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Relative Hilbert-Post completeness for exceptions

Jean-Guillaume Dumas∗ Dominique Duval∗ Burak Ekici∗

Damien Pous† Jean-Claude Reynaud‡

June 5, 2015

Abstract

In this paper, first we introduce a relative notion of syntactic complete-
ness; Then we prove that adding exceptions to a programming language
can be done in such a way that the completeness of the language is not
made worse. These proofs are formalized in a logical system which is close
to the usual syntax for exceptions, and they have been checked with the
proof assistant Coq.

1 Introduction

In computer science, an exception is an abnormal event occurring during the
execution of a program. A mechanism for handling exceptions consists of two
parts: an exception is raised when an abnormal event occurs, and it can be
handled later, by switching the execution to a specific subprogram. Such a
mechanism is very helpful, but it is difficult for programmers to reason about
it. A difficulty for reasoning about programs involving exceptions is that they
are computational effects, in the sense that their syntax does not look like their
interpretation: typically (the interpretation of a type X is also denoted X) a
piece of program with arguments in X that returns a value in Y is interpreted as
a function from X+E to Y +E where E is the set of exceptions. Reasoning with
f : X → Y is close to the syntax, but it is error-prone because it is not sound
with respect to the semantics. On the contrary, reasoning with f : X + E →
Y + E is sound but it looses most of the interest of the exception mechanism.
Another difficulty for reasoning about programs involving exceptions is that the
handling mechanism is encapsulated in a try-catch block, while the behaviour
of this mechanism is easier to explain in two parts (see for instance [10, Ch. 14]
for Java or [3, §15] for C++): the catch part may recover from exceptions, so
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that its interpretation may be any f : X + E → Y + E, but the try-catch

block must propagate exceptions, so that its interpretation is determined by
some f : X → Y + E.

In [8] we defined a logical system for reasoning about states and exceptions
and we used it for getting certified proofs of properties of programs in com-
puter algebra, with an application to exact linear algebra. This logical system
is called the decorated logic for states and exceptions. Here we focus on excep-
tions, and we consider states in Appendix C. The decorated logic for exceptions
deals with f : X → Y , without any mention of E, however it is sound thanks
to a classification of the terms and the equations. Terms are classified, as in a
programming language, according to the way they may interact with exceptions:
a term either has no interaction with exceptions (it is “pure”), or it may raise
exceptions and must propagate them, or it is allowed to catch exceptions (which
may occur only inside the catch part of a try-catch block). The classification
of equations follows a line that was introduced in [4]: besides the usual “strong”
equations, interpreted as equalities of functions, in the decorated logic for ex-
ceptions there are also “weak” equations, interpreted as equalities of functions
on non-exceptional arguments. This logic has been built so as to be sound,
but little was known about its completeness. In this paper we prove a novel
completeness result: the decorated logic for exceptions is relatively Hilbert-Post
complete, which means that adding exceptions to a programming language can
be done in such a way that the completeness of the language is not worsed.
For this purpose, we first define and study the novel notion of relative Hilbert-
Post completeness, which seems to be a relevant notion for the completeness
of various computational effects: for instance, in Appendix C we prove that
the decorated logic for global states is also relatively Hilbert-Post complete. In
addition, we prove that this notion is preserved when combining effects.

The usual (“absolute”) Hilbert-Post completeness, also called Post complete-
ness, is a syntactic notion of completeness which does not use any notion of
negation, so that it is well-suited for equational logic. In a given logic L, we
call theory a set of sentences which is deductively closed: everything you can
derive from it (using the rules of L) is already in it. A theory is (Hilbert-Post)
consistent if it does not contain all sentences, and it is (Hilbert-Post) complete if
it is consistent and if any sentence which is added to it generates an inconsistent
theory [20, Def. 4]. In Section 2 we introduce a relative notion of Hilbert-Post
completeness in a logic L with respect to a sublogic L0. Then in Section 3
we prove the relative Hilbert-Post completeness of a theory of exceptions based
on the usual throw and try-catch statement constructors. We go further in
Section 4 by establishing the relative Hilbert-Post completeness of a core theory
for exceptions with individualized TRY and CATCH statement constructors, which
is useful for expressing the behaviour of the try-catch blocks. All our com-
pleteness proofs have been verified with the Coq proof assistant: this is shortly
described in Section 5. Actually, for a human prover, proofs in decorated logics
require some care: they look very much like familiar equational proofs, but the
application of a rule may be subject to restrictions on the decoration of the
premisses of the rule. This is one of our motivations for writing Coq code for
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checking these proofs. In Appendices A and B we give the detailed proofs of the
completeness theorems stated in Sections 3 and 4, respectively. In Appendix C
we also prove that the decorated theory of global states is relatively Hilbert-Post
complete. Using [6], we get this result very easily by dualizing the proof for the
core theory of exceptions from Section 4 and Appendix B; this proof has also
been checked in Coq. There is a subtle point, however, in this dualization pro-
cess: although the decorated logic for states is perfectly dual to the decorated
logic for the core theory of exceptions, they are interpreted in the category of
sets, which is not self-dual. Finally, some additional information about Coq
implementation is given in Appendix D.

