexity analysis and a comparison with previously known attacks. Finally,
in Section 6, we describe in details the computations on our 154-bit example.

A Note on the Text. This article presents an extended version of the one
that appeared in the proceedings of the EUROCRYPT 2012 conference [20].
Some improvements of the previous results are given: we detail how the cover
and decomposition method can be applied as well to elliptic curves defined over
quartic extensions and show how to adapt the variant of the decomposition step
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for Jacobians of hyperelliptic curves over quadratic extensions in the case of
characteristic two. Finally, a larger practical example of our method is presented,
allowing a better estimation of the computational time needed for breaking the
DLP over a 160-bit elliptic curve group.

2 Survey of previous works

2.1 Weil descent and cover attacks

Weil descent has been first introduced in cryptography by Frey [10]; the idea
is to view an abelian variety A of dimension d defined over an extension field
K/k as an abelian variety WK/k of dimension d · [K : k] over k. If WK/k turns
out to be the Jacobian of a curve C|k or can be mapped into such a Jacobian,
then the discrete logarithm in A(K) can be transferred to JacC(k), where it may
become much weaker due to the existence of efficient index calculus algorithms.
When the genus of C is small relative to the cardinality p of k, the complexity
is in O((g2 log3 p)g! p + (g2 log p)p2) as p grows to infinity [12]; the first term
comes from the relation search and the second from the sparse linear algebra.
Following [15], it is possible to rebalance these two terms by using a double
large prime variation. In this variant, only a small number pα of prime divisors4

are considered as genuine, while the rest of the prime divisors are viewed as
“large primes”. The optimal value of α depends of the cost of the two phases;
asymptotically the choice that minimizes the total running time is 1 − 1/g,
yielding a complexity in Õ(p2−2/g) for fixed g as p goes to infinity.

The main difficulty of this Weil descent method is to find the curve C.
This problem was first addressed for binary fields by Gaudry, Hess and Smart
(GHS [14]) and further generalized by Diem [7] in odd characteristic. To attack
an elliptic curve E defined over Fpn (where p is a prime power), the GHS al-
gorithm builds a curve C defined over Fp such that there exists a cover map
π : C → E defined over Fpn . The construction is more easily explained in terms
of function fields: the Frobenius automorphism σFpn/Fp

can be extended to the

composite field F ′ =
∏n−1

i=0 Fpn(Eσi

), and the function field F = Fp(C) is de-
fined as the subfield of F ′ fixed by σ. The GHS algorithm then uses the so-called
conorm-norm map NF ′/F ◦ConF ′/Fpn(E) to transfer the discrete logarithm from
E(Fpn) to JacC(Fp). An important condition is that the kernel of this map must
not intersect the subgroup in which the discrete logarithm takes place, but as
remarked in [7, 16], this is not a problem in most cryptographically relevant
situations. This technique is efficient when the genus g of C is close to n. In
particular, for some specific finite fields most elliptic curves are “weak” in the
sense that Weil descent algorithms are better, if only by a small margin, than

4 The term prime divisor is an abuse of language that denotes the linear irreducible
polynomials that are used in the index calculus algorithm on JacC(k).



4 Antoine Joux and Vanessa Vitse

generic attacks [24]. Indeed, when the GHS method does not provide any low
genus cover for E, it may be possible to find a sequence of low degree isogenies
(also known as an isogeny walk) from E to another, more vulnerable elliptic
curve E′ [11]. Nevertheless, we emphasize that the security loss is quite small
for a random curve, and for most curves on most fields Fpn , g is of the order of
2n which means that index calculus in the Jacobian of C is slower than generic
attacks on E(Fpn).

2.2 Decomposition attack

Index calculus has become ubiquitous in the last decades for the DLP resolu-
tion. However its direct application to elliptic curves faces two major challenges:
contrarily to finite fields or hyperelliptic curves, there is no natural choice of
factor base and no equivalent of the notion of factorization of group elements.
The first main breakthrough was achieved in 2004 by Semaev [31] when he sug-
gested to replace factorization by decomposition into a fixed number of points.
For that purpose he introduced the summation polynomials, which give an alge-
braic expression of the fact that a given point decomposes into a sum of factor
base elements. But for a lack of an adequate factor base, this approach fails
in the general case. Then Gaudry and Diem [9, 13] independently proposed to
use Semaev’s idea to attack all curves defined over small degree extension fields
Fpn/Fp. Their method shares the basic outline of index calculus, but to distin-
guish it from what has been presented in the previous subsection, we follow [27]
and call it the decomposition attack. On E(Fpn), a convenient choice of factor
base is the set of rational points of the curve with abscissae in Fp. By combining
Semaev’s summation polynomials and restriction of scalars, the relation search
then becomes a resolution of a multivariate polynomial system over Fp. The
complexity of this approach can be estimated using the double large prime vari-
ation by Õ

(

p2−2/n
)

for fixed n as p grows to infinity. Unfortunately, the hidden
constants in this complexity become very large as n grows, and the resolution of
the systems is intractable as soon as n ≥ 4 (or n ≥ 5 with the variant of [18]).

The decomposition attack can also be applied to higher genus curves. How-
ever, Semaev’s polynomials are no longer available in this case and the algebraic
expression of the group law is more complicated. In [27], Nagao proposes an ele-
gant way to circumvent this problem, using divisors and Riemann-Roch spaces.
For hyperelliptic curves, the decomposition search then amounts to solving a
quadratic multivariate polynomial system. This approach is less efficient than
Semaev’s in the elliptic case, but is the simplest otherwise. For fixed extension
degree n and genus g, the complexity of a decomposition attack is in Õ

(

p2−2/ng
)

with a double large prime variation. Again, the resolution of the polynomial sys-
tems is the main technical difficulty, and is easily feasible for only very few
couples (n, g), namely (2, 2), (2, 3) and (3, 2).
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3 Cover and Decomposition attack

Let Fqd/Fp be an extension of finite fields, where q is a power of p (in most
applications p denotes a large prime but in general, it can be any prime power),
and let E be an elliptic curve defined over Fqd of cryptographic interest, i.e. con-
taining a subgroup G of large prime order. As E is defined over an extension
field, it is subject to the attacks presented above. But if the degree [Fqd : Fp] of
the extension is larger than 5, then we have seen that E is practically immune to
decomposition attacks. In the following, we assume that the potential reduction
provided by the GHS attack or its variants is not significant enough to threaten
the security of the DLP on the chosen curve E.

When q is a strict power of p, we have a tower of extensions given by Fqd/Fq

and Fq/Fp. In this context, it becomes possible to combine both cover and de-
composition methods and obtain an efficient attack of the DLP on E. The idea is
to use Weil descent on the first extension Fqd/Fq to get a cover defined over Fq,
with small enough5 genus g. Then we can apply a decomposition attack on the
curve thus obtained, making use of the second extension Fq/Fp. As this cover and
decomposition attack is more efficient when Weil descent provides a hyperelliptic
cover over the intermediate field, we focus on this case in the following.

