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Damien Pous† Jean-Claude Reynaud‡
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Abstract

A theory is complete if it does not contain a contradiction, while all
of its proper extensions do. In this paper, first we introduce a relative
notion of syntactic completeness; then we prove that adding exceptions to
a programming language can be done in such a way that the completeness
of the language is not made worse. These proofs are formalized in a logical
system which is close to the usual syntax for exceptions, and they have
been checked with the proof assistant Coq.

1 Introduction

In computer science, an exception is an abnormal event occurring during the
execution of a program. A mechanism for handling exceptions consists of two
parts: an exception is raised when an abnormal event occurs, and it can be
handled later, by switching the execution to a specific subprogram. Such a
mechanism is very helpful, but it is difficult for programmers to reason about
it. A difficulty for reasoning about programs involving exceptions is that they
are computational effects, in the sense that their syntax does not look like their
interpretation:typically, a piece of program with arguments in X that returns a
value in Y is interpreted as a function from X+E to Y +E where E is the set of
exceptions. On the one hand, reasoning with f : X → Y is close to the syntax,
but it is error-prone because it is not sound with respect to the semantics. On
the other hand, reasoning with f : X+E → Y +E is sound but it loses most of
the interest of the exception mechanism, where the propagation of exceptions
is implicit: syntactically, f : X → Y may be followed by any g : Y → Z,
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since the mechanism of exceptions will take care of propagating the exceptions
raised by f , if any. Another difficulty for reasoning about programs involving
exceptions is that the handling mechanism is encapsulated in a try-catch block,
while the behaviour of this mechanism is easier to explain in two parts (see for
instance [10, Ch. 14] for Java or [3, §15] for C++): the catch part may recover
from exceptions, so that its interpretation may be any f : X + E → Y + E,
but the try-catch block must propagate exceptions, so that its interpretation
is determined by some f : X → Y + E.

In [8] we defined a logical system for reasoning about states and exceptions
and we used it for getting certified proofs of properties of programs in computer
algebra, with an application to exact linear algebra. This logical system is called
the decorated logic for states and exceptions. Here we focus on exceptions. The
decorated logic for exceptions deals with f : X → Y , without any mention of E,
however it is sound thanks to a classification of the terms and the equations.
Terms are classified, as in a programming language, according to the way they
may interact with exceptions: a term either has no interaction with exceptions
(it is “pure”), or it may raise exceptions and must propagate them, or it is
allowed to catch exceptions (which may occur only inside the catch part of a
try-catch block). The classification of equations follows a line that was intro-
duced in [4]: besides the usual “strong” equations, interpreted as equalities of
functions, in the decorated logic for exceptions there are also “weak” equations,
interpreted as equalities of functions on non-exceptional arguments. This logic
has been built so as to be sound, but little was known about its completeness.
In this paper we prove a novel completeness result: the decorated logic for ex-
ceptions is relatively Hilbert-Post complete, which means that adding exceptions
to a programming language can be done in such a way that the completeness of
the language is not made worse. For this purpose, we first define and study the
novel notion of relative Hilbert-Post completeness, which seems to be a relevant
notion for the completeness of various computational effects: indeed, we prove
that this notion is preserved when combining effects. Practically, this means
that we have defined a decorated framework where reasoning about programs
with and without exceptions are equivalent, in the following sense: if there ex-
ists an unprovable equation not contradicting the given decorated rules, then
this equation is equivalent to a set of unprovable equations of the pure sublogic
not contradicting its rules.

Informally, in classical logic, a consistent theory is one that does not contain
a contradiction and a theory is complete if it is consistent, and none of its proper
extensions is consistent. Now, the usual (“absolute”) Hilbert-Post completeness,
also called Post completeness, is a syntactic notion of completeness which does
not use any notion of negation, so that it is well-suited for equational logic. In
a given logic L, we call theory a set of sentences which is deductively closed:
everything you can derive from it (using the rules of L) is already in it. Then,
more formally, a theory is (Hilbert-Post) consistent if it does not contain all
sentences, and it is (Hilbert-Post) complete if it is consistent and if any sentence
which is added to it generates an inconsistent theory [20, Def. 4].

All our completeness proofs have been verified with the Coq proof assistant.

2



First, this shows that it is possible to formally prove that programs involving
exceptions comply to their specifications. Second, this is of help for improving
the confidence in the results. Indeed, for a human prover, proofs in a decorated
logic require some care: they look very much like familiar equational proofs,
but the application of a rule may be subject to restrictions on the decoration
of the premises of the rule. The use of a proof assistant in order to check that
these unusual restrictions were never violated has thus proven to be quite useful.
Then, many of the proofs we give in this paper require a structural induction.
There, the correspondence between our proofs and their Coq counterpart was
eased, as structural induction is also at the core of the design of Coq.

A major difficulty for reasoning about programs involving exceptions, and
more generally computational effects, is that their syntax does not look like their
interpretation: typically, a piece of program from X to Y is not interpreted as
a function from X to Y , because of the effects. The best-known algebraic
approach for dealing with this problem has been initiated by Moggi: an effect
is associated to a monad T , in such a way that the interpretation of a program
from X to Y is a function from X to T (Y ) [13]: typically, for exceptions,
T (Y ) = Y +E. Other algebraic approaches include effect systems [12], Lawvere
theories [17], algebraic handlers [18], comonads [21, 15], dynamic logic [14],
among others. Some completeness results have been obtained, for instance for
(global) states [16] and for local states [19]. The aim of these approaches is
to extend functional languages with tools for programming and proving side-
effecting programs; implementations include Haskell [2], Idris [11], Eff [1], while
Ynot [22] is a Coq library for writing and verifying imperative programs.

Differently, our aim is to build a logical system for proving properties of
some families of programs written in widely used non-functional languages like
Java or C++1. The salient features of our approach are that:
(1) The syntax of our logic is kept close to the syntax of programming languages.
This is made possible by starting from a simple syntax without effect and by
adding decorations, which often correspond to keywords of the languages, for
taking the effects into account.
(2) We consider exceptions in two settings, the programming language and the
core language. This enables for instance to separate the treatment, in proofs, of
the matching between normal or exceptional behavior from the actual recovery
after an exceptional behavior.

In Section 2 we introduce a relative notion of Hilbert-Post completeness in
a logic L with respect to a sublogic L0. Then in Section 3 we prove the relative
Hilbert-Post completeness of a theory of exceptions based on the usual throw
and try-catch statement constructors. We go further in Section 4 by estab-
lishing the relative Hilbert-Post completeness of a core theory for exceptions
with individualized TRY and CATCH statement constructors, which is useful for
expressing the behaviour of the try-catch blocks. All our completeness proofs
have been verified with the Coq proof assistant and we therefore give the main

1For instance, a denotational semantics of our framework for exceptions, which relies on
the common semantics of exceptions in these languages, was given in [8, § 4].
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ingredients of the framework used for this verification and the correspondence
between our Coq package and the theorems and propositions of this paper in
Section 5.

2 Relative Hilbert-Post completeness

Each logic in this paper comes with a language, which is a set of formulas,
and with deduction rules. Deduction rules are used for deriving (or generating)
theorems, which are some formulas, from some chosen formulas called axioms. A
theory T is a set of theorems which is deductively closed, in the sense that every
theorem which can be derived from T using the rules of the logic is already in
T . We describe a set-theoretic intended model for each logic we introduce; the
rules of the logic are designed so as to be sound with respect to this intended
model. Given a logic L, the theories of L are partially ordered by inclusion.
There is a maximal theory Tmax , where all formulas are theorems. There is a
minimal theory Tmin , which is generated by the empty set of axioms. For all
theories T and T ′, we denote by T + T ′ the theory generated from T and T ′.

Example 2.1. With this point of view there are many different equational logics,
with the same deduction rules but with different languages, depending on the
definition of terms. In an equational logic, formulas are pairs of parallel terms
(f, g) : X → Y and theorems are equations f ≡ g : X → Y . Typically, the
language of an equational logic may be defined from a signature (made of sorts
and operations). The deduction rules are such that the equations in a theory
form a congruence, i.e., an equivalence relation compatible with the structure of
the terms. For instance, we may consider the logic “of naturals” Lnat , with its
language generated from the signature made of a sort N , a constant 0 : 1 → N

and an operation s : N → N . For this logic, the minimal theory is the theory “of
naturals” Tnat , the maximal theory is such that sk ≡ sℓ and sk ◦0 ≡ sℓ ◦0 for all
natural numbers k and ℓ, and (for instance) the theory “of naturals modulo 6”
Tmod6 can be generated from the equation s6 ≡ idN . We consider models of
equational logics in sets: each type X is interpreted as a set (still denoted X),
which is a singleton when X is 1, each term f : X → Y as a function from X

to Y (still denoted f : X → Y ), and each equation as an equality of functions.