As mentioned above, a major difficulty for reasoning about programs involv-
ing exceptions, and more generally computational effects, is that their syntax
does not look like their interpretation: typically, a piece of program from X to
Y is not interpreted as a function from X to Y , because of the effects. The
best-known algebraic approach of this problem has been initiated by Moggi;
from this point of view, an effect is a monad T , and the interpretation of a pro-
gram from X to Y is a function from X to T (Y ) [13]: typically, for exceptions,
T (Y ) = Y + E. Other algebraic approaches include effect systems [12], Law-
vere theories [17], algebraic handlers [18], comonads [21, 15], dynamic logic [14],
among others. Some completeness results have been obtained, for instance for
(global) states [16] and for local states [19]. The aim of these approaches is
to extend functional languages with tools for programming and proving side-
effecting programs; implementations include Haskell [2], Idris [11], Eff [1], while
Ynot [22] is a Coq library for writing and verifying imperative programs. Our
aim is to build a logical system for proving properties of some families of pro-
grams written in widely used non-functional languages like Java or C++. Thus,
the syntax of our logic is kept close to the syntax of these languages, which is
made possible by starting from a simple syntax without effects, and by adding
decorations, which often correspond to keywords of the languages, for taking
the effects into account.

2 Relative Hilbert-Post completeness

Each logic in this paper comes with a language, which is a set of formulas,
and with deduction rules. Deduction rules are used for deriving (or generating)
theorems, which are some formulas, from some chosen formulas called axioms. A
theory T is a set of theorems which is deductively closed, in the sense that every
theorem which can be derived from T using the rules of the logic is already in
T . We describe a set-theoretic intended model for each logic we introduce; the
rules of the logic are designed so as to be sound with respect to this intended
model. Given a logic L, the theories of L are partially ordered by inclusion.
There is a maximal theory Tmax , where all formulas are theorems. There is a
minimal theory Tmin , which is generated by the empty set of axioms. For all
theories T and T ′, we denote by T + T ′ the theory generated from T and T ′.

Example 2.1. With this point of view there are many different equational logics,
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with the same deduction rules but with different languages, depending on the
definition of terms. In an equational logic, formulas are pairs of parallel terms
(f, g) : X → Y and theorems are equations f ≡ g : X → Y . Typically, the
language of an equational logic may be defined from a signature (made of sorts
and operations). The deduction rules are such that the equations in a theory
form a congruence, i.e., an equivalence relation compatible with the structure of
the terms. For instance, we may consider the logic “of naturals” Lnat , with its
language generated from the signature made of a sort N , a constant 0 : 1 → N

and an operation s : N → N . For this logic, the minimal theory is the theory “of
naturals” Tnat , the maximal theory is such that sk ≡ sℓ and sk ◦0 ≡ sℓ ◦0 for all
natural numbers k and ℓ, and (for instance) the theory “of naturals modulo 6”
Tmod6 can be generated from the equation s6 ≡ idN . We consider models of
equational logics in sets: each type X is interpreted as a set (still denoted X),
which is a singleton when X is 1, each term f : X → Y as a function from X

to Y (still denoted f : X → Y ), and each equation as an equality of functions.

Definition 2.2. Given a logic L and its maximal theory Tmax , a theory T is
consistent if T 6= Tmax , and it is Hilbert-Post complete if it is consistent and if
any theory containing T coincides with Tmax or with T .

Example 2.3. In Example 2.1 we considered two theories for the logic Lnat : the
theory “of naturals” Tnat and the theory “of naturals modulo 6” Tmod6. Since
both are consistent and Tmod6 contains Tnat , the theory Tnat is not Hilbert-
Post complete. The unique Hilbert-Post complete theory for Lnat is made of all
equations but s ≡ idN , it can be generated from the axioms s◦0≡0 and s◦s≡s.