3.1 Description of the attack

We now explicitly detail this cover and decomposition approach. We suppose
first that there exists an imaginary hyperelliptic curve H of small genus g with
equation

H : y2 + h0(x)y = h1(x)

where h0, h1 ∈ Fq[x] have degree respectively deg(h0) ≤ g and deg(h1) = 2g+1,
together with a covering map π : H → E defined over Fqd . This can be obtained
by the GHS attack or its variants, possibly preceded by an isogeny walk. This
cover classically allows to transfer the DLP from G to a subgroup G′ ⊂ JacH(Fq)
via the conorm-norm map NF

qd
/Fq

◦ π∗ : E(Fqd) ≃ JacE(Fqd) → JacH(Fq),

assuming that ker(NF
qd

/Fq
◦ π∗) ∩G = {OE}.

The decomposition part of the attack is adapted from Gaudry and Nagao;
since it is quite recent, we detail the method. As in all index calculus approaches,
there are two time-consuming steps: first we have to collect relations between
factor base elements, then we compute discrete logarithms by using linear algebra
on the matrix of relations. We consider the same factor base as [13, 27]

F = {DQ ∈ JacH(Fq) : DQ ∼ (Q)− (OH), Q ∈ H(Fq), x(Q) ∈ Fp},
5 Meaning that g should be small relatively to the genus that could be obtained by
direct Weil descent, using the extension Fqd/Fp.
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which contains about p elements. As usual, we can use the hyperelliptic involu-
tion to reduce the size of F by a factor 2, so that only p/2 relations are needed.

Let n be the extension degree [Fq : Fp]. In Nagao’s decomposition method,
one tries to decompose an arbitrary divisor D (typically obtained by considering
a large multiple of some element in F) into a sum of ng divisors of F

D ∼
ng
∑

i=1

((Qi)− (OH)) . (1)

Heuristically, there exist approximately png/(ng)! distinct sums of ng elements
of F , so the probability that a given divisor D is decomposable can be estimated
by 1/(ng)!. To check if D can be decomposed, one considers the Riemann-Roch
Fq-vector space

L (ng(OH)−D) = {f ∈ Fq(H)∗ : div(f) ≥ D − ng(OH)} ∪ {0}.

We can assume that the divisor D is reduced and has Mumford representa-
tion (u(x), v(x)) with deg u = g, so that this Fq-vector space is spanned by
u(x)xi, (y − v(x))xj , 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, where m1 = ⌊(n − 1)g/2⌋ and
m2 = ⌊((n−1)g−1)/2⌋. A function f = λ0u(x)+λ1u(x)x+ . . .+λm1

u(x)xm1 +
µ0(y−v(x))+µ1x(y−v(x))+. . .+µm2

xm2(y−v(x)) vanishes on the support of D
and exactly ng other points (counted with multiplicity and possibly defined on
the algebraic closure of Fq) if its top-degree coefficient is not zero. We are looking
for a condition on λ0, . . . , λm1

, µ0, . . . , µm2
∈ Fq such that the zeroes Q1 . . . , Qng

of f disjoint from Supp(D) have x-coordinate in Fp; this event yields a relation as
in (1). Therefore, we consider the polynomial F (x) = f(x, y)f(x,−(y+h0))/u(x)
where y(y + h0) has been replaced by h1(x). Without loss of generality, we can
fix either λm1

= 1 or µm2
= 1 in order to have F monic of degree ng. The roots

of F are exactly the x-coordinates of the zeroes of f distinct from Supp(D), thus
we are looking for the values of λ and µ for which F splits in linear factors over
Fp. A first necessary condition is that all of its coefficients, which are quadratic
polynomials in λ and µ, belong to Fp; a scalar restriction on these coefficients
then yields a quadratic polynomial system of (n− 1)ng equations and variables
coming from the components of the variables λ and µ. The corresponding ideal
is generically of dimension 0, and the solutions of the system can be found using
e.g. a Gröbner basis computation. Since the number of systems to solve is huge
(on average (ng)! · p/2, or more if a large prime variation is applied), techniques
such as the F4 variant of [19] should be preferred. Once the solutions are ob-
tained, it remains to check if the resulting polynomial F splits in Fp[x], and if
it is the case, to compute the corresponding decomposition of D.

In this article, we also consider a somewhat different approach to the relation
search that offers some similarity with the method used in the number field and
function field sieves [1, 23]. More precisely, we no longer have a divisor D to
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decompose, but instead search for sums of factor base elements equal to 0:

m
∑

i=1

((Qi)− (OH)) ∼ 0. (2)

Heuristically, the expected number of relations of the form (2) involvingm points
of the factor base is approximately pm−ng/m!. Since we need to collect at least
about p/2 relations, we look for sums of m = ng + 2 points, assuming that
p ≥ (ng+2)!/2 (this is not really a restriction in practice, since decompositions on
JacC are only feasible when n and g are rather small; if p is also small then brute
force is more efficient). As before, we work with the Fq-vector space L(m(OH)),
which is spanned by 1, x, . . . , xm1 , y, xy, . . . , xm2y, where m1 = ⌊m/2⌋ and m2 =
⌊(m+1)/2⌋− g. We consider the function f = λ0 +λ1x+ . . .+λm1

xm1 +µ0y+
µ1xy+ . . .+µm2

xm2y: it vanishes in exactly m points if its top-degree coefficient
is not zero, and the abscissae of its zeroes are the roots of

F (x) = f(x, y)f(x,−(y + h0))

= (λ0 + λ1x+ · · ·+ λm1
xm1)2 − h1(x)(µ0 + µ1x+ · · ·+ µm2

xm2)2

−h0(x)(λ0 + · · ·+ λm1
xm1)(µ0 + · · ·+ µm2

xm2).

Again, we fix λm1
= 1 if m is even or µm2

= 1 otherwise, so that F is monic. In
order to obtain a relation of the form (2), we look for values of λ and µ for which
F splits over Fp. The first condition is that F belongs to Fp[x]; after a scalar
restriction on its coefficients, this translates as a quadratic polynomial system
of (n− 1)m equations and n(m − g) variables. With our choice of m = ng + 2,
this corresponds to an underdetermined system of n(n− 1)g+ 2n− 2 equations
in n(n− 1)g+ 2n variables. When the parameters n and g are not too large, we
remark that it is possible to compute once for all the corresponding lexicographic
Gröbner basis. Each specialization of the last two variables should then provide
an easy to solve system, namely triangular with low degrees. It remains to check
whether the corresponding expression of F is indeed split and to deduce the
corresponding relations between the points of F .

Once enough relations of the form (2) have been collected, and possibly after
a structured Gaussian elimination or a large prime variation, we can deduce with
linear algebra the logarithms of all elements in F (up to a multiplicative con-
stant, since we have not specified the logarithm base). To compute the discrete
logarithm of an arbitrary divisor D, we proceed to a descent phase: we need
to decompose D as a sum of factor base elements. This decomposition search
can be done using the first method described above. Note that, if D does not
decompose as a sum, it suffices to try small multiples 2D, 3D . . . until we find
one correct decomposition. Thanks to this descent step, it is possible to compute
many discrete logarithms in the same group for negligible additional cost.