Definition 2.2. Given a logic L and its maximal theory Tmax , a theory T is
consistent if T 6= Tmax , and it is Hilbert-Post complete if it is consistent and if
any theory containing T coincides with Tmax or with T .

Example 2.3. In Example 2.1 we considered two theories for the logic Lnat : the
theory “of naturals” Tnat and the theory “of naturals modulo 6” Tmod6. Since
both are consistent and Tmod6 contains Tnat , the theory Tnat is not Hilbert-Post
complete. A Hilbert-Post complete theory for Lnat is made of all equations but
s ≡ idN , it can be generated from the axioms s◦0≡0 and s◦s≡s.

If a logic L is an extension of a sublogic L0, each theory T0 of L0 generates
a theory F (T0) of L. Conversely, each theory T of L determines a theory
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G(T ) of L0, made of the theorems of T which are formulas of L0, so that
G(Tmax ) = Tmax ,0. The functions F and G are monotone and they form a
Galois connection, denoted F ⊣ G: for each theory T of L and each theory T0 of
L0 we have F (T0) ⊆ T if and only if T0 ⊆ G(T ). It follows that T0 ⊆ G(F (T0))
and F (G(T )) ⊆ T . Until the end of Section 2, we consider: a logic L0, an
extension L of L0, and the associated Galois connection F ⊣ G.

Definition 2.4. A theory T ′ of L is L0-derivable from a theory T of L if
T ′ = T + F (T ′

0) for some theory T ′

0 of L0. A theory T of L is (relatively)
Hilbert-Post complete with respect to L0 if it is consistent and if any theory of L
containing T is L0-derivable from T .

Each theory T is L0-derivable from itself, as T = T + F (Tmin,0), where
Tmin,0 is the minimal theory of L0. In addition, Theorem 2.6 shows that rel-
ative completeness lifts the usual “absolute” completeness from L0 to L, and
Proposition 2.7 proves that relative completeness is well-suited to the combina-
tion of effects.

Lemma 2.5. For each theory T of L, a theory T ′ of L is L0-derivable from
T if and only if T ′ = T + F (G(T ′)). As a special case, Tmax is L0-derivable
from T if and only if Tmax = T + F (Tmax ,0). A theory T of L is Hilbert-Post
complete with respect to L0 if and only if it is consistent and every theory T ′

of L containing T is such that T ′ = T + F (G(T ′)).

Proof. Clearly, if T ′ = T + F (G(T ′)) then T ′ is L0-derivable from T . So,
let T ′

0 be a theory of L0 such that T ′ = T + F (T ′

0), and let us prove that
T ′ = T + F (G(T ′)). For each theory T ′ we know that F (G(T ′)) ⊆ T ′; since
here T ⊆ T ′ we get T +F (G(T ′)) ⊆ T ′. Conversely, for each theory T ′

0 we know
that T ′

0 ⊆ G(F (T ′

0)) and that G(F (T ′

0)) ⊆ G(T ) + G(F (T ′

0)) ⊆ G(T + F (T ′

0)),
so that T ′

0 ⊆ G(T + F (T ′

0)); since here T ′ = T + F (T ′

0) we get first T ′

0 ⊆ G(T ′)
and then T ′ ⊆ T + F (G(T ′)). Then, the result for Tmax comes from the fact
that G(Tmax ) = Tmax ,0. The last point follows immediately.

Theorem 2.6. Let T0 be a theory of L0 and T = F (T0). If T0 is Hilbert-Post
complete (in L0) and T is Hilbert-Post complete with respect to L0, then T is
Hilbert-Post complete (in L).

Proof. Since T is complete with respect to L0, it is consistent. Since T = F (T0)
we have T0 ⊆ G(T ). Let T ′ be a theory such that T ⊆ T ′. Since T is complete
with respect to L0, by Lemma 2.5 we have T ′ = T + F (T ′

0) where T ′

0 = G(T ′).
Since T ⊆ T ′, T0 ⊆ G(T ) and T ′

0 = G(T ′), we get T0 ⊆ T ′

0. Thus, since T0 is
complete, either T ′

0 = T0 or T ′

0 = Tmax ,0; let us check that then either T ′ = T or
T ′ = Tmax . If T ′

0 = T0 then F (T ′

0) = F (T0) = T , so that T ′ = T + F (T ′

0) = T .
If T ′

0 = Tmax ,0 then F (T ′

0) = F (Tmax ,0); since T is complete with respect to
L0, the theory Tmax is L0-derivable from T , which implies (by Lemma 2.5) that
Tmax = T + F (Tmax ,0) = T ′.

Proposition 2.7. Let L1 be an intermediate logic between L0 and L, let F1 ⊣ G1

and F2 ⊣ G2 be the Galois connections associated to the extensions L1 of L0
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and L of L1, respectively. Let T1 = F1(T0). If T1 is Hilbert-Post complete
with respect to L0 and T is Hilbert-Post complete with respect to L1 then T is
Hilbert-Post complete with respect to L0.

Proof. This is an easy consequence of the fact that F = F2 ◦ F1.

Corollary 2.10 provides a characterization of relative Hilbert-Post complete-
ness which is used in the next Sections and in the Coq implementation.

Definition 2.8. For each set E of formulas let Th(E) be the theory generated
by E; and when E = {e} let Th(e) = Th({e}). Then two sets E1, E2 of
formulas are T -equivalent if T +Th(E1) = T +Th(E2); and a formula e of L is
L0-derivable from a theory T of L if {e} is T -equivalent to E0 for some set E0

of formulas of L0.

Proposition 2.9. Let T be a theory of L. Each theory T ′ of L containing T is
L0-derivable from T if and only if each formula e in L is L0-derivable from T .

Proof. Let us assume that each theory T ′ of L containing T is L0-derivable from
T . Let e be a formula in L, let T ′ = T +Th(e), and let T ′

0 be a theory of L0 such
that T ′ = T + F (T ′

0). The definition of Th(−) is such that Th(T ′

0) = F (T ′

0), so
that we get T +Th(e) = T +Th(E0) where E0 = T ′

0. Conversely, let us assume
that each formula e in L is L0-derivable from T . Let T ′ be a theory containing
T . Let T ′′ = T + F (G(T ′)), so that T ⊆ T ′′ ⊆ T ′ (because F (G(T ′)) ⊆ T ′ for
any T ′). Let us consider an arbitrary formula e in T ′, by assumption there is
a set E0 of formulas of L0 such that T + Th(e) = T + Th(E0). Since e is in
T ′ and T ⊆ T ′ we have T + Th(e) ⊆ T ′, so that T + Th(E0) ⊆ T ′. It follows
that E0 is a set of theorems of T ′ which are formulas of L0, which means that
E0 ⊆ G(T ′), and consequently Th(E0) ⊆ F (G(T ′)), so that T + Th(E0) ⊆ T ′′.
Since T + Th(e) = T + Th(E0) we get e ∈ T ′′. We have proved that T ′ = T ′′,
so that T ′ is L0-derivable from T .

Corollary 2.10. A theory T of L is Hilbert-Post complete with respect to L0

if and only if it is consistent and for each formula e of L there is a set E0 of
formulas of L0 such that {e} is T -equivalent to E0.

3 Completeness for exceptions

Exception handling is provided by most modern programming languages. It
allows to deal with anomalous or exceptional events which require special pro-
cessing. E.g., one can easily and simultaneously compute dynamic evaluation
in exact linear algebra using exceptions [8]. There, we proposed to deal with
exceptions as a decorated effect: a term f : X → Y is not interpreted as a
function f : X → Y unless it is pure. A term which may raise an exception is
instead interpreted as a function f : X → Y +E where “+” is the disjoint union
operator and E is the set of exceptions. In this section, we prove the relative
Hilbert-Post completeness of the decorated theory of exceptions in Theorem 3.5.
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As in [8], decorated logics for exceptions are obtained from equational logics
by classifying terms. Terms are classified as pure terms or propagators, which is
expressed by adding a decoration or superscript, respectively (0) or (1); decora-
tion and type information about terms may be omitted when they are clear from
the context or when they do not matter. All terms must propagate exceptions,
and propagators are allowed to raise an exception while pure terms are not.
The fact of catching exceptions is hidden: it is embedded into the try-catch

construction, as explained below. In Section 4 we consider a translation of the
try-catch construction in a more elementary language where some terms are
catchers, which means that they may recover from an exception, i.e., they do
not have to propagate exceptions.