If a logic L is an extension of a sublogic L0, each theory T0 of L0 generates
a theory F (T0) of L. Conversely, each theory T of L determines a theory
G(T ) of L0, made of the theorems of T which are formulas of L0, so that
G(Tmax ) = Tmax ,0. The functions F and G are monotone and they form a
Galois connection, denoted F ⊣ G: for each theory T of L and each theory T0 of
L0 we have F (T0) ⊆ T if and only if T0 ⊆ G(T ). It follows that T0 ⊆ G(F (T0))
and F (G(T )) ⊆ T . Until the end of Section 2, we consider:

a logic L0, an extension L of L0, and the associated Galois connection
F ⊣ G.

Definition 2.4. A theory T ′ of L is L0-derivable from a theory T of L if
T ′ = T + F (T ′

0) for some theory T ′

0 of L0, and it is (relatively) Hilbert-Post
complete with respect to L0 if it is consistent and if any theory of L containing
T is L0-derivable from T .

Each theory T is L0-derivable from itself, because T = T +F (Tmin,0), where
Tmin,0 is the minimal theory of L0. In addition, Theorem 2.6 shows that relative
completeness lifts the usual “absolute” completeness from L0 to L, and Propo-
sition 2.7 proves that relative completeness is well-suited to the combination of
effects.

4



Lemma 2.5. For each theory T of L, a theory T ′ of L is L0-derivable from
T if and only if T ′ = T + F (G(T ′)). As a special case, Tmax is L0-derivable
from T if and only if Tmax = T + F (Tmax ,0). A theory T of L is Hilbert-Post
complete with respect to L0 if and only if it is consistent and every theory T ′

of L containing T is such that T ′ = T + F (G(T ′)).

Proof. Clearly, if T ′ = T + F (G(T ′)) then T ′ is L0-derivable from T . So,
let T ′

0 be a theory of L0 such that T ′ = T + F (T ′

0), and let us prove that
T ′ = T + F (G(T ′)). For each theory T ′ we know that F (G(T ′)) ⊆ T ′; since
here T ⊆ T ′ we get T +F (G(T ′)) ⊆ T ′. Conversely, for each theory T ′

0 we know
that T ′

0 ⊆ G(F (T ′

0)) and that G(F (T ′

0)) ⊆ G(T ) + G(F (T ′

0)) ⊆ G(T + F (T ′

0)),
so that T ′

0 ⊆ G(T + F (T ′

0)); since here T ′ = T + F (T ′

0) we get first T ′

0 ⊆ G(T ′)
and then T ′ ⊆ T + F (G(T ′)). Then, the result for Tmax comes from the fact
that G(Tmax ) = Tmax ,0. The last point follows immediately.

Theorem 2.6. Let T0 be a theory of L0 and T = F (T0). If T0 is Hilbert-Post
complete (in L0) and T is Hilbert-Post complete with respect to L0, then T is
Hilbert-Post complete (in L).

Proof. Since T is complete with respect to L0, it is consistent. Since T = F (T0)
we have T0 ⊆ G(T ). Let T ′ be a theory such that T ⊆ T ′. Since T is complete
with respect to L0, by Lemma 2.5 we have T ′ = T + F (T ′

0) where T ′

0 = G(T ′).
Since T ⊆ T ′, T0 ⊆ G(T ) and T ′

0 = G(T ′), we get T0 ⊆ T ′

0. Thus, since T0 is
complete, either T ′

0 = T0 or T ′

0 = Tmax ,0; let us check that then either T ′ = T or
T ′ = Tmax . If T ′

0 = T0 then F (T ′

0) = F (T0) = T , so that T ′ = T + F (T ′

0) = T .
If T ′

0 = Tmax ,0 then F (T ′

0) = F (Tmax ,0); since T is complete with respect to
L0, the theory Tmax is L0-derivable from T , which implies (by Lemma 2.5) that
Tmax = T + F (Tmax ,0) = T ′.

Proposition 2.7. Let L1 be an intermediate logic between L0 and L, let F1 ⊣ G1

and F2 ⊣ G2 be the Galois connections associated to the extensions L1 of L0

and L of L1, respectively. Let T1 = F1(T0). If T1 is Hilbert-Post complete
with respect to L0 and T is Hilbert-Post complete with respect to L1 then T is
Hilbert-Post complete with respect to L0.

Proof. This is an easy consequence of the fact that F = F2 ◦ F1.

Corollary 2.10 provides a characterization of relative Hilbert-Post complete-
ness which is used in the next Sections and in the Coq implementation.

Definition 2.8. For each set E of formulas let Th(E) be the theory generated
by E; and when E = {e} let Th(e) = Th({e}). Then two sets E1, E2 of formulas
are T -equivalent if T + Th(E1) = T + Th(E2) a formula e of L is L0-derivable
from a theory T of L if {e} is T -equivalent to E0 for some set E0 of formulas
of L0.