When the cover of E is not hyperelliptic, one can still use the Riemann-
Roch based approach. It is not difficult to compute a basis of the vector spaces
L(ng(OH) −D) or L(m(OH)) and to consider a function f(x, y) (depending of
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parameters λ and µ) in these spaces. Getting rid of the y-variable can be done
easily by computing the resultant in y of f and the equation of the curve (or
multiresultant if the curve is not planar); however, the resulting polynomial F (x)
no longer depends quadratically of the parameters λ and µ. The system obtained
by scalar restriction still has the same number of equations and variables but its
degree is greater than 2, so that the resolution is more complicated.

3.2 Sieving for quadratic extensions

For quadratic extensions, it turns out that the systems of equations coming from
(2) have special features so that their resolution is particularly easy; in particular,
this new decomposition technique is much faster than Nagao’s. Furthermore, the
computation of decomposition can still be improved. Indeed, checking that F is
split has a non-negligible cost, since we need to factor a polynomial of degree
ng + 2 into linear terms. To avoid this, it is possible to modify the search for
relations of the form (2) using a sieving technique, as explained below.

More precisely, using previous notations, we have in this quadratic extension
case f = λ0 + · · ·+ λgx

g + µy and the polynomial F is of the form

F (x) = (λ0 + · · ·+ λgx
g + xg+1)2 − µ2h1(x) − µ(λ0 + · · ·+ λgx

g + xg+1)h0(x).

When the parameter µ is equal to 0, the function f is independent of the y
variable; the corresponding relation of type (2) is thus necessarily of the form

(P1) + (ι(P1)) + . . .+ (Pg+1) + (ι(Pg+1))− (2g + 2)OH ∼ 0,

where ι(P ) is the image of P by the hyperelliptic involution. To avoid these
trivial relations, we look only for solutions (λ0,0, . . . , λg,0, λ0,1, . . . , λg,1, µ0, µ1) ∈
VFp

(I : (µ0, µ1)
∞), where I is the ideal corresponding to the 2(g + 1) quadratic

polynomials in 2(g+2) variables arising from the scalar restriction on F ∈ Fp2 [x],
setting λi = λi,0 + tλi,1, µ = µ0 + tµ1, and Fq = Fp2 = Fp(t). Depending on
the characteristic, we exhibit additional structures of this ideal to prove that the
computation of its lexicographic Gröbner basis is much faster than for a generic
quadratic system of the same size. In particular, in the odd characteristic case,
once this basis is computed and the last variable is specialized, we are able to
express the polynomial F as an element of Fp[x, λ] with degree 2g + 2 in x
and degree 2 in the second to last variable λ. Instead of trying to factor F for
many values of λ, the key idea is then to compute for each x ∈ Fp the values
of λ such that F (x, λ) = 0. Since F has degree 2 in λ, this can be done very
efficiently by computing the square root of the discriminant. In fact, we can
speed up the process even more by tabulating beforehand the square roots of
the elements of Fp. Our sieving process consists, for each root λ, to increment
a counter corresponding to this value of λ; when one of these counters reaches
2g + 2, then the polynomial F evaluated at the corresponding value of λ splits
into 2g + 2 distinct linear terms, yielding a relation. This sieving is also feasible
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in characteristic two for the special curves described in Section 4.1, where the
equation of the hyperelliptic cover is specially sparse.

We emphasize that this sieving technique not only allows to skip the factor-
ization of a degree 2g+ 2 polynomial, but is also well-suited to the double large
prime variation, as explained in Section 3.3. We now describe more precisely the
ideal I, making a distinction between the odd and even characteristic cases.

The odd characteristic case. Let t be an element such that Fp2 = Fp(t);
we assume w.l.o.g. that t2 = ω ∈ Fp and that h0 = 0. With the type of exten-
sion considered here, the ideal I is given by the equations corresponding to the
vanishing of the coefficients of the Fp[x]-polynomial

2(1 · xg+1 + λg,0x
g + · · ·+ λ0,0)(λg,1x

g + · · ·+ λ0,1)− µ0h1,1(x)− µ1h1,0(x),

where h1(x) = h1,0(x) + th1,1(x), h1,0, h1,1 ∈ Fp[x]. This ideal I is not 2-
dimensional, but the saturated ideal (I : (µ0, µ1)

∞) is. An easy but crucial remark
is that the ideal is multi-homogeneous, generated by polynomials of bi-degree
(1, 1) in the variables (1 : λ0,0 : . . . : λg,0), (λ0,1 : . . . : λg,1 : µ0 : µ1). In par-
ticular, the lexicographic Gröbner basis is easier to compute than for a generic
quadratic system. To give an example, we list in Table 1 the time needed by
Magma V2-17-5 [6] on an Intel Core 2 Duo processor to make such a computation
when g and q are such that g log2 q ≃ 70; we emphasize that the corresponding
computation for a random system of 6 quadratic equations in 8 variables can
not be achieved in a reasonable time on the same computer.

genus 2 3 4

number of eq/var 6/8 8/10 10/12

computation timings <1s 2s 1h

Table 1. Computation timings for the lexicographic Gröbner basis of the ideal I .

Moreover, if we denote by π1 the projection on the first block of variables
(λ0,0, . . . , λg,0), then the image π1(VFp

(I : (µ0, µ1)
∞)) = π1(VFp

(I) \ VFp
(µ0, µ1))

is a dimension 1 variety (whose equations are easily deduced from the lexico-
graphic Gröbner basis of I), and each fiber is a 1-dimensional vector space.

The simplification of the relation search is then straightforward: rather than
evaluating a variable, we choose a point (λ0,0, . . . , λg,0) ∈ π1(VFp

(I : (µ0, µ1)
∞))

and express the remaining variables linearly in terms of λ0,1, so that now F
belongs to Fp[x, λ0,1] and the previously described sieving can be applied.
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The characteristic 2 case. We suppose w.l.o.g. that h0 and h1 are monic and
that the extension field Fp2 is defined by Fp(t) where t2 + t = ω ∈ Fp. In this
setting, the polynomial F is of the form:

F (x) = λ2
0 + · · ·+ λ2

gx
2g + x2g+2 + µ2h1(x) + µ(λ0 + · · ·+ λgx

g + xg+1)h0(x).

The condition that F belongs to Fp[x] restricts considerably the possible values
of the variable µ = µ0+tµ1: the term of degree (2g+1) of F gives a first equation
µ1(µ1 + c) = 0, where c ∈ {0; 1} is the coefficient of the term of degree g of h0.
The evaluation of µ1 at 0 or 1 followed by the specialization of the variable µ0

among all the possible values of Fp gives an easy to solve F2-linear system with
2g + 1 equations in the remaining 2g + 2 variables.