Let us describe informally a decorated theory for exceptions and its intended
model. Each type X is interpreted as a set, still denoted X . The intended model
is described with respect to a set E called the set of exceptions, which does not
appear in the syntax. A pure term u(0) : X → Y is interpreted as a function u :
X → Y and a propagator a(1) : X → Y as a function a : X → Y +E; equations
are interpreted as equalities of functions. There is an obvious conversion from
pure terms to propagators, which allows to consider all terms as propagators
whenever needed; if a propagator a(1) : X → Y “is” a pure term, in the sense
that it has been obtained by conversion from a pure term, then the function
a : X → Y + E is such that a(x) ∈ Y for each x ∈ X . This means that
exceptions are always propagated: the interpretation of (b ◦ a)(1) : X → Z

where a(1) : X → Y and b(1) : Y → Z is such that (b ◦ a)(x) = b(a(x)) when
a(x) is not an exception and (b ◦ a)(x) = e when a(x) is the exception e (more
precisely, the composition of propagators is the Kleisli composition associated
to the monad X + E [13, § 1]). Then, exceptions may be classified according
to their name, as in [8]. Here, in order to focus on the main features of the
proof of completeness, we assume that there is only one exception name. Each
exception is built by encapsulating a parameter. Let P denote the type of
parameters for exceptions. The fundamental operations for raising exceptions

are the propagators throw
(1)
Y : P → Y for each type Y : this operation throws an

exception with a parameter p of type P and pretends that this exception has type

Y . The interpretation of the term throw
(1)
Y : P → Y is a function throwY : P →

Y +E such that throwY (p) ∈ E for each p ∈ P . The fundamental operations for
handling exceptions are the propagators (try(a)catch(b))(1) : X → Y for each
terms a : X → Y and b : P → Y : this operation first runs a until an exception
with parameter p is raised (if any), then, if such an exception has been raised,
it runs b(p). The interpretation of the term (try(a)catch(b))(1) : X → Y is a
function try(a)catch(b) : X → Y + E such that (try(a)catch(b))(x) = a(x)
when a is pure and (try(a)catch(b))(x) = b(p) when a(x) throws an exception
with parameter p.

More precisely, first the definition of the monadic equational logic Leq is
recalled in Fig. 1, (as in [13], this terminology might be misleading: the logic is
called monadic because all its operations are have exactly one argument, this is
unrelated to the use of the monad of exceptions).
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Terms are closed under composition:

uk ◦ · · · ◦ u1 : X0→Xk for each (ui : Xi−1→Xi)1≤i≤k, and idX : X→X when k = 0

Rules: (equiv)
u

u ≡ u

u ≡ v

v ≡ u

u ≡ v v ≡ w

u ≡ w

(subs)
u : X → Y v1 ≡ v2 : Y → Z

v1 ◦ u ≡ v2 ◦ u
(repl)

v1 ≡ v2 : X → Y w : Y → Z

w ◦ v1 ≡ w ◦ v2

Empty type 0 with terms [ ]Y : 0 → Y and rule: (initial)
u : 0 → Y

u ≡ [ ]Y

Figure 1: Monadic equational logic Leq (with empty type)

A monadic equational logic is made of types, terms and operations, where all
operations are unary, so that terms are simply paths. This constraint on arity
will make it easier to focus on the completeness issue. For the same reason, we
also assume that there is an empty type 0, which is defined as an initial object :
for each Y there is a unique term [ ]Y : 0 → Y and each term u(0) : Y → 0 is

the inverse of [ ]
(0)
Y . In the intended model, 0 is interpreted as the empty set.

Then, the monadic equational logic Leq is extended to form the decorated
logic for exceptions Lexc by applying the rules in Fig. 2, with the following
intended meaning:

• (initial1): the term [ ]Y is unique as a propagator, not only as a pure term.

• (propagate): exceptions are always propagated.

• (recover): the parameter used for throwing an exception may be recovered.

• (try): equations are preserved by the exceptions mechanism.

• (try0): pure code inside try never triggers the code inside catch.

• (try1): code inside catch is executed when an exception is thrown in-
side try.

The theory of exceptions Texc is the theory of Lexc generated from some arbitrary
consistent theory Teq of Leq ; with the notations of Section 2, Texc = F (Teq).
The soundness of the intended model follows: see [8, §5.1] and [6], which are
based on the description of exceptions in Java [10, Ch. 14] or in C++ [3, §15].

Example 3.1. Using the naturals for P and the successor and predecessor func-
tions (resp. denoted s and p) we can prove, e.g., that try(s(throw 3))catch(p)
is equivalent to 2. Indeed, first the rule (propagate) shows that s(throw 3)) ≡
throw 3, then the rules (try) and (try1) rewrite the given term into p(3).

Now, in order to prove the completeness of the decorated theory for ex-
ceptions, we follow a classical method (see, e.g., [16, Prop 2.37 & 2.40]): we
first determine canonical forms in Proposition 3.2, then we study the equations
between terms in canonical form in Proposition 3.3.
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Pure part: the logic Leq with a distinguished type P

Decorated terms: throw
(1)
Y : P → Y for each type Y ,

(try(a)catch(b))(1) : X → Y for each a(1) : X → Y and b(1) : P → Y , and

(ak ◦ · · · ◦ a1)
(max(d1,...,dk)) : X0 → Xk for each (a

(di)
i : Xi−1 → Xi)1≤i≤k

with conversion from u(0) : X → Y to u(1) : X → Y

Rules:

(equiv), (subs), (repl) for all decorations (initial1)
a(1) : 0 → Y

a ≡ [ ]Y

(recover)
u
(0)
1 , u

(0)
2 : X → P throwY ◦ u1 ≡ throwY ◦ u2

u1 ≡ u2

(propagate)
a(1) : X → Y

a ◦ throwX ≡ throwY
(try)

a
(1)
1 ≡ a

(1)
2 :X → Y b(1) :P → Y

try(a1)catch(b) ≡ try(a2)catch(b)

(try0)
u(0) :X → Y b(1) :P → Y

try(u)catch(b) ≡ u
(try1)

u(0) :X → P b(1) :P → Y

try(throwY ◦ u)catch(b) ≡ b ◦ u

Figure 2: Decorated logic for exceptions Lexc

Proposition 3.2. For each a(1) :X→Y , either there is a pure term u(0) :X→Y

such that a≡u or there is a pure term u(0) :X→P such that a≡throwY ◦u.

Proof. The proof proceeds by structural induction. If a is pure the result is
obvious, otherwise a can be written in a unique way as a = b ◦ op ◦ v where v is
pure, op is either throwZ for some Z or try(c)catch(d) for some c and d, and
b is the remaining part of a. If a = b(1) ◦ throwZ ◦ v(0), then by (propagate)
a ≡ throwY ◦ v(0). Otherwise, a = b(1) ◦ (try(c(1))catch(d(1))) ◦ v(0), then by
induction we consider two cases.

• If c ≡ w(0) then by (try0) a ≡ b(1)◦w(0)◦v(0) and by induction we consider
two subcases: if b ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if b ≡ throwY ◦ t(0)

then a ≡ throwY ◦ (t ◦w ◦ v)(0).

• If c ≡ throwZ ◦ w(0) then by (try1) a ≡ b(1) ◦ d(1) ◦ w(0) ◦ v(0) and by
induction we consider two subcases: if b ◦ d ≡ t(0) then a ≡ (t ◦ w ◦ v)(0)

and if b ◦ d ≡ throwY ◦ t(0) then a ≡ throwY ◦ (t ◦ w ◦ v)(0).

Thanks to Proposition 3.2, the study of equations in the logic Lexc can be
restricted to pure terms and to propagators of the form throwY ◦ v where v is
pure.

Proposition 3.3. For all v
(0)
1 , v

(0)
2 : X → P let a

(1)
1 = throwY ◦v1 : X → Y and

a
(1)
2 = throwY ◦ v2 : X → Y . Then a

(1)
1 ≡ a

(1)
2 is Texc-equivalent to v

(0)
1 ≡ v

(0)
2 .

9



Proof. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if throwY ◦
v1 ≡ throwY ◦ v2, then by rule (recover) it follows that v1 ≡ v2.

In the intended model, for all v
(0)
1 : X → P and v

(0)
2 : X → Y , it is impossible

to have throwY (v1(x)) = v2(x) for some x ∈ X , because throwY (v1(x)) is in
the E summand and v2(x) in the Y summand of the disjoint union Y + E.
This means that the functions throwY ◦ v1 and v2 are distinct, as soon as their
domain X is a non-empty set. For this reason, it is sound to make the following
Assumption 3.4.

Assumption 3.4. In the logic Lexc, the type of parameters P is non-empty, and

for all v
(0)
1 : X → P and v

(0)
2 : X → Y withX non-empty, let a

(1)
1 = throwY ◦v1 :

X → Y . Then a
(1)
1 ≡ v

(0)
2 is Texc-equivalent to Tmax ,0.

Theorem 3.5. Under Assumption 3.4, the theory of exceptions Texc is Hilbert-
Post complete with respect to the pure sublogic Leq of Lexc.

Proof. Using Corollary 2.10, the proof relies upon Propositions 3.2 and 3.3.
The theory Texc is consistent, because (by soundness) it cannot be proved that

throw
(1)
P ≡ id

(0)
P . Now, let us consider an equation between terms with domain

X and let us prove that it is Texc-equivalent to a set of pure equations. When
X is non-empty, Propositions 3.2 and 3.3, together with Assumption 3.4, prove
that the given equation is Texc-equivalent to a set of pure equations. When X

is empty, then all terms from X to Y are equivalent to [ ]Y so that the given
equation is Texc-equivalent to the empty set of pure equations.