Proposition 2.9. Let T be a theory of L. Each theory T ′ of L containing T is
L0-derivable from T if and only if each formula e in L is L0-derivable from T .
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Proof. Let us assume that each theory T ′ of L containing T is L0-derivable from
T . Let e be a formula in L, let T ′ = T +Th(e), and let T ′

0 be a theory of L0 such
that T ′ = T + F (T ′

0). The definition of Th(−) is such that Th(T ′

0) = F (T ′

0), so
that we get T +Th(e) = T +Th(E0) where E0 = T ′

0. Conversely, let us assume
that each formula e in L is L0-derivable from T . Let T ′ be a theory containing
T . Let T ′′ = T + F (G(T ′)), so that T ⊆ T ′′ ⊆ T ′ (because F (G(T ′)) ⊆ T ′ for
any T ′). Let us consider an arbitrary formula e in T ′, by assumption there is
a set E0 of formulas of L0 such that T + Th(e) = T + Th(E0). Since e is in
T ′ and T ⊆ T ′ we have T + Th(e) ⊆ T ′, so that T + Th(E0) ⊆ T ′. It follows
that E0 is a set of theorems of T ′ which are formulas of L0, which means that
E0 ⊆ G(T ′), and consequently Th(E0) ⊆ F (G(T ′)), so that T + Th(E0) ⊆ T ′′.
Since T + Th(e) = T + Th(E0) we get e ∈ T ′′. We have proved that T ′ = T ′′,
so that T ′ is L0-derivable from T .

Corollary 2.10. A theory T of L is Hilbert-Post complete with respect to L0

if and only if it is consistent and for each formula e of L there is a set E0 of
formulas of L0 such that {e} is T -equivalent to E0.

3 Completeness for exceptions

Exception handling is provided by most modern programming languages. It
allows to deal with anomalous or exceptional events which require special pro-
cessing. E.g., one can easily and simultaneously compute dynamic evaluation
in exact linear algebra using exceptions [8]. There, we proposed to deal with
exceptions as a decorated effect: a term f : X → Y is not interpreted as a
function f : X → Y unless it is pure. A term which may raise an exception is
instead interpreted as a function f : X → Y +E where “+” is the disjoint union
operator and E is the set of exceptions. In this section, we prove the relative
Hilbert-Post completeness of the decorated theory of exceptions in Theorem 3.2.

As in [8], decorated logics for exceptions are obtained from equational logics
by classifying terms. Terms are classified as pure terms or propagators, which is
expressed by adding a decoration or superscript, respectively (0) or (1); decora-
tion and type information about terms may be omitted when they are clear from
the context or when they do not matter. All terms must propagate exceptions,
and propagators are allowed to raise an exception while pure terms are not.
The fact of catching exceptions is hidden: it is embedded into the try-catch

construction, as explained below. In Section 4 we consider an implementation of
exceptions by a language where some terms are catchers, which means that they
may recover from an exception, i.e., they do not have to propagate exceptions.

Let us describe informally a decorated theory for exceptions and its intended
model. Each type X is interpreted as a set, still denoted X . The intended
model is described with respect to a set E called the set of exceptions, which
does not appear in the syntax. A pure term u(0) : X → Y is interpreted as a
function u : X → Y and a propagator a(1) : X → Y as a function a : X →
Y +E; equations are interpreted as equalities of functions. There is an obvious
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conversion from pure terms to propagators, which allow to consider all terms
as propagators whenever needed; if a propagator a(1) : X → Y “is” a pure
term, in the sense that it has been obtained by conversion from a pure term,
then the function a : X → Y + E is such that a(x) ∈ Y for each x ∈ X .
The composition of propagators is the Kleisli composition associated to the
monad X +E, which simply means that exceptions are always propagated: the
interpretation of (b◦a)(1) : X → Z where a(1) : X → Y and b(1) : Y → Z is such
that (b ◦ a)(x) = b(a(x)) when a(x) is not an exception and (b ◦ a)(x) = e when
a(x) is the exception e. Exceptions may be classified according to their name, as
in [8]. Here, in order to focus on the main features of the proof of completeness,
we assume that there is only one exception name. Each exception is built by
encapsulating a parameter. Let P denote the type of parameters for exceptions.