For the special case where the H has an equation of the form (6), it is possible
to decompose the resulting variety in irreducible components; on each of these
we are able to express all the variables in term of one of them, so that again F
belongs to Fp[x, λ]. The degree of F in λ in this case is bigger than 2, but only

terms in λ2k (k ≤ 2) appear, so that the resolution in λ is as easy as in the odd
characteristic case.

3.3 Complexity analysis

Constructing the cover H|Fq
of an elliptic curve E|F

qd
with the GHS method and

transferring the DLP from G ⊂ E(Fqd) to G′ ⊂ JacH(Fq) has essentially a unit
cost, which is negligible compared to the rest of the attack. The complexity of
the decomposition phase is divided between the relation search and the linear
algebra steps. In order to collect about p/2 relations using Nagao’s decomposition
method, we need to solve on average (ng)! · p/2 quadratic polynomial systems.
The resolution cost of this kind of system using e.g. Gröbner bases is hard
to estimate precisely, but is at least polynomial in the degree 2(n−1)ng of the
corresponding zero-dimensional ideal. The linear algebra step then costs O(ngp2)
operations modulo #G, using sparse linear algebra techniques. With the second
decomposition method, we need to compute first the lexicographic Gröbner basis
of an ideal generated by n(n−1)g+2n−2 quadratic equations in n(n−1)g+2n
variables. This cost is also at least exponential in n2g, but the Gröbner basis
computation has to be done only once. Afterwards, we have to solve on average
(ng + 2)! · p/2 “easy” systems. The complexity of the linear algebra step is the
same (the cost of the descent is negligible compared to the sieving phase).

When p is large relatively to n and g, the linear algebra becomes the domi-
nating phase. It is nevertheless possible to rebalance the cost of the two steps.
Indeed, collecting extra relations can speed up the logarithm computations; this
is the idea behind structured Gaussian elimination [22] and double large prime
variation. The analysis of [15] shows that with the latter, the asymptotic com-
plexity of our cover and decomposition attack becomes either Õ(p2−2/ng) or
Õ(p2−2/(ng+2)) with the decomposition variant, as p grows to infinity for fixed n
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and g. Although the complexity of the variant is asymptotically higher, the much
smaller hidden constant means that it is actually faster for accessible values of
p. Note that it is straightforward to parallelize the relation search phase; this is
also possible, but much less efficiently, for the linear algebra step. In particular,
the optimal choice of the balance depends not only of the implementation but
also of the computing power available.

When n = 2, it is possible to improve the double large prime variation by
sieving only among the values of x corresponding to the abscissae of points
of the “small primes” factor base. As soon as 2g values of x are associated
to one value of λ0,1, we obtain a relation involving at most 2 large primes (if
the remaining degree 2 factor is split, which occurs with probability close to
1/2). This speeds up the relation search and decreases the overall complexity
from Õ(p2−2/(2g+2)) to Õ(p2−2/(2g+1)) as p grows to infinity, thus reducing the
asymptotic gap between the two decomposition methods without degrading the
practical performances.

Obviously, our approach outperforms generic algorithms only if the genus of
the intermediate cover is not too large. Otherwise, it may be possible to transfer
the DLP from E to a more vulnerable isogenous curve E′. There exist two
“isogeny walk” strategies to find E′ (if it exists) [17]: one can sample the isogeny
class of E via low-degree isogenies until a weak curve is found, or one can try
all the weak curves until a curve isogenous to E is found. The best strategy to
use depends on the size of the isogeny class, on the number of weak curves and
on the availability of an efficient algorithm for constructing these weak curves.
For the cases we have considered, this isogeny walk can become the dominating
part in the overall complexity (see below for details).

4 Application to elliptic curves defined over Fp6

For an elliptic curve E defined over an extension field Fp6 , we can apply our
cover and decomposition attack either with the tower Fp6 —Fp2 —Fp or with
the tower Fp6 —Fp3 —Fp. We have seen in Section 2.2 that in practice, we can
compute decompositions only for a very limited number of values of (n, g). In
particular, our attack is feasible only if E admits a genus 3 (resp. 2) cover; we give
examples of such curves below. Of course, this attack needs to be compared with
the classic cover attacks or decomposition attacks using the base field Fp3 ,Fp2

or Fp, as recalled in Section 2.

4.1 Using a genus 3 hyperelliptic cover

In the present subsection, we apply our cover and decomposition attack using
the first tower Fp6 —Fp2 —Fp. To give the scope of this attack, we first describe
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the curves admitting a genus 3 hyperelliptic cover in odd and even characteristic,
then give the shape of the systems to solve during the relation search.

The odd characteristic case. Thanks to the results of [7, 26, 33], in odd
characteristic, we know that the only elliptic curves defined over Fq3 (in our
case, q = p2) for which the GHS attack yields a cover by a hyperelliptic curve
H of genus 3 defined over Fq, are of the form

y2 = g(x)(x − α)(x − σ(α)) (3)

where σ is the Frobenius automorphism of Fq3/Fq, α ∈ Fq3 \ Fq and h ∈ Fq[x]
is of degree 1 or 2. We give an explicit description of the cover π : H → E;
according to [26], we express this cover as a quotient by a bi-elliptic involution
followed by a 2-isogeny. For simplicity, we will assume that g(x) = x (this can
always be achieved by an appropriate change of coordinates if g has a root in
Fq). Let φ : x 7→ D

x−σ2(α) + σ2(α) be the unique involution of P1(Fq) sending

σ2(α) to ∞ and α to σ(α), so that D =
(

α− σ2(α)
) (

σ(α) − σ2(α)
)

. If φ lifts

to an involution of a hyperelliptic curve H|Fq
, then necessarily φσ and φσ2

can

also be lifted to involutions of H. Observing that {Id, φ, φσ, φσ2} forms a group,

this leads us to consider the curve of equation y2 = x + φ(x) + φσ(x) + φσ2

(x);
a more usual form for this equation is

H : y2 = F (x)N(x) (4)

where N(x) = (x− α) (x− σ(α))
(

x− σ2(α)
)

is the minimal polynomial of α

over Fq and F (x) = N(x)(x+ φ(x) + φσ(x) + φσ2

(x)) ∈ Fq[x]. It is clear that φ

gives an involution ofH, still denoted by φ : (x, y) 7→
(

D
x−σ2(α)+σ2(α), yD2

(x−σ2(α))4

)

.