4 Completeness of the core language for excep-

tions

In this section, following [8], we describe a translation of the language for ex-
ceptions from Section 3 in a core language with catchers. Thereafter, in Theo-
rem 4.7, we state the relative Hilbert-Post completeness of this core language.
Let us call the usual language for exceptions with throw and try-catch, as
described in Section 3, the programmers’ language for exceptions. The docu-
mentation on the behaviour of exceptions in many languages (for instance in
Java [10]) makes use of a core language for exceptions which is studied in [8].
In this language, the empty type plays an important role and the fundamental
operations for dealing with exceptions are tag(1) : P → 0 for encapsulating a
parameter inside an exception and untag(2) : 0 → P for recovering its parameter
from any given exception. The new decoration (2) corresponds to catchers : a
catcher may recover from an exception, it does not have to propagate it. More-
over, the equations also are decorated: in addition to the equations ’≡’ as in
Section 3, now called strong equations, there are weak equations denoted ’∼’.

As in Section 3, a set E of exceptions is chosen; the interpretation is ex-
tended as follows: each catcher f (2) : X → Y is interpreted as a function
f : X + E → Y + E, and there is an obvious conversion from propagators to
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catchers; the interpretation of the composition of catchers is straightforward,
and it is compatible with the Kleisli composition for propagators. Weak and
strong equations coincide on propagators, where they are interpreted as equali-
ties, but they differ on catchers: f (2) ∼ g(2) : X → Y means that the functions
f, g : X + E → Y + E coincide on X , but maybe not on E. The interpretation
of tag(1) : P → 0 is an injective function tag : P → E and the interpretation of
untag(2) : 0 → P is a function untag : E → P +E such that untag(tag(p)) = p

for each parameter p. Thus, the fundamental axiom relating tag(1) and untag(2)

is the weak equation untag ◦ tag ∼ idP .

Pure part: the logic Leq with a distinguished type P

Decorated terms: tag(1) : P → 0, untag(2) : 0 → P , and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:

(equiv≡), (subs≡), (repl≡) for all decorations

(equiv∼), (repl∼) for all decorations, (subs∼) only when h is pure

(empty∼)
f : 0 → Y

f ∼ [ ]Y
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

untag ◦ tag ∼ idP

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 f1 ◦ [ ]X ≡ f2 ◦ [ ]X

f1 ≡ f2

(eq3)
f1, f2 : 0 → X f1 ◦ tag ∼ f2 ◦ tag

f1 ≡ f2

Figure 3: Decorated logic for the core language for exceptions Lexc-core

More precisely, the decorated logic for the core language for exceptions Lexc-core

is defined in Fig. 3 as an extension of the monadic equational logic Leq . There
is an obvious conversion from strong to weak equations (≡-to-∼), and in ad-
dition strong and weak equations coincide on propagators by rule (eq1). Two

catchers f
(2)
1 , f

(2)
2 : X → Y behave in the same way on exceptions if and only

if f1 ◦ [ ]X ≡ f2 ◦ [ ]X : 0 → Y , where [ ]X : 0 → X builds a term of type X

from any exception. Then rule (eq2) expresses the fact that weak and strong
equations are related by the property that f1 ≡ f2 if and only if f1 ∼ f2 and
f1 ◦ [ ]X ≡ f2 ◦ [ ]X . This can also be expressed as a pair of weak equations:
f1 ≡ f2 if and only if f1 ∼ f2 and f1 ◦ [ ]X ◦ tag ∼ f2 ◦ [ ]X ◦ tag by rule (eq3).
The core theory of exceptions Texc-core is the theory of Lexc-core generated from
the theory Teq of Leq . Some easily derived properties are stated in Lemma 4.1;
which will be used repeatedly.

Lemma 4.1. 1. For all pure terms u
(0)
1 , u

(0)
2 : X → P , the equation u1 ≡ u2

is Texc-core-equivalent to tag◦u1 ≡ tag◦u2 and also to untag◦tag◦u1 ≡
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untag ◦ tag ◦ u2.

2. For all pure terms u(0) : X → P , v(0) : X → 0, the equation u ≡ [ ]P ◦ v
is Texc-core-equivalent to tag ◦ u ≡ v.

Proof. 1. Implications from left to right are clear. Conversely, if untag◦tag◦
u1 ≡ untag ◦ tag ◦ u2, then using the axiom (ax) and the rule (subs∼) we
get u1 ∼ u2. Since u1 and u2 are pure this means that u1 ≡ u2.

2. First, since tag ◦ [ ]P : 0 → 0 is a propagator we have tag ◦ [ ]P ≡ id0.
Now, if u ≡ [ ]P ◦ v then tag ◦ u ≡ tag ◦ [ ]P ◦ v ≡ v. Conversely, if
tag ◦ u ≡ v then tag ◦ u ≡ tag ◦ [ ]P ◦ v, and by Point 1 this means that
u ≡ [ ]P ◦ v.

The operation untag in the core language can be used for decomposing the
try-catch construction in the programmer’s language in two steps: a step for
catching the exception, which is nested into a second step inside the try-catch
block: this corresponds to a translation of the programmer’s language in the
core language, as in [8], which is reminded below; then Proposition 4.2 proves
the correctness of this translation. In view of this translation we extend the
core language with:

• for each b(1) : P → Y , a catcher (CATCH(b))(2) : Y → Y such that
CATCH(b) ∼ idY and CATCH(b) ◦ [ ]Y ≡ b ◦ untag: if the argument of
CATCH(b) is non-exceptional then nothing is done, otherwise the parame-
ter p of the exception is recovered and b(p) is ran.

• for each a(1) : X → Y and k(2) : Y → Y , a propagator (TRY(a, k))(1) :
X → Y such that TRY(a, k) ∼ k ◦ a: thus TRY(a, k) behaves as k ◦ a on
non-exceptional arguments, but it does always propagate exceptions.

Then, a translation of the programmer’s language of exceptions in the core

language is easily obtained: for each type Y , throw
(1)
Y =[ ]Y ◦tag : P → Y . and

for each a(1) :X→Y , b(1) :P →Y , (try(a)catch(b))(1)=TRY(a, CATCH(b)) :X→
Y . This translation is correct: see Proposition 4.2.

Proposition 4.2. If the pure term [ ]Y : 0 → Y is a monomorphism with
respect to propagators for each type Y , the above translation of the programmers’
language for exceptions in the core language is correct.

Proof. We have to prove that the image of each rule of Lexc is satisfied. It
should be reminded that strong and weak equations coincide on Lexc.

• (propagate) For each a(1) : X → Y , the rules of Lexc-core imply that
a ◦ [ ]X ≡ [ ]Y , so that a ◦ [ ]X ◦ tag ≡ [ ]Y ◦ tag.

• (recover) For each u
(0)
1 , u

(0)
2 : X → P , if [ ]Y ◦tag◦u1 ≡ [ ]Y ◦tag◦u2 since

[ ]Y is a monomorphism with respect to propagators we have tag ◦ u1 ≡
tag ◦ u2, so that, by Point 1 in Lemma 4.1, we get u1 ≡ u2.
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• (try) Since try(ai)catch(b) ∼ catch(b)◦ai for i ∈ {1, 2}, we get try(a1)catch(b) ∼
try(a2)catch(b) as soon as a1 ≡ a2.

• (try0) For each u(0) : X → Y and b(1) : P → Y , we have TRY(u, CATCH(b)) ∼
CATCH(b) ◦ u and CATCH(b) ◦ u ∼ u (because CATCH(b) ∼ id and u is pure),
so that TRY(u, CATCH(b)) ∼ u.

• (try1) For each u(0) : X → P and b(1) : P → Y , we have TRY([ ]Y ◦ tag ◦
u, CATCH(b)) ∼ CATCH(b) ◦ [ ]Y ◦ tag ◦ u and CATCH(b) ◦ [ ]Y ≡ b ◦ untag
so that TRY([ ]Y ◦ tag ◦ u, CATCH(b)) ∼ b ◦ untag ◦ tag ◦ u. We have also
untag ◦ tag ◦ u ∼ u (because untag ◦ tag ∼ id and u is pure), so that
TRY([ ]Y ◦ tag ◦ u, CATCH(b)) ∼ b ◦ u.

Example 4.3 (Continuation of Example 3.1). We here show that it is possible
to separate the matching between normal or exceptional behavior from the re-
covery after an exceptional behavior: to prove that try(s(throw 3))catch(p)
is equivalent to 2 in the core language, we first use the translation to get:
TRY(s◦[ ]◦tag◦3, CATCH(p)). Then (empty∼) shows that s◦[ ]tag◦3 ∼ [ ]◦tag◦3.
Now, the TRY and CATCH translations show that TRY([ ] ◦ tag ◦ 3, CATCH(p)) ∼
CATCH(p) ◦ [ ] ◦ tag ◦ 3 ∼ p ◦ untag ◦ tag ◦ 3. Finally the axiom (ax) and (eq1)
give p ◦ 3 ≡ 2.