The fundamental operations for raising exceptions are the propagators throw
(1)
Y :

P → Y for each type Y : this operation throws an exception with a parameter
p of type P and pretends that this exception has type Y . The interpretation

of the term throw
(1)
Y : P → Y is a function throwY : P → Y + E such that

throwY (p) ∈ E for each p ∈ P . The fundamental operations for handling
exceptions are the propagators (try(a)catch(b))(1) : X → Y for each terms
a : X → Y and b : P → Y : this operation first runs a until an exception with
parameter p is raised (if any), then, if such an exception has been raised, it runs
b(p). The interpretation of the term (try(a)catch(b))(1) : X → Y is a function
try(a)catch(b) : X → Y + E such that (try(a)catch(b))(x) = a(x) when a

is pure and (try(a)catch(b))(x) = b(p) when a(x) throws an exception with
parameter p.

More precisely, the decorated logic for exceptions Lexc is defined in Fig. 1

(next page). The pure sublogic L
(0)
exc, for dealing with pure terms, may be any

logic Leq which extends a monadic equational logic. A monadic equational logic
is made of types, terms and operations, where all operations are unary and

terms are simply paths. For instance, L
(0)
exc may be an equational logic, with

n-ary operations for arbitrary n. However, the rules for Lexc do not allow to
form tuples of decorated terms, so that the term op(f, g) (where op is a pure
operation of arity 2) is not well-formed, unless f and g are pure. It is well known
that there is no “canonical” interpretation for such terms: what should be done
when f and g return distinct exceptions? however, the interpretation where f

is runned before g can be formalized thanks to strong monads [13] or sequential
products [7]. In this paper, in order to focus on completeness issues, we avoid

such situations. This pure sublogic L
(0)
exc is extended to form the corresponding

decorated logic for exceptions Lexc by applying the rules in Fig. 1, with the
following intended meanings:

• (propagate) for each a(1) : X → Y , a ◦ throwX ≡ throwY : exceptions are
always propagated.

• (recover) throwY is a monomorphism with respect to pure terms, for each
Y : the parameter used for throwing an exception may be recovered.
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• (try0) for each u(0) : X → Y and b(1) : P → Y , try(u)catch(b) ≡ u: pure
code inside the try part never triggers the code inside the catch part.

• (try1) for each u(0) : X → P and b(1) : P → Y , try(throwY ◦u)catch(b) ≡
b ◦ u: code inside the catch part is executed as soon as an exception is
thrown inside the try part.

Monadic equational logic Leq :

Types: X,Y, .... Terms: f : X → Y, ... closed by composition:
fk ◦ · · · ◦ f1 : X0 → Xk for each (fi : Xi−1 → Xi)1≤i≤k

with the empty path (when k = 0) denoted idX : X → X for each X

Rules: (equiv)
f

f ≡ f

f ≡ g

g ≡ f

f ≡ g g ≡ h

f ≡ h

(subs)
f : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f ≡ g2 ◦ f
(repl)

g1 ≡ g2 : X → Y h : Y → Z

h ◦ g1 ≡ h ◦ g2
Decorated logic for exceptions Lexc:

Pure part: some logic L
(0)
exc extending Leq , with a distinguished type P

Decorated terms: throw
(1)
Y : P → Y for each type Y ,

(try(a)catch(b))(1) : X → Y for each a(1) : X → Y and b(1) : P → Y , and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

conversions from f (0) : X → Y to f (1) : X → Y

Rules:
(equiv), (subs), (repl) for all decorations

(propagate)
a(1) : X → Y

a ◦ throwX ≡ throwY

(recover)
u
(0)
1 , u

(0)
2 : X → P throwY ◦ u1 ≡ throwY ◦ u2

u1 ≡ u2

(try0)
u(0) :X → Y b(1) :P → Y

try(u)catch(b) ≡ u

(try1)
u(0) :X → P b(1) :P → Y

try(throwY ◦ u)catch(b) ≡ b ◦ u

Figure 1: Decorated logic for exceptions

The theory of exceptions Texc is the theory of Lexc generated from some

chosen theory T (0) of L
(0)
exc; with the notations of Section 2, Texc = F (T (0)).

The soundness of the intended model follows: see [8, §5.1] and [6], which are
based on the description of exceptions in Java [10, Ch. 14] or in C++ [3, §15].
In order to prove the completeness of the decorated theory for exceptions under
suitable assumptions, we follow a classical method: we first determine canonical
forms and then we study the equations between terms in canonical forms: see
Appendix A.

In order to express the distinction between exceptions and non-exceptions
we need some kind of “booleans”. In this equational setting without negations,
this is obtained by introducing a type B with two constants true and false

such that the equation true ≡ false corresponds to the logical contradiction
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’⊥’, in the sense that it makes everything collapse: the theory generated by the
equation true ≡ false is the maximal theory.