The quotient of this genus 3 hyperelliptic curve H by φ is the elliptic curve

E′ : y2 = (x− α− σ(α))
(

x2 − 4ασ(α)
)

and the quotient map π′ : H → E′ satisfies π′(x, y) =
(

x+ φ(x), y/(x− σ2(α))2
)

.
The curve E′ is 2-isogenous to the original curve E : y2 = x(x − α)(x − σ(α))

via the map (x, y) 7→
(

x2−4ασ(α)
4(x−α−σ(α)) , y

(x−2α)(x−2σ(α))
8(x−α−σ(α))2

)

. Finally, the cover map

π : H → E has the expression

π(x, y) =

(

F (x)
4N(x) ,

y(x−φσ(x))(x−φσ2
(x))

8N(x)(x−σ2(α))

)

. (5)

In the general case, when E has equation (3), the cover (5) remains the same
and the corresponding hyperelliptic curve H of genus 3 defined over Fq has the
following equation:

H : y2 = 4N(x)2 g

(

F (x)

4N(x)

)

.
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The characteristic 2 case. Let E : y2+xy = x3+ax2+b be an ordinary curve
defined over a binary field Fq3 , where b = 1/j(E). As already apparent in [14],
the GHS attack produces a genus 3 hyperelliptic cover of E when TrF

q3
/Fq

(b) = 0.

To describe this cover, we slightly adapt the description of [26, 28], used above
in the odd characteristic case. Let σ : x 7→ xq be the Frobenius automorphism
and let γ =

√
b; by assumption its trace over Fq is zero. As in the case of odd

characteristic, we consider the involution φ : x 7→ σ(γ)σ2(γ)/(x + γ) + γ of
P
1(Fq) sending γ to infinity and σ(γ) to σ2(γ). We denote by N the minimal

polynomial of γ over Fq and by F the product N(x)(x+φ(x)+φσ(x)+φσ2

(x)) =
x4 +TrF

q3
/Fq

(γσ(γ))2 ∈ Fq[x]. Then, as in the odd characteristic case, φ lifts to

a bi-elliptic involution of the hyperelliptic curve H|Fq
defined by

H : y2 +N(x)y = F (x)N(x) + TrF
q3

/Fq
(a)N(x)2. (6)

Note that the equation of H is rather sparse: F is a fourth power and N has no
x2 term. This simplifies the equations for the decomposition step, and allows to
apply the sieving technique of Section 3.2.

The quotient of H by φ is the elliptic curve

E′ : y2 + xy = x3 +TrF
q3

/Fq
(a)x2 + b2

and the map π′ : H → E′ satisfies

π′(x, y) =

(

x+ φ(x) + γ,
y(x+ φ(x) + γ)

N(x)
+ γ2

)

.

The curve E′, which is isomorphic to Eσ2 where σ2 is the 2-Frobenius, is obvi-
ously 2-isogenous to the original curve E and the morphism between E′ and E
is given by the Verschiebung σ̂2. Finally, the cover map π : H → E is given by

π(x, y) =

(

F (x)

N(x)
,
F (x)

N(x)

(

y

N(x)
+

γ(w + γ)

x2 +TrF
q3

/Fq
(γσ(γ))

+ δ

)

+ γ

)

,

where δ ∈ Fq3 is a constant such that δ2 + δ = σ(a) + σ2(a).

Scope of the attack. For a genus 3 hyperelliptic cover over Fp2 , the quadratic
polynomial systems to solve over Fp are composed of 6 variables and 6 equations,
or 8 equations and 10 variables with our variant. Such systems can be solved
very quickly by any computational algebra system.

The number of curves admitting an equation of the form (3) is Θ(p4), thus
only a small proportion of curves is directly vulnerable to the cover and de-
composition attack using this extension tower. This result remains the same in
characteristic 2 since the GHS attack produces a genus 3 hyperelliptic cover of
E when TrF

q3
/Fq

(b) = 0.
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However, since this number of weak curves is much larger than the number
of isogeny classes (which is about p3), a rough reasoning would conclude that
essentially all curves should be insecure using an isogeny walk strategy. Assuming
that the probability for a curve to be weak is independent from its isogeny class,
we obtain that the average number of steps before reaching a weak isogenous
curve should be about q = p2 steps. It is thus the dominating phase of the
algorithm, but is still better than the Õ(p3)-generic attacks. Nevertheless, all
the curves of the form (3) have a cardinality divisible by 4, so obviously not all
curves are vulnerable to this isogeny walk. Still, it seems reasonable to conjecture
that most curves with cardinality divisible by 4 are vulnerable to this cover and
decomposition attack using an isogeny walk.

Remark about non-hyperelliptic genus 3 covers. We can also consider
non-hyperelliptic genus 3 covers. In this case, weak curves have equation

y2 = c(x− α)(x − σ(α))(x − β)(x− σ(β)), (7)

where c ∈ Fq3 and either α, β ∈ Fq3 \Fq or α ∈ Fq6 \
(

Fq2 ∪ Fq3
)

and β = σ3(α).
This targets much more curves: actually, about half of the curves having their
full 2-torsion defined over Fq3 admit an equation of this form [26].

Unfortunately, as already explained in Section 3.1, with non-hyperelliptic
covers the systems of equations are much more complicated, and we have not
been able to compute decompositions with available Gröbner basis implementa-
tions.

4.2 Using a genus 2 cover

We now consider the tower Fp6 —Fp3 —Fp. The existence of genus 2 covers
(which are necessarily hyperelliptic) defined over Fq, where q = p3, has been
studied in [3, 30]. In odd characteristic, target curves admit an equation in so-
called Scholten form

y2 = ax3 + bx2 + σ(b)x+ σ(a) (8)

where a, b ∈ Fq2 and σ is the Frobenius automorphism of Fq2/Fq. For such
curves, it is easy to construct a genus 2 cover H by replacing x by x2 in (8); an
equation of H is then of the form

y2 = ax6 + bx4 + σ(b)x2 + σ(a).

This curve is in fact defined over Fp3 as can be proved by replacing x and y by
respectively ((x− c)/(x− σ(c)) and y/(x− σ(c))3). A more convenient equation
of H is given by

H : y2 = a(x−c)6+b(x−c)4(x−σ(c))2+σ(b)(x−c)2(x−σ(c))4+σ(a)(x−σ(c))6
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where c ∈ Fq2 \ Fq, and the corresponding cover map from H to E is

π : (x, y) 7→
(

(

x−c
x−σ(c)

)2

, y
(x−σ(c))3

)

.

An elliptic curve E can be transformed into Scholten form as soon as its full
2-torsion is defined over Fq2 [30] or its cardinality is odd and j(E) /∈ Fq [3].
Moreover, any curve without full 2-torsion but still with a cardinality divisible by
4, is 2-isogenous to a curve with full 2-torsion. Consequently, a large proportion
of curves are vulnerable to our cover and decomposition attack.