In order to prove the completeness of the core decorated theory for excep-
tions, as for the proof of Theorem 3.5, we first determine canonical forms in
Proposition 4.4, then we study the equations between terms in canonical form
in Proposition 4.5. Let us begin by proving the fundamental strong equation for
exceptions (1): by replacement in the axiom (ax) we get tag◦untag◦tag ∼ tag,
then by rule (eq3):

tag ◦ untag ≡ id0 (1)

Proposition 4.4. 1. For each propagator a(1) : X → Y , either a is pure or

there is a pure term v(0) : X → P such that a(1) ≡ [ ]
(0)
Y ◦ tag(1) ◦ v(0).

And for each propagator a(1) : X → 0 (either pure or not), there is a pure
term v(0) : X → P such that a(1) ≡ tag(1) ◦ v(0).

2. For each catcher f (2) : X → Y , either f is a propagator or there is
an propagator a(1) : P → Y and a pure term u(0) : X → P such that
f (2) ≡ a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proof. 1. If the propagator a(1) : X → Y is not pure then it contains at
least one occurrence of tag(1). Thus, it can be written in a unique way
as a = b ◦ tag ◦ v for some propagator b(1) : 0 → Y and some pure term

v(0) : X → P . Since b(1) : 0 → Y we have b(1) ≡ [ ]
(0)
Y , and the first result

follows. When X = 0, it follows that a(1) ≡ tag(1) ◦v(0). When a : X → 0

is pure, one has a ≡ tag(1) ◦ ([ ]P ◦ a)(0).
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2. The proof proceeds by structural induction. If f is pure the result is
obvious, otherwise f can be written in a unique way as f = g ◦ op ◦ u

where u is pure, op is either tag or untag and g is the remaining part
of f . By induction, either g is a propagator or g ≡ b ◦ untag ◦ tag ◦ v

for some pure term v and some propagator b. So, there are four cases to
consider. (1) If op = tag and g is a propagator then f is a propagator. (2)
If op = untag and g is a propagator then by Point 1 there is a pure term w

such that u ≡ tag◦w, so that f ≡ g(1) ◦untag◦tag◦w(0). (3) If op = tag

and g ≡ b(1) ◦ untag ◦ tag ◦ v(0) then f ≡ b ◦ untag ◦ tag ◦ v ◦ tag ◦ u.
Since v : 0 → P is pure we have tag ◦ v ≡ id0, so that f ≡ b(1) ◦
untag ◦ tag ◦ u(0). (4) If op = untag and g ≡ b(1) ◦ untag ◦ tag ◦ v(0)

then f ≡ b ◦ untag ◦ tag ◦ v ◦ untag ◦ u. Since v is pure, by (ax) and
(subs∼) we have untag ◦ tag ◦ v ∼ v. Besides, by (ax) and (repl∼) we
have v ◦ untag◦ tag ∼ v and untag◦ tag◦ v ◦ untag◦ tag ∼ untag◦ tag◦
v. Since ∼ is an equivalence relation these three weak equations imply
untag ◦ tag ◦ v ◦ untag ◦ tag ∼ v ◦ untag ◦ tag. By rule (eq3) we get
untag ◦ tag ◦ v ◦ untag ≡ v ◦ untag, and by Point 1 there is a pure term
w such that u ≡ tag ◦ w, so that f ≡ (b ◦ v)(1) ◦ untag ◦ tag ◦ w(0).

Thanks to Proposition 4.4, in order to study equations in the logic Lexc-core

we may restrict our study to pure terms, propagators of the form [ ]
(0)
Y ◦tag(1) ◦

v(0) and catchers of the form a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proposition 4.5. 1. For all a
(1)
1 , a

(1)
2 : P → Y and u

(0)
1 , u

(0)
2 : X → P , let

f
(2)
1 = a1 ◦untag◦tag◦u1 : X → Y and f

(2)
2 = a2 ◦untag◦tag◦u2 : X →

Y , then f1 ∼ f2 is Texc-core-equivalent to a1 ◦ u1 ≡ a2 ◦ u2 and f1 ≡ f2 is
Texc-core-equivalent to {a1 ≡ a2 , a1 ◦ u1 ≡ a2 ◦ u2}.

2. For all a
(1)
1 : P → Y , u

(0)
1 : X → P and a

(1)
2 : X → Y , let f

(2)
1 = a1 ◦

untag◦tag◦u1 : X → Y , then f1 ∼ a2 is Texc-core-equivalent to a1◦u1 ≡ a2
and f1 ≡ a2 is Texc-core-equivalent to {a1 ◦ u1 ≡ a2 , a1 ≡ [ ]Y ◦ tag}.

3. Let us assume that [ ]
(0)
Y is a monomorphism with respect to propagators.

For all v
(0)
1 , v

(0)
2 : X → P , let a

(1)
1 = [ ]Y ◦ tag ◦ v1 : X → Y and

a
(1)
2 = [ ]Y ◦ tag ◦ v2 : X → Y . Then a1 ≡ a2 is Texc-core-equivalent to

v1 ≡ v2.

Proof. 1. Rule (eq2) implies that f1 ≡ f2 if and only if f1 ∼ f2 and f1◦[ ]X ≡
f2◦[ ]X . On the one hand, f1 ∼ f2 if and only if a1◦u1 ≡ a2◦u2: indeed, for
each i ∈ {1, 2}, by (ax) and (subs∼), since ui is pure we have fi ∼ ai ◦ ui.
On the other hand, let us prove that f1 ◦ [ ]X ≡ f2 ◦ [ ]X if and only
if a1 ≡ a2. For each i ∈ {1, 2}, the propagator tag ◦ ui ◦ [ ]X : 0 → 0

satisfies tag ◦ ui ◦ [ ]X ≡ id0, so that fi ◦ [ ]X ≡ ai ◦ untag. Thus,
f1 ◦ [ ]X ≡ f2 ◦ [ ]X if and only if a1 ◦ untag ≡ a2 ◦ untag. Clearly, if
a1 ≡ a2 then a1◦untag ≡ a2◦untag. Conversely, if a1◦untag ≡ a2◦untag
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then a1 ◦untag◦tag ≡ a2 ◦untag◦tag, so that by (ax) and (repl∼) we get
a1 ∼ a2, which means that a1 ≡ a2 because a1 and a2 are propagators.

2. Rule (eq2) implies that f1 ≡ a2 if and only if f1 ∼ a2 and f1 ◦ [ ]X ≡
a2 ◦ [ ]X . On the one hand, f1 ∼ a2 if and only if a1 ◦ u1 ≡ a2: indeed,
by (ax) and (subs∼), since u1 is pure we have f1 ∼ a1 ◦ u1. On the
other hand, let us prove that f1 ◦ [ ]X ≡ a2 ◦ [ ]X if and only if a1 ≡
[ ]Y ◦ tag, in two steps. Since a2 ◦ [ ]X : 0 → Y is a propagator, we
have a2 ◦ [ ]X ≡ [ ]Y . Since f1 ◦ [ ]X = a1 ◦ untag ◦ tag ◦ u1 ◦ [ ]X with
tag ◦ u1 ◦ [ ]X : 0 → 0 a propagator, we have tag ◦ u1 ◦ [ ]X ≡ id0 and
thus we get f1 ◦ [ ]X ≡ a1 ◦ untag. Thus, f1 ◦ [ ]X ≡ a2 ◦ [ ]X if and only if
a1 ◦ untag ≡ [ ]Y . If a1 ◦ untag ≡ [ ]Y then a1 ◦ untag ◦ tag ≡ [ ]Y ◦ tag,
by (ax) and (repl∼) this implies a1 ∼ [ ]Y ◦ tag, which is a strong equality
because both members are propagators. Conversely, if a1 ≡ [ ]Y ◦ tag

then a1 ◦ untag ≡ [ ]Y ◦ tag ◦ untag, by the fundamental equation (1)
this implies a1 ◦ untag ≡ [ ]Y . Thus, a1 ◦ untag ≡ [ ]Y if and only if
a1 ≡ [ ]Y ◦ tag.

3. Clearly, if v1 ≡ v2 then [ ]Y ◦ tag ◦ v1 ≡ [ ]Y ◦ tag ◦ v2. Conversely, if
[ ]Y ◦ tag ◦ v1 ≡ [ ]Y ◦ tag ◦ v2 then since [ ]Y is a monomorphism with
respect to propagators we get tag◦v1 ≡ tag◦v2, so that untag◦tag◦v1 ≡
untag◦tag◦v2. Now, from (ax) we get v1 ∼ v2, which means that v1 ≡ v2
because v1 and v2 are pure.