Definition 3.1. A type 1 is a unit if for each type X there is a pure term

〈 〉
(0)
X : X → 1 and every pure term u(0) : X → 1 is such that u ≡ 〈 〉X . Then, a

type B is a boolean type if there are pure terms true(0), false(0) : 1 → B such
that whenever true ≡ false we have a1 ≡ a2 for each pair of parallel terms
(a1, a2).

Theorem 3.2. If there is a unit type 1 and a boolean type B in the sense of

Definition 3.1 and if 〈 〉
(0)
X is an epimorphism with respect to pure terms for

each non-empty type X, the theory of exceptions Texc is Hilbert-Post complete

with respect to the pure sublogic L
(0)
exc of Lexc.

4 Completeness of the core language for excep-

tions

In this section, first following [8] we describe an implementation of the language
for exceptions from Section 3 using a core language, then we state the relative
Hilbert-Post completeness of this core language in Theorem 4.2; the proof of
this result can be found in Appendix B.

Let us call the usual language for exceptions with throw and try-catch, as
described in Section 3, the programmers’ language for exceptions. The docu-
mentation on the behaviour of exceptions in many languages (for instance in
java [10]) makes use of a core language for exceptions which is studied in [8].
In this language, the empty type plays an important role and the fundamental
operations for dealing with exceptions are tag(1) : P → 0 for encapsulating a
parameter inside an exception and untag(2) : 0 → P for recovering its parameter
from any given exception. The new decoration (2) corresponds to catchers : a
catcher may recover from an exception, it does not have to propagate it. More-
over, the equations also are decorated: in addition to the equations ’≡’ as in
Section 3, now called strong equations, there are weak equations denoted ’∼’.

As in Section 3, a set E of exceptions is chosen; the interpretation is ex-
tended as follows: each catcher f (2) : X → Y is interpreted as a function
f : X + E → Y + E, and there is an obvious conversion from propagators
to catchers; the interpretation of the composition of catchers is straightfor-
ward, and it is compatible with the Kleisli composition for propagators. Weak
and strong equations coincide on propagators, where they are interpreted as
equalities, but they differ on catchers: f (2) ∼ g(2) : X → Y means that the
functions f, g : X + E → Y + E coincide on X , but maybe not on E. The
interpretation of tag(1) : P → 0 is a function tag : P → E and the inter-
pretation of untag(2) : 0 → P is the function untag : E → P + E such that
untag(tag(p)) = p for each parameter p. Thus, the fundamental axiom relating
tag(1) and untag(2) is the weak equation untag ◦ tag ∼ idP .

9



Monadic equational logic with empty type Leq,0:

Types and terms: as for monadic equational logic, plus
an empty type 0 and a term [ ]Y : 0 → Y for each Y

Rules: as for monadic equational logic, plus (empty)
f : 0 → Y

f ≡ [ ]Y
Decorated logic for the core language for exceptions Lexc:

Pure part: some logic L
(0)
exc-core extending Leq,0, with a distinguished type P

Decorated terms: tag(1) : P → 0, untag(2) : 0 → P , and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:
(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (repl∼) for all decorations, (subs∼) only when h is pure

(empty∼)
f : 0 → X

f ∼ [ ]X
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

untag ◦ tag ∼ idP

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 f1 ◦ [ ]X ≡ f2 ◦ [ ]X

f1 ≡ f2

(eq3)
f1, f2 : 0 → X f1 ◦ tag ∼ f2 ◦ tag

f1 ≡ f2

Figure 2: Decorated logic for the core language for exceptions

More precisely, the decorated logic for the core language for exceptions Lexc-core

is defined in Fig. 2. Its pure sublogic L
(0)
exc-core may be any logic Leq,0 which ex-

tends a monadic equational logic with an empty type. There is an obvious con-
version from strong to weak equations (≡-to-∼), and in addition strong and weak

equations coincide on propagators by rule (eq1). Two catchers f
(2)
1 , f

(2)
2 : X →

Y behave in the same way on exceptions if and only if f1◦[ ]X ≡ f2◦[ ]X : 0 → Y ,
where [ ]X : 0 → X builds a term of type X from any exception. Then rule (eq2)
expresses the fact that weak and strong equations are related by the property
that f1 ≡ f2 if and only if f1 ∼ f2 and f1 ◦ [ ]X ≡ f2 ◦ [ ]X . This can also
be expressed as a pair of weak equations: f1 ≡ f2 if and only if f1 ∼ f2 and
f1 ◦ [ ]X ◦ tag ∼ f2 ◦ [ ]X ◦ tag by rule (eq3). The core theory of exceptions
Texc-core is the theory of Lexc-core generated from some chosen theory T (0) of