However, the decomposition step is really efficient only when the hyperelliptic
cover admits an imaginary model. We give a necessary and sufficient condition
on the equation of E for this property to be satisfied. The curve H admits
an imaginary model if and only if the polynomial h(x) = a(x − c)6 + b(x −
c)4(x − σ(c))2 + σ(b)(x − c)2(x − σ(c))4 + σ(a)(x − σ(c))6 has a Fq-rational
root α. This implies that β = (α − c)2/(α − σ(c))2 is a Fq2 -rational root of
f(x) = ax3+bx2+σ(b)x+σ(a). But we can observe that the map ϕ : x 7→ 1/σ(x)
permutes the roots of f and that ϕ◦ϕ(x) = σ2(x). If f has a degree 2 irreducible
factor with roots z1, z2 ∈ Fq4 \ Fq2 , then necessarily ϕ(z1) = z2 and ϕ(z2) = z1
or ϕ(zi) = zi. In both cases, z1 = ϕ2(z1) = σ2(z1), which is a contradiction
since z1 /∈ Fq2 . Thus f is either irreducible or split in linear factors over Fq2 .
Hence a necessary condition for H to have an imaginary model is that E has
full 2-torsion. Note that in this case, ϕ fixes at least one root of f , so f admits
at least one root with Fq2/Fq-norm equal to 1. Now, α ∈ Fq if and only if the
Fq2/Fq-norm of (α − c)/(α − σ(c)) is equal to 1. From this, we deduce easily
that a sufficient condition for the existence of an imaginary model of H is that
f admits a root β such that NF

q2
/Fq

(β) = 1 (this implies that β is a square in

Fq2) and NF
q2

/Fq
(
√
β) = 1.

In this setting, the quadratic polynomial systems to solve over Fp are com-
posed of 12 variables and 12 equations, or 16 equations and 18 variables with the
decomposition variant. Solving such systems is still feasible on current personal
computers, but is much slower than in the case of hyperelliptic genus 3 cover
defined over Fp2 .

4.3 Complexity and comparison with other attacks

Apart from the generic algorithms, the existing ECDLP attacks over sextic ex-
tensions are either Gaudry’s decomposition method [13] or the GHS attack fol-
lowed by Gaudry’s or Diem’s index calculus [8, 15], with base field Fp or Fp2

(using Fp3 as base field does not provide any advantage in this context). When

the base field is Fp2 , the asymptotic complexity is in Õ
(

p8/3
)

for both decom-

position and GHS (assuming a genus 3 cover), or even in Õ
(

p2
)

with a degree
4 planar cover. But in all cases, the memory requirement is then very large, in
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Õ(p2). When the base field is Fp, computing direct decompositions is completely
out of reach, and the GHS attack provides very rarely low genus covers. Indeed,
if E is an elliptic curve defined over a degree 6 extension field Fp6 of odd char-
acteristic with j(E) /∈ Fp3 ∪ Fp2 , the minimum genus of the Fp-cover obtained
by the GHS method is 9, which happens in one of the following cases:

1. E admits an equation of the form

Eα : y2 = c(x− α)(x − σ(α))(x − σ2(α))(x − σ3(α)) (9)

where σ is the Frobenius automorphism of Fp6/Fp, α ∈ Fp6 \ (Fp2 ∪Fp3), and
c ∈ Fp6 .

2. E admits an equation of the form

Eα,β : y2 = c(x− α)(x − σ(α))(x − β)) (10)

where σ is the Frobenius automorphism of Fp6/Fp, α ∈ Fp3 \ Fp, β ∈ Fp2 \ Fp,
and c ∈ Fp6 . We can give an upper bound on the number of (isomorphism classes
of) such curves. It is clear that two curves Eα and Eα′ are isomorphic (or twists)
if α and α′ lie in the same PGL2(Fp)-orbit; since the number of such orbits in
Fp6 \ (Fp2 ∪ Fp3) is p3 + p − 1, there are at most O(p3) curves of type (9). For
those of type (10), we can use the transitivity of the action of PGL2(Fp) on
Fp3 \ Fp to fix the value of α; the number of these curves is thus at most O(p2).

This shows that the proportion of curves defined over Fp6 for which the GHS
method yields a genus 9 Fq-cover is at most 1/p3; the resulting genus is much
higher for most curves [5], implying that this attack is rarely practical.

We give below a summary of the performances of the presented approaches.
In order to obtain actual (and not just asymptotic) comparisons, we also consider
the cryptographically significant example of a curveE|F

p6
where p is a prime close

to 227, whose cardinality is divisible by a 160-bit prime number. The values given
are obviously just estimates relying on extrapolations of relation searches done on
Magma V2-17-5 with an Intel Core 2 Duo processor (see details in Appendix A);
in particular, the two last estimates are greater than what could be expected from
the results obtained with the optimized implementation presented in Section 6.

5 Application to elliptic curves defined over Fp4

If E is an elliptic curve defined over Fp4 , we can use our attack with the tower
Fp4 —Fp2 —Fp. When p is odd, we have seen that E admits a genus 2 cover
defined over Fp2 as soon as the cardinality of E is either odd (and j(E) /∈ Fp2)
or divisible by 4. Thus, approximately 3/4 of the elliptic curves defined over
Fp4 are directly vulnerable. When the genus 2 cover H of E has an imaginary
model (see Section 4.2 for a necessary condition), the sieving technique described
in Section 3.2 can be applied. In particular, we can solve the DLP on E with
a complexity of Õ(p2−2/5), where the hidden constant is rather small. With a
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Attack
Asymptotic
complexity

Memory
complexity

Time estimates
(years)

Pollard on E(Fp6) [29] Õ(p3) Õ(1) 5× 1013

Ind. calc. on JacH(Fp2), g = 3 [15] Õ(p8/3) Õ(p2) 6× 1010 †

Ind. calc. on JacC(Fp2), d = 4 [8] Õ(p2) Õ(p2) 700 000

Decompositions on E(F(p2)3) [13] Õ(p8/3) Õ(p2) 1012

Ind. calc. on JacC(Fp), d = 10 [8] Õ(p7/4) Õ(p) 1 500(∗)

Decomp. on JacH(Fp3), g = 2 [this work] Õ(p5/3) Õ(p) 4× 106

Decomp. on JacH(Fp2), g = 3 [this work] Õ(p5/3) Õ(p) 750†

Sieving on JacH(Fp2), g = 3 [this work] Õ(p12/7) Õ(p) 300†

†: only for Θ(p4) curves before isogeny walk (∗): only for O(p3) curves

Table 2. Comparison of the complexity of various attacks on E(Fp6), log2 p ≈ 27.

Nagao-style decomposition, the asymptotic complexity becomes Õ(p2−2/4), but
with a larger constant corresponding to the resolution cost of a quadratic system
composed of 4 equations in 4 variables. If we directly apply the decomposition
attack of Gaudry and Diem to E, the asymptotic complexity is still in Õ(p2−2/4),
but the constant is much larger: the systems are also composed of 4 equations
in 4 variables, but with total degree 8. For cover attacks, the case of quartic
extensions has been studied in [3]; the result is that most elliptic curves defined
over Fp4 admit a cover by a non-hyperelliptic genus 9 curve. Using this cover to
solve the DLP with an index calculus method yields an asymptotic complexity
in Õ(p2−2/9), or potentially Õ(p2−2/8) with the approach of [8]. All these at-
tacks are asymptotically better than generic algorithms, but the improvement is
smaller than for elliptic curves defined over Fp6 . Nevertheless, a much larger pro-
portion of curves is directly vulnerable to our attack, and does not necessitate a
preliminary isogeny walk. We summarize in Table 3 the asymptotic complexities
of the different attacks.