Assumption 4.6 is the image of Assumption 3.4 by the above translation.

Assumption 4.6. In the logic Lexc-core , the type of parameters P is non-empty,

and for all v
(0)
1 : X → P and v

(0)
2 : X → Y with X non-empty, let a

(1)
1 =

[ ]Y ◦ tag ◦ v1 : X → Y . Then a
(1)
1 ≡ v

(0)
2 is Texc-equivalent to Tmax,0.

Theorem 4.7. Under Assumption 4.6, the theory of exceptions Texc-core is
Hilbert-Post complete with respect to the pure sublogic Leq of Lexc-core.

Proof. Using Corollary 2.10, the proof is based upon Propositions 4.4 and 4.5. It
follows the same lines as the proof of Theorem 3.5, except when X is empty: be-
cause of catchers the proof here is slightly more subtle. First, the theory Texc-core

is consistent, because (by soundness) it cannot be proved that untag(2) ≡ [ ]
(0)
P .

Now, let us consider an equation between terms f1, f2 : X → Y , and let us prove
that it is Texc-core-equivalent to a set of pure equations. When X is non-empty,
Propositions 4.4 and 4.5, together with Assumption 4.6, prove that the given
equation is Texc-core-equivalent to a set of pure equations. When X is empty,
then f1 ∼ [ ]Y and f2 ∼ [ ]Y , so that if the equation is weak or if both f1
and f2 are propagators then the given equation is Texc-core-equivalent to the
empty set of equations between pure terms. When X is empty and the equation
is f1 ≡ f2 with at least one of f1 and f2 a catcher, then by Point 1 or 2 of
Proposition 4.5, the given equation is Texc-core-equivalent to a set of equations
between propagators; but we have seen that each equation between propagators
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(whether X is empty or not) is Texc-core-equivalent to a set of equations between
pure terms, so that f1 ≡ f2 is Texc-core-equivalent to the union of these sets of
pure equations.

5 Verification of Hilbert-Post Completeness in

Coq

All the statements of Sections 3 and 4 have been checked in Coq. The proofs can
be found in http://forge.imag.fr/frs/download.php/680/hp-0.7.tar.gz,
as well as an almost dual proof for the completeness of the state. They share
the same framework, defined in [9]:

1. the terms of each logic are inductively defined through the dependent type
named term which builds a new Type out of two input Types. For instance,
term Y X is the Type of all terms of the form f : X → Y;

2. the decorations are enumerated: pure and propagator for both languages,
and catcher for the core language;

3. decorations are inductively assigned to the terms via the dependent type
called is. The latter builds a proposition (a Prop instance in Coq) out of a
term and a decoration. Accordingly, is pure (id X) is a Prop instance;

4. for the core language, we state the rules with respect to weak and strong
equalities by defining them in a mutually inductive way.

The completeness proof for the exceptions core language is 950 SLOC in
Coq where it is 460 SLOC in LATEX. Full certification runs in 6.745s on a Intel
i7-3630QM @2.40GHz using the Coq Proof Assistant, v. 8.4pl3. Below table
details the proof lengths and timings for each library.

Proof lengths & Benchmarks
package source length length execution time

in Coq in LATEX in Coq
exc cl-hp HPCompleteCoq.v 40 KB 15 KB 6.745 sec.
exc pl-hp HPCompleteCoq.v 8 KB 6 KB 1.704 sec.
exc trans Translation.v 4 KB 2 KB 1.696 sec.
st-hp HPCompleteCoq.v 48 KB 15 KB 7.183 sec.

The correspondence between the propositions and theorems in this paper
and their proofs in Coq is given in Fig. 4, and the dependency chart for the
main results in Fig. 5. For instance, Proposition 3.3 is expressed in Coq as:

forall {X Y} (a1 a2: term X Y) (v1 v2: term (Val e) Y),
(is pure v1) /\ (is pure v2) /\

(a1 = ((@throw X e) o v1)) /\ (a2 = ((@throw X e) o v2)) -> ((a1 == a2) <-> (v1 == v2)).
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hp-0.7/exc trans/Translation.v
Proposition 4.2 (propagate) propagate

Proposition 4.2 (recover) recover

Proposition 4.2 (try) try

Proposition 4.2 (try0) try0
Proposition 4.2 (try1) try1

hp-0.7/exc pl-hp/HPCompleteCoq.v
Proposition 3.2 can form th

Proposition 3.3 eq th 1 eq pu

Assumption 3.4 eq th pu abs

Theorem 3.5 HPC exc pl

hp-0.7/exc cl-hp/HPCompleteCoq.v
Proposition 4.4 Point 1 can form pr

Proposition 4.4 Point 2 can form ca

Assumption 4.6 eq pr pu abs

Proposition 4.5 Point 1 eq ca 2 eq pr

Proposition 4.5 Point 2 eq ca pr 2 eq pr

Proposition 4.5 Point 3 eq pr 1 eq pu

Theorem 4.7 HPC exc core

Figure 4: Correspondence between theorems in this paper and their Coq coun-
terparts

can form ca
--\\\

\

eq ca 1 or 2 eq pr

,,Y
YY

YY
YY

&&
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

eq ca pr 2 eq pr
11cc

eq ca abs or 2 eq pu

++W
WW

WW
WW

can form pr
--[[[

eq pr 1 eq pu // eq pr abs or 1 eq pu

22eeeeeee

,,Y
YY

YY
YY

HPC exc

eq pr pu abs
11ccc

eq ca abs 2 eq pu dom emp

33gggggggg

eq pr dom emp
11bbbb

Figure 5: Dependency chart for the main results

6 Conclusion and future work

This paper is a first step towards the proof of completeness of decorated logics
for computer languages. It has to be extended in several directions: adding basic
features to the language (arity, conditionals, loops, . . . ), proving completeness
of the decorated approach for other effects (not only states and exceptions); the
combination of effects should easily follow, thanks to Proposition 2.7.
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A Completeness for states

Most programming languages such as C/C++ and Java support the usage and
manipulation of the state (memory) structure. Even though the state structure
is never syntactically mentioned, the commands are allowed to use or manipu-
late it, for instance looking up or updating the value of variables. This provides
a great flexibility in programming, but in order to prove the correctness of pro-
grams, one usually has to revert to an explicit manipulation of the state. There-
fore, any access to the state, regardless of usage or manipulation, is treated as
a computational effect: a syntactical term f : X → Y is not interpreted as
f : X → Y unless it is pure, that is unless it does not use the variables in
any manner. Indeed, a term which updates the state has instead the following
interpretation: f : X × S → Y × S where ‘×’ is the product operator and S is
the set of possible states. In [9], we proposed a proof system to prove program
properties involving states effect, while keeping the memory manipulations im-
plicit. We summarize this system next and prove its Hilbert-Post completeness
in Theorem A.6.

As noticed in [8], the logic Lexc-core is exactly dual to the logic Lst for states
(as reminded below). Thus, the dual of the completeness Theorem 4.7 and of all
results in Section 4 are valid, with the dual proof. However, the intended models
for exceptions and for states rely on the category of sets, which is not self-dual,
and the additional assumptions in Theorem 4.7, like the existence of a boolean
type, cannot be dualized without loosing the soundness of the logic with respect
to its intended interpretation. It follows that the completeness Theorem A.6 for
the theory for states is not exactly the dual of Theorem 4.7. In this Appendix,
for the sake of readability, we give all the details of the proof of Theorem A.6;
we will mention which parts are not the dual of the corresponding parts in the
proof of Theorem 4.7.

As in [5], decorated logics for states are obtained from equational logics by
classifying terms and equations. Terms are classified as pure terms, accessors or
modifiers, which is expressed by adding a decoration or superscript, respectively
(0), (1) and (2); decoration and type information about terms may be omitted
when they are clear from the context or when they do not matter. Equations are
classified as strong or weak equations, denoted respectively by the symbols ≡
and ∼. Weak equations relates to the values returned by programs, while strong
equations relates to both values and side effects. In order to observe the state,
accessors may use the values stored in locations, and modifiers may update these
values. In order to focus on the main features of the proof of completeness, let us
assume that only one location can be observed and modified; the general case,
with an arbitrary number of locations, is considered in Remark A.7. The logic
for dealing with pure terms may be any logic which extends a monadic equational
logic with constants Leq,1; its terms are decorated as pure and its equations are

strong. This pure sublogic L
(0)
st is extended to form the corresponding decorated

logic for states Lst . The rules for Lst are given in Fig. 6. A theory T (0) of L
(0)
st

is chosen, then the theory of states Tst is the theory of Lst generated from T (0).
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Let us now discuss the logic Lst and its intended interpretation in sets; it is
assumed that some model of the pure subtheory T (0) in sets has been chosen;
the names of the rules refer to Fig. 6.