L
(0)
exc-core .
The operation untag in the core language can be used for decomposing the

try-catch construction in the programmer’s language in two steps: a step for
catching the exception, which is nested into a second step inside the try-catch
block: this corresponds to an implementation of the programmer’s language
by the core language, as in [8], which is reminded below; then Proposition 4.1
proves the correction of this implementation. In view of this implementation we
extend the core language with:

• for each b(1) : P → Y , a catcher (CATCH(b))(2) : Y → Y such that

10



CATCH(b) ∼ idY and CATCH(b) ◦ [ ]Y ≡ b ◦ untag: if the argument of
CATCH(b) is non-exceptional then nothing is done, otherwise the parame-
ter p of the exception is recovered and b(p) is runned.

• for each a(1) : X → Y and k(2) : Y → Y , a propagator (TRY(a, k))(1) :
X → Y such that TRY(a, k) ∼ k ◦ a: thus TRY(a, k) behaves as k ◦ a on
non-exceptional arguments, but it does always propagate exceptions.

Then, an implementation of the programmer’s language of exceptions by the

core language is easily obtained: for each type Y , throw
(1)
Y =[ ]Y ◦tag : P → Y .

and for each a(1) :X→Y , b(1) :P →Y , (try(a)catch(b))(1) = TRY(a, CATCH(b)) :
X→Y . This implementation is correct: see Appendix B for a proof of Propo-
sition 4.1.

Proposition 4.1. If the pure term [ ]Y : 0 → Y is a monomorphism with respect
to propagators for each type Y , the above implementation of the programmers’
language for exceptions by the core language is correct.

Theorem 4.2 (with proof in Appendix B) states that the core decorated the-
ory for exceptions is relatively Hilbert-Post complete, under suitable assump-
tions.

Theorem 4.2. If there is a unit type and a boolean type in the sense of Def. 3.1,

if [ ]
(0)
Y is a mono with respect to propagators and if 〈 〉

(0)
Y is an epi with respect

to pure terms for each non-empty type Y , the core theory of exceptions Texc-core

is Hilbert-Post complete with respect to the pure sublogic L
(0)
exc-core of Lexc-core.

5 Verification of Hilbert-Post Completeness in

Coq

All the statements of Sections 3 and 4 have been checked in Coq. The proofs can
be found in https://forge.imag.fr/frs/download.php/662/hp-0.4.tar.gz,
as well as an almost dual proof for the completeness of the state. They share
the same framework, defined in [9]:

1. the terms of each logic are inductively defined through the dependent type
named term which builds a new Type out of two input Types. For instance,
term Y X is the Type of all terms of the form f : X → Y;

2. the decorations are enumerated: pure and propagator for both languages,
and catcher for the core language;

3. decorations are inductively assigned to the terms via the dependent type
called is. The latter builds a proposition (a Prop instance in Coq) out of a
term and a decoration. Accordingly, is pure (id X) is a Prop instance;

4. for the core language, we state the rules with respect to weak and strong
equalities by defining them in a mutually inductive way.
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The completeness proof for the exceptions core language is 950 SLOC in
Coq where it is 460 SLOC in LATEX. Full certification runs in 6.745s on a Intel
i7-3630QM @2.40GHz using the Coq Proof Assistant, v. 8.4pl3. Below table
details the proof lengths and timings for each library.

Proof lengths & Benchmarks
package source length length Coq cert. time

in Coq in LATEX
exc cl-hp HPCompleteCoq.v 40 KB 15 KB 6.745 sec.
exc pl-hp HPCompleteCoq.v 8 KB 6 KB 1.704 sec.
exc impl Proofs.v 4 KB 2 KB 1.696 sec.
st-hp HPCompleteCoq.v 48 KB 15 KB 7.183 sec.

6 Future work

This paper is a first step towards the proof of completeness of decorated logics
for computer languages. It has to be extended in several directions: adding basic
features to the language (arity, conditionals, loops, . . . ), proving completeness
of the decorated approach for other effects (not only states and exceptions); the
combination of effects should easily follow, thanks to Proposition 2.7.
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A Completeness for exceptions: proofs

This Appendix contains the proof of Theorem 3.2 in Section 3.

Proposition A.1. For each a(1) :X→Y , either there is a pure term u(0) :X→Y

such that a≡u or there is a pure term u(0) :X→P such that a≡throwY ◦u.