Attack
Asymptotic

complexity

Ratio of

vulnerable curves

Pollard [29] Õ(p2) 1

Ind. calc. on H|Fp , g(H) = 9 [3] Õ(p16/9) 3/4

Decomp. on E|F
p4

[13] Õ(p3/2) 1

Decomp. on H|F
p2
, g(H) = 2 [this work] Õ(p3/2) 3/4

Table 3. Comparison of the complexity of various attacks on E(Fp4)
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6 A 154-bit example

In this section, we give a practical example of the cover and decomposition
attack for an elliptic curve defined over the Optimal Extension Field Fp6 , where
p = 226−45. We define Fp2 as Fp[t] where t

2 = 2 and Fp6 as Fp2 [θ] where θ3 = t.
The elliptic curve E is given by the equation

y2 = x(x − α)(x − σ(α)),

where σ : x 7→ xp2

and α=51508707+18589054θ+12478902θ2+15224499θ3+12247629θ4+

10579105θ5 (we tested several random values of α until an almost prime cardinality
was found).

It has a genus 3 cover by the hyperelliptic curve H defined over Fp2 which

is of the form y2 = (x+ φ(x) + φσ(x) + φσ2

(x))N(x)2, with N(x) the minimal

polynomial of α over Fp2 and φ : x 7→ (α−σ2(α))(σ(α)−σ2(α))
x−σ2(α) + σ2(α). The cover

map π is given by:

π(x, y) =

(

x+φ(x)+φσ(x)+φσ2
(x)

4 , y(x−φσ(x))(x−φσ2
(x))

8N(x)(x−σ2(α))

)

.

The common cardinality of E over Fp6 and of the Jacobian of H over Fp2 is four
times the 154-bit prime ℓ = 22835871207210308853770983711591454128636581029,
and the number of elements in the factor base is 33 557 263, which is very close
to p/2. Note that for this particular curve, the GHS method applied to the ex-
tension Fp6/Fp provides a cover of genus 33, which is much smaller than what
could be expected for a random curve, but obviously too large to be interesting.

For best performances, we use the sieving approach described in Section 3.2.
As a first step, we compute a lexicographic Gröbner basis of the system composed
of 10 quadratic equations in 8 variables in about 5 s on a 1.4GHz Intel Core 2 Duo
processor with Magma V2.17-5 [6]. Instead of the double large prime variation,
we execute a structured Gaussian elimination. During the sieving phase, we used
8 192 cores of quadri-core Intel Xeon 5570 processors at 2.93 GHz. After 24 h,
we had collected about 40× 1012 relations, that is 72% the possible relations of
the form (2). For comparison, we also tested Nagao-style decompositions on the
same type of processors. Such a test takes about 36ms on a single core, showing
that our decomposition variant is about 2 000 times faster.

Thanks to the large number of extra relations, structured Gaussian elimi-
nation performed quite well and, after about 8 separate 10 h runs on 32 cores,
it reduces the number of unknowns to 5 876 805 (a reduction by a factor 5.7).
Each equation involves between 8 and 206 basis elements; the total number of
non-zero entries in all the equations is 392 055 315 and all these entries are equal
to ±1.

The most time-consuming step is the iterative linear algebra, which was done
with an OpenMP implementation of the block Wiedemann algorithm [34]. This
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involves three steps. First, we compute 32 independent runs of iterated matrix-
vector multiplications starting from random vectors; during this phase, we out-
put the 32 first coordinates of each vector. This took a real time of 104 hours,
each run being performed on a 32-core machine. The second step uses Thomé’s
algorithm to find short linear relations among the data from the first phase;
this took less than a day on a single 32-core machine. The final step recomputes
the 32 matrix-vector runs and combine these vectors using the linear coefficients
obtained from Thomé’s algorithm to derive a kernel element. This was done in
80 hours.

This linear algebra phase produced discrete logarithms (up to a multiplica-
tive constant) for all the basis elements that remained after structured Gaussian
elimination. Substituting these values back in the initial linear system, we re-
covered, in less than 15 h using 2 cores, the discrete logarithms modulo ℓ of all
elements in the basis (given by their coordinates on H):

log(3,54210179 t+24377213) = 2467099789726526674789152454993710955707305789

log(4,5797820 t+31555467) = 545770373733898817177505459198814768142128548

log(5,33397200 t+22523025) = 8852828831242753143185560596163762745485545475

...
log(67108818,4052640 t+3193845) = 17996942596026705852055535213667089104814848423

Individual logarithms of points on the curve. With the results of the
above precomputation, computing the logarithm of arbitrary points on the el-
liptic curve becomes easy. To demonstrate this, we constructed points on E
with the following process and computed their logarithms. First, we let X0=
∑

5
j=0(⌊π·pj+1⌉ mod p)θj=9502116+51102502 θ+19633775 θ2+15005290 θ3+5120599 θ4+52845899 θ5.

We then constructed points on E with abscissa X0 + δ for small offsets δ.
Let P1, P2, P3, P4, P5, P6 and P7 be the points corresponding to the offsets
4, 7, 8, 9, 10, 11 and 12. We lift each of these points to the Jacobian of H
using the conorm-norm map, which takes negligible time in Magma. After that,
we apply the descent method of Section 3.1 to small multiples of the lifted
element, until we find a multiple that decomposes as a sum of elements from
the smoothness basis. Looking up the corresponding logarithms (and dividing
back by the small multiples that have been included) yields the logarithm of
each point. On average, we expect to try 6! = 720 multiples before finding a
decomposition. To actually decompose the seven considered points, we needed
61.3 s. As a consequence, each individual logarithm on E can be performed in
less than one minute. We give details in Table 4: the points involved in the
decomposition are described by their abscissa together with a + or − sign that
indicates whether the “real” part of the ordinate has a positive or negative
representative in (−p/2, p/2). Similarly, we indicate the choice of the points on
E (as produced by Magma) with a + or a − depending on the representative of
the constant term in the ordinate.
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Points Mult. Nagao Points in decomposition

(X0 + 4)+ 52 3173650+ 7976372+ 11893167+ 44480549− 54870172+ 65733962+

(X0 + 7)+ 881 2376962− 14258552− 40555892+ 55043966+ 55762880+ 64876737−

(X0 + 8)+ 142 2284430− 6795968− 13558629− 21951404− 47144602+ 63205793−

(X0 + 9)− 2029 12722724− 15789918− 29687833+ 36846912+ 37734692− 55796895+

(X0 + 10)+ 216 1217557+ 11794996+ 15276868+ 15839608+ 19881426+ 64253574−

(X0 + 11)+ 593 7793921− 19375691− 19785033− 27300240− 36529224− 42439630+

(X0 + 12)+ 30 25743862+ 32130058− 45751876+ 47111216+ 47215479+ 64326230−

Table 4. Details of individual logarithm computations.