Each type X is interpreted as a set, denoted X . The intended model is
described with respect to a set S called the set of states, which does not appear
in the syntax. A pure term u(0) : X → Y is interpreted as a function u : X → Y ,
an accessor a(1) : X → Y as a function a : S × X → Y , and a modifier
f (2) : X → Y as a function f : S ×X → S × Y . There are obvious conversions
from pure terms to accessors and from accessors to modifiers, which allow to
consider all terms as modifiers whenever needed; for instance, this allows to
interpret the composition of terms without mentioning Kleisli composition; the
complete characterization is given in [5].

Here, for the sake of simplicity, we consider a single variable (as done, e.g.,
in [16] and [19]), and dually to the choice of a unique exception name in Section 4.
See Remark A.7 for the generalization to an arbitrary number of variables.
The values of the unique location have type V . The fundamental operations
for dealing with the state are the accessor lookup(1) : 1 → V for reading
the value of the location and the modifier update(2) : V → 1 for updating
this value. According to their decorations, they are interpreted respectively as
functions lookup : S → V and update : S × V → S. Since there is only one
location, it might be assumed that lookup : S → V is a bijection and that
update : S × V → S maps each (s, v) ∈ S × V to the unique s′ ∈ S such that
lookup(s′) = v: this is expressed by a weak equation, as explained below.

A strong equation f ≡ g means that f and g return the same result and
modify the state in “the same way”, which means that no difference can be
observed between the side-effects performed by f and by g. Whenever lookup :
S → V is a bijection, a strong equation f (2) ≡ g(2) : X → Y is interpreted as
the equality f = g : S×X → S×Y : for each (s, x) ∈ S×X , let f(s, x) = (s′, y′)
and g(s, x) = (s′′, y′′), then f ≡ g means that y′ = y′′ and s′ = s′′ for all (s, x).
Strong equations form a congruence. A weak equation f ∼ g means that f

and g return the same result although they may modify the state in different
ways. Thus, a weak equation f (2) ∼ g(2) : X → Y is interpreted as the equality
prY ◦ f = prY ◦ g : S × X → Y , where prY : S × Y → Y is the projection;
with the same notations as above, this means that y′ = y′′ for all (s, x). Weak
equations do not form a congruence: the replacement rule holds only when the
replaced term is pure. The fundamental equation for states is provided by rule
(ax): lookup(1) ◦ update(2) ∼ idV . This means that updating the location with
a value v and then observing the value of the location does return v. Clearly
this is only a weak equation: its right-hand side does not modify the state while
its left-hand side usually does. There is an obvious conversion from strong to
weak equations (≡-to-∼), and in addition strong and weak equations coincide

on accessors by rule (eq1). Two modifiers f
(2)
1 , f

(2)
2 : X → Y modify the state

in the same way if and only if 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 : X → 1, where 〈 〉Y : Y → 1

throws out the returned value. Then weak and strong equations are related by
the property that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2,
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by rule (eq2). This can be expressed as a pair of weak equations f1 ∼ f2 and
lookup ◦ 〈 〉Y ◦ f1 ∼ lookup ◦ 〈 〉Y ◦ f2, by rule (eq3). Some easily derived
properties are stated in Lemma A.1; Point 2 will be used repeatedly.

Monadic equational logic with constants Leq,1:

Types and terms: as for monadic equational logic, plus
a unit type 1 and a term 〈 〉X : X → 1 for each X

Rules: as for monadic equational logic, plus (unit)
f : X → 1

f ≡ 〈 〉X
Decorated logic for states Lst :

Pure part: some logic L
(0)
st extending Leq,1, with a distinguished type V

Decorated terms: lookup(1) : 1 → V , update(2) : V → 1, and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:
(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (subs∼) for all decorations, (repl∼) only when h is pure

(unit∼)
f : X → 1

f ∼ 〈 〉X
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

lookup ◦ update ∼ idV

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2

f1 ≡ f2

(eq3)
f1, f2 : X → 1 lookup ◦ f1 ∼ lookup ◦ f2

f1 ≡ f2

Figure 6: Decorated logic for states (dual to Fig. 3)

Lemma A.1. 1. update ◦ lookup ≡ id1. (this is the fundamental strong
equation for states).

2. each f (2) : 1 → 1 is such that f ∼ id1, each f (1) : X → 1 is such that
f ≡ 〈 〉X , and each f (1) : 1 → 1 is such that f ≡ id1.

3. For all pure terms u
(0)
1 , u

(0)
2 : V → Y , one has: u1 ≡ u2 is Tst -equivalent

to u1 ◦ lookup ≡ u2 ◦ lookup and also to u1 ◦ lookup ◦ update ≡ u2 ◦
lookup ◦ update.

4. For all pure terms u(0) : V → Y , v(0) : 1 → Y , one has: u ≡ v ◦ 〈 〉V is
Tst -equivalent to u ◦ lookup ≡ v.

Proof. 1. By substitution in the axiom (ax) we get lookup◦update◦lookup ∼
lookup; then by rule (eq3) update ◦ lookup ≡ id1.

2. Clear.

3. Implications from left to right are clear. Conversely, if u1 ◦ lookup ◦
update ≡ u2 ◦ lookup ◦ update, then using the axiom (ax) and the rule
(repl∼) we get u1 ∼ u2. Since u1 and u2 are pure this means that u1 ≡ u2.
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4. First, since 〈 〉V ◦lookup : 1 → 1 is an accessor we have 〈 〉V ◦lookup ≡ id1.
Now, if u ≡ v◦〈 〉V then u◦lookup ≡ v◦〈 〉V ◦lookup, so that u◦lookup ≡
v. Conversely, if u ◦ lookup ≡ v then u ◦ lookup ≡ v ◦ 〈 〉V ◦ lookup, and
by Point (3) this means that u ≡ v ◦ 〈 〉V .

Our main result is Theorem A.6 about the relative Hilbert-Post completeness
of the decorated theory of states under suitable assumptions.

Proposition A.2. 1. For each accessor a(1) : X → Y , either a is pure or

there is a pure term v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1) ◦ 〈 〉
(0)
X .

For each accessor a(1) : 1 → Y (either pure or not), there is a pure term
v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1).

2. For each modifier f (2) : X → Y , either f is an accessor or there is an
accessor a(1) : X → V and a pure term u(0) : V → Y such that f (2) ≡
u(0) ◦ lookup(1) ◦ update(2) ◦ a(1).

Proof. 1. If the accessor a(1) : X → Y is not pure then it contains at least
one occurrence of lookup(1). Thus, it can be written in a unique way as
a = v ◦ lookup ◦ b for some pure term v(0) : V → Y and some accessor

b(1) : X → 1. Since b(1) : X → 1 we have b(1) ≡ 〈 〉
(0)
X , and the first

result follows. When X = 1, it follows that a(1) ≡ v(0) ◦ lookup(1). When
a : 1 → Y is pure, one has a ≡ (a ◦ 〈 〉V )

(0) ◦ lookup(1).

2. The proof proceeds by structural induction. If f is pure the result is
obvious, otherwise f can be written in a unique way as f = u ◦ op ◦ g

where u is pure, op is either lookup or update and g is the remaining part
of f . By induction, either g is an accessor or g ≡ v ◦ lookup ◦ update ◦ b
for some pure term v and some accessor b. So, there are four cases to
consider.

• If op = lookup and g is an accessor then f is an accessor.

• If op = update and g is an accessor then by Point 1 there is a pure
term w such that u ≡ w◦lookup, so that f ≡ w(0)◦lookup◦update◦
g(1).

• If op = lookup and g ≡ v(0) ◦ lookup ◦ update ◦ b(1) then f ≡
u ◦ lookup◦ v ◦ lookup ◦ update◦ b. Since v : V → 1 is pure we have
v ◦ lookup ≡ id1, so that f ≡ u(0) ◦ lookup ◦ update ◦ b(1).

• If op = update and g ≡ v(0) ◦ lookup ◦ update ◦ b(1) then f ≡
u(0)◦update◦v(0)◦lookup◦update◦b(1). Since v is pure, by (ax) and
(repl∼) we have v◦lookup◦update ∼ v. Besides, by (ax) and (subs∼)
we have lookup ◦ update ◦ v ∼ v and lookup ◦ update ◦ v ◦ lookup ◦
update ∼ v◦lookup◦update. Since ∼ is an equivalence relation these
three weak equations imply lookup◦ update◦ v ◦ lookup◦ update ∼
lookup◦update◦v. By rule (eq3) we get update◦v◦lookup◦update ≡
update ◦ v, so that f ≡ u(0) ◦ update ◦ (v ◦ b)(1).
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Thanks to Proposition A.2, in order to study equations in the logic Lst we

may restrict our study to pure terms, accessors of the form v(0)◦lookup(1)◦〈 〉
(0)
X

and modifiers of the form u(0) ◦ lookup(1) ◦ update(2) ◦ a(1).
Point 4 in Proposition A.2 is not dual to Point 1 in Proposition 4.4

Proposition A.3. 1. For all a
(1)
1 , a

(1)
2 : X → V and u

(0)
1 , u

(0)
2 : V → Y , let

f
(2)
1 = u1◦lookup◦update◦a1 : X → Y and f

(2)
2 = u2◦lookup◦update◦

a2 : X → Y , then f1 ∼ f2 is Tst -equivalent to u1◦a1 ≡ u2 ◦a2 and f1 ≡ f2
is Tst -equivalent to {a1 ≡ a2 , u1 ◦ a1 ≡ u2 ◦ a2}.