Proof. The proof proceeds by structural induction. If a is pure the result is
obvious, otherwise a can be written in a unique way as a = b ◦ op ◦ v where v is
pure, op is either throwZ for some Z or try(c)catch(d) for some c and d, and
b is the remaining part of a. If a = b(1) ◦ throwZ ◦ v(0), then by (propagate)
a ≡ throwY ◦ v(0). Otherwise, a = b(1) ◦ (try(c(1))catch(d(1))) ◦ v(0), then by
induction we consider two cases.

• If c ≡ w(0) then by (try0) a ≡ b(1)◦w(0)◦v(0) and by induction we consider
two subcases: if b ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if b ≡ throwY ◦ t(0)

then a ≡ throwY ◦ (t ◦w ◦ v)(0).

• If c ≡ throwZ ◦ w(0) then by (try1) a ≡ b(1) ◦ d(1) ◦ w(0) ◦ v(0) and by
induction we consider two subcases: if b ◦ d ≡ t(0) then a ≡ (t ◦ w ◦ v)(0)

and if b ◦ d ≡ throwY ◦ t(0) then a ≡ throwY ◦ (t ◦ w ◦ v)(0).

Thanks to Proposition A.1, in order to study equations in the logic Lexc we
may restrict our study to pure terms and to propagators of the form throwY ◦ v
where v is pure.

Proposition A.2. 1. For all v
(0)
1 , v

(0)
2 : X → P let a

(1)
1 = throwY ◦v1 : X →

Y and a
(1)
2 = throwY ◦ v2 : X → Y . Then a

(1)
1 ≡ a

(1)
2 is Texc-equivalent

to v
(0)
1 ≡ v

(0)
2 .

2. Let us assume that there is a unit type 1 and a boolean type B in the sense

of Definition 3.1 and that 〈 〉
(0)
X is an epimorphism with respect to pure

terms. For all v
(0)
1 : X → P and v

(0)
2 : X → Y , let a

(1)
1 = throwY ◦ v1 :

X → Y . Then a
(1)
1 ≡ v

(0)
2 is Texc-equivalent to true(0) ≡ false(0).

Proof. 1. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if
throwY ◦ v1 ≡ throwY ◦ v2, then by rule (recover) it follows that v1 ≡ v2.

2. If true ≡ false then according to the definition of a boolean type we
have a1 ≡ v2. Conversely, if a1 ≡ v2, then true ◦ 〈 〉Y ◦ a1 ≡ true ◦
〈 〉Y ◦ v2 : X → B, where true ◦ 〈 〉Y ◦ a1 = true ◦ 〈 〉Y ◦ throwY ◦ v1 ≡
throwB ◦ v1 by rule (propagate) and true ◦ 〈 〉Y ◦ v2 ≡ true ◦ 〈 〉X , so
that we get throwB ◦ v1 ≡ true ◦ 〈 〉X . Let b = false ◦ 〈 〉P : P → B

then we get try(throwB ◦ v1)catch(b) ≡ try(true ◦ 〈 〉X)catch(b), where
try(throwB ◦ v1)catch(b) ≡ b ◦ v1 ≡ false ◦ 〈 〉P ◦ v1 ≡ false ◦ 〈 〉X by
(try1) and try(true ◦ 〈 〉X)catch(b) ≡ true ◦ 〈 〉X by (try0). Thus, we
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obtain false ◦ 〈 〉X ≡ true ◦ 〈 〉X , and since 〈 〉X is an epimorphism with
respect to pure terms this implies true ≡ false.

Remark A.3. The assumption that 〈 〉
(0)
X is an epimorphism with respect to pure

terms in Point 2 of Proposition A.2 cannot be satisfied when the interpretation
of X is the empty set. Thus, we have to handle the empty type in a specific
way. In the decorated logic for exceptions, an empty type is defined as a type

0 such that for each Y there is a pure term [ ]
(0)
Y : 0 → Y such that f ≡ [ ]Y

for each term f : 0 → Y (which may be a propagator). This definition is sound
with respect to the intended model: it means that 0 is interpreted as the empty
set.

Proof of Theorem 3.2.

Proof. Using Corollary 2.10, the proof relies upon Propositions A.1 and A.2.

The theory Texc is consistent: it cannot be proved that throw
(1)
P ≡ id

(0)
P because

the logic Lexc is sound with respect to its intended model and the interpretation
of this equation in the intended model is false: indeed, throwP (p) ∈ E for each
p ∈ P , and since P + E is a disjoint union we have throwP (p) 6= p. Now,
let us consider an equation between terms