The group structure of E is Z/2Z × Z/(2ℓ)Z and all the logarithms are
computed mod ℓ. Thus, in order to obtain points of order ℓ, we multiply each
of the points Pj by 2. To obtain the discrete logarithms in base P1, we simply
divide the results by the logarithm of P1. Finally, we obtain:

2·P2 = 3098301664122045756646025880164155266797517001·2·P1

2·P3 = 193150824403682618693984719699312660147302140·2·P1

2·P4 = 4344541022562673106121335959750919509642268567·2·P1

2·P5 = 22068507199063012319450048203864694135687064743·2·P1

2·P6 = 9109495320194239827893038769270306483214851932·2·P1

2·P7 = 16531337790484167018027503430274834830545930964·2·P1

7 Conclusion and perspectives

In this paper, we have proposed a new index calculus algorithm to compute
discrete logarithms on elliptic curves defined over extension fields of composite
degree. In particular, sextic extensions are very well-suited to this method, as
we have practically demonstrated on a 154-bit example. Actually, larger ellip-
tic curve groups are within reach. Based on more accurate experimental data
obtained with an optimized implementation in C, we can extrapolate more pre-
cisely the computation timings as compared to those based on Magma. We detail
in Table 5 the timings obtained for curves defined over OEF of sizes 138, 144, 150
and 156 bits; the linear algebra is done after a structured Gaussian elimination.
In particular, we estimate that breaking the DLP over a 160-bit elliptic curve
group would take about 150years or 1.3× 106 CPU.hours on a single core.

This combination of cover and decomposition techniques raises many ques-
tions. For example, it would be interesting to know if elliptic curves of prime
cardinality defined over a degree 6 extension field can be efficiently attacked.
A related problem is how to target more curves easily: this requires either an
improvement of the isogeny walk, or an efficient use of non-hyperelliptic covers.
Finally, whether our method applies to more extension degrees is an impor-
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Size of p
Sieving

(CPU.hours)
Sieving

(real time )
Lanczos

(CPU.hours)
Lanczos

(real time)
Wiedemann
(CPU.hours)

Wiedemann
(real time)

log2 p ≈ 23 3 600 3.5 hours 4 900 77 hours – –

log2 p ≈ 24 15 400 15 hours 16 000 250 hours – –

log2 p ≈ 25 63 500 62 hours 43 800 28.5 days 50 500 2.5 days

log2 p ≈ 26 196 600 24 hours – – 189 000 9 days

Table 5. Data of our experiments.

tant issue. We have seen that degree 4 extensions are also susceptible, but the
advantage over generic methods is then less significant.
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A Complexity comparisons of different attacks on E(Fp6)
with log

2
p ≈ 27

The basis of comparison for all attacks on the ECDLP comes from generic al-
gorithms such as Pollard’s Rho [29]. Using Floyd’s cycle-finding algorithm, the
expected number of iterations is approximately 0.94

√
ℓ ≈ 1.14 × 1024 where ℓ

is the 160-bit prime dividing the cardinality of E(Fp6). With Magma V2-17-
5 on Intel Core 2 Duo 2.6GHz, it takes 13.91 s to compute 10 000 iterations,
corresponding to 5× 1013 years for the complete DLP resolution.

The main difficulty with the index calculus methods is the estimation of the
linear algebra cost, which is needed to find the optimal balance in the large
primes variation. We base our extrapolations on the experiment presented in
Table 5 for log2 p ≈ 25, where the resolution of a sparse system of size 3 × 106

took about 44 000h·CPU. Thus we assume that for a factor base of size n, the
linear algebra costs (n/3 000 000)2 · 44 000 · 160/148h, or n2 · 2× 10−5 s. On the
other hand, all the relation timings are obtained with Magma as we did not
implement optimized versions of all the different attacks.

We first consider index calculus methods for which the size of the factor
base is in p2/2. The corresponding memory complexity is clearly problematic
for any real implementation, since the sole storage of the factor base elements
requires about 260 bits. When E admits a hyperelliptic genus 3 cover H|F

p2
, we

can apply index calculus after transfer to its Jacobian. Our experiment takes
13.27 s to complete 10 000 tests, yielding 1 689 relations; the complete relation
search thus requires 2× 106 years. With our assumption, the linear algebra step
(memory issues notwithstanding) takes 5× 1019 years, a much more larger time.
To rebalance the two phases using double large primes, we divide the size of
factor base by about 40 000; the total computation time then becomes 6× 1010

years. If E admits a non-hyperelliptic genus 3 cover C|F
p2
, this cover admits a

degree 4 planar model on which we can apply Diem’s index calculus [8]. It then
takes 11.74 s to complete 10 000 tests, yielding 4 972 relations. This means that
700 000 years are necessary to collect p2/2 relations. With the adapted double
large prime variation, the optimal small factor base contains about p elements,
and the linear algebra cost becomes negligible compared to the relation search.
We can finally apply directly Gaudry’s attack [13] to E with base field Fp2 . Our
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experiment needs 22.35 s for 100 tests, yielding 36 relations. This is 80 times
slower than with the genus 3 hyperelliptic cover, and so the optimal balances
are different. The size of the factor base should then be divided by 9 000, for an
overall computation time of 1012 years.

Now, we consider the index calculus method for which the size of the factor
base is in p/2. We recall that it is not possible to use Gaudry’s decomposition
attack with base field Fp. In the very rare case whereE admits a non-hyperelliptic
genus 9 cover, it is possible to use the attack of [8] on a degree 10 plane model
and obtain after 200 000 tests 5 relations in 123 s, implying a time of 50 years for
the relation step. With our assumption, the linear algebra costs 3 000 years. The
rebalanced optimal size of the factor base corresponds to a twofold reduction, for
an overall computation time of 1 500 years. If E admits a genus 3 hyperelliptic
cover H|F

p2
, we can apply the techniques presented in this article and search for

decompositions in JacH(Fp2) either with Nagao’s method or our sieving variant.
In the first case, it takes 126 s to run 5 000 tests yielding 9 relations. This means
that the relation search would need 30 years, the linear algebra still lasting 3 000
years. The optimal balance corresponds to a reduction by a factor 2.7 of the
size of the factor base, for a total computation time of 750 years. In the second
case, using the sieving technique we obtained 3 300 relations in 1 800 s, which
is 25 times faster than with Nagao’s technique (in practice, we have seen in
Section 6 that with optimized implementation, the ratio is rather of the order
of 2 000). With the adapted large prime variation, the optimal size of the factor
base corresponds to a factor 4.4 reduction, for an overall computation time of
300 years.

Eventually, it is possible to apply our cover and decomposition technique on
a hyperelliptic genus 2 cover defined over Fp3 , but without the sieving improve-
ment. On this curve, our experiment takes 3 780 s for a single decomposition test,
which is 150 000 times slower than with the same method on a genus 3 cover
defined over Fp2 . In particular, no rebalance is needed since the relation search
dominates the computation time of about 4× 106 years.