2. For all a
(1)
1 : X → V , u

(0)
1 : V → Y and a

(1)
2 : X → Y , let f

(2)
1 =

u1 ◦ lookup ◦ update ◦ a1 : X → Y , then f1 ∼ a2 is Tst -equivalent to
u1◦a1 ≡ a2 f1 ≡ a2 is Tst -equivalent to {u1◦a1 ≡ a2 , a1 ≡ lookup◦〈 〉X}.

3. Let us assume that 〈 〉
(0)
X is an epimorphism with respect to accessors.

For all v
(0)
1 , v

(0)
2 : V → Y let a

(1)
1 = v1 ◦ lookup ◦ 〈 〉X : X → Y and

a
(1)
2 = v2 ◦ lookup ◦ 〈 〉X : X → Y . Then a1 ≡ a2 is Tst -equivalent to

v1 ≡ v2.

4. Let us assume that 〈 〉
(0)
V is an epimorphism with respect to accessors and

that there exists a pure term k
(0)
X : 1 → X. For all v

(0)
1 : V → Y and

v
(0)
2 : X → Y , let a

(1)
1 = v1 ◦ lookup ◦ 〈 〉X : X → Y . Then a1 ≡ v2 is

Tst -equivalent to {v1 ≡ v2 ◦ kX ◦ 〈 〉V , v2 ≡ v2 ◦ kX ◦ 〈 〉X}.

Proof. 1. Rule (eq2) implies that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦f1 ≡
〈 〉Y ◦f2. On the one hand, f1 ∼ f2 if and only if u1 ◦a1 ≡ u1 ◦a2: indeed,
for each i ∈ {1, 2}, by (ax) and (repl∼), since ui is pure we have fi ∼ ui◦ai.
On the other hand, let us prove that 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 if and only if
a1 ≡ a2.

• For each i ∈ {1, 2}, the accessor 〈 〉Y ◦ ui ◦ lookup : 1 → 1 satisfies
〈 〉Y ◦ ui ◦ lookup ≡ id1, so that 〈 〉Y ◦ fi ≡ update ◦ ai. Thus,
〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 if and only if update ◦ a1 ≡ update ◦ a2.

• Clearly, if a1 ≡ a2 then update ◦ a1 ≡ update ◦ a2. Conversely, if
update ◦ a1 ≡ update ◦ a2 then lookup ◦ update ◦ a1 ≡ lookup ◦
update ◦ a2, so that by (ax) and (subs∼) we get a1 ∼ a2, which
means that a1 ≡ a2 because a1 and a2 are accessors.

2. Rule (eq2) implies that f1 ≡ a2 if and only if f1 ∼ a2 and 〈 〉Y ◦ f1 ≡
〈 〉Y ◦ a2. On the one hand, f1 ∼ a2 if and only if u1 ◦ a1 ≡ a2: indeed, by
(ax) and (repl∼), since u1 is pure we have f1 ∼ u1◦a1. On the other hand,
let us prove that 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ a2 if and only if a1 ≡ lookup ◦ 〈 〉X , in
two steps.
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• Since 〈 〉Y ◦a2 : X → 1 is an accessor, we have 〈 〉Y ◦a2 ≡ 〈 〉X . Since
〈 〉Y ◦ f1 = 〈 〉Y ◦ u1 ◦ lookup ◦ update ◦ a1 with 〈 〉Y ◦ u1 ◦ lookup :
1 → 1 an accessor, we have 〈 〉Y ◦ u1 ◦ lookup ≡ id1 and thus we get
〈 〉Y ◦ f1 ≡ update ◦ a1. Thus, 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ a2 if and only if
update ◦ a1 ≡ 〈 〉X .

• If update ◦ a1 ≡ 〈 〉X then lookup ◦ update ◦ a1 ≡ lookup ◦ 〈 〉X ,
by (ax) and (subs∼) this implies a1 ∼ lookup ◦ 〈 〉X , which is a
strong equality because both members are accessors. Conversely, if
a1 ≡ lookup ◦ 〈 〉X then update ◦ a1 ≡ update ◦ lookup ◦ 〈 〉X ,
by Point 1 in Lemma A.1 this implies update ◦ a1 ≡ 〈 〉X . Thus,
update ◦ a1 ≡ 〈 〉X if and only if a1 ≡ lookup ◦ 〈 〉X .

3. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if v1◦lookup◦
〈 〉X ≡ v2 ◦ lookup ◦ 〈 〉X , since 〈 〉X is an epimorphism with respect to
accessors we get v1 ◦ lookup ≡ v2 ◦ lookup. By Point 3 in Lemma A.1,
this means that v1 ≡ v2.

4. Let w
(0)
2 = v2 ◦ kX : 1 → Y . Let us assume that v1 ≡ w2 ◦ 〈 〉V and

v2 ≡ w2◦〈 〉X . Equation v1 ≡ w2◦〈 〉V implies a1 ≡ w2◦〈 〉V ◦lookup◦〈 〉X .
Since 〈 〉V ◦ lookup ≡ id1 we get a1 ≡ w2 ◦ 〈 〉X . Then, equation v2 ≡
w2 ◦ 〈 〉X implies a1 ≡ v2. Conversely, let us assume that a1 ≡ v2, which
means that v1 ◦ lookup ◦ 〈 〉X ≡ v2. Then v1 ◦ lookup ◦ 〈 〉X ◦ kX ◦ 〈 〉V ≡
v2 ◦kX ◦ 〈 〉V , which reduces to v1 ◦lookup◦ 〈 〉V ≡ w2 ◦ 〈 〉V . Since 〈 〉V is
an epimorphism with respect to accessors we get v1 ◦ lookup ≡ w2, which
means that v1 ≡ w2 ◦ 〈 〉V by Point 4 in Lemma A.1. Now let us come
back to equation v1 ◦ lookup ◦ 〈 〉X ≡ v2; since v1 ≡ w2 ◦ 〈 〉V , it yields
w2 ◦ 〈 〉V ◦ lookup ◦ 〈 〉X ≡ v2, so that w2 ◦ 〈 〉X ≡ v2.

The assumption for Theorem A.6 comes form the fact that the existence

of a pure term k
(0)
X : 1 → X , which is used in Point 4 of Proposition A.3,

is incompatible with the intended model of states if X is interpreted as the
empty set. The assumption for Theorem A.6 is not dual to the assumption for
Theorem 4.7.

Definition A.4. A type X is inhabited if there exists a pure term k
(0)
X : 1 → X .

A type 0 is empty if for each type Y there is a pure term [ ]
(0)
Y : 0 → Y , and

every term f : 0 → Y is such that f ≡ [ ]Y .

Remark A.5. WhenX is inhabited then for any k
(0)
X : 1 → X we have 〈 〉X◦kX ≡

id1, so that 〈 〉X is a split epimorphism; it follows that 〈 〉X is an epimorphism
with respect to all terms, and especially with respect to accessors.

Theorem A.6. If every non-empty type is inhabited and if V is non-empty,
the theory of states Tst is Hilbert-Post complete with respect to the pure sublogic

L
(0)
st of Lst .
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Proof. Using Corollary 2.10, the proof relies upon Propositions A.2 and A.3.
it follows the same lines as the proofs of Theorems 3.5 and 4.7. The theory

Tst is consistent: it cannot be proved that update(2) ≡ 〈 〉
(0)
V because the logic

Lst is sound with respect to its intended model and the interpretation of this
equation in the intended model is false as sson as V has at least two elements:
indeed, for each state s and each x ∈ V , lookup ◦ update(x, s) = x because
of (ax) while lookup ◦ 〈 〉V (x, s) = lookup(s) does not depend on x. Let us
consider an equation (strong or weak) between terms with domain X in Lst ; we
distinguish two cases, whether X is empty or not. When X is empty, then all
terms from X to Y are strongly equivalent to [ ]Y , so that the given equation
is Tst -equivalent to the empty set of equations between pure terms. When X

is non-empty then it is inhabited, thus by Remark A.5 〈 〉X is an epimorphism
with respect to accessors. Thus, Propositions A.2 and A.3 prove that the given
equation is Tst -equivalent to a finite set of equations between pure terms.

Remark A.7. This can be generalized to an arbitrary number of locations. The
logic Lst and the theory Tst have to be generalized as in [5], then Proposition A.2
has to be adapted using the basic properties of lookup and update, as stated
in [17]; these properties can be deduced from the decorated theory for states,
as proved in [9]. The rest of the proof generalizes accordingly, as in [16].
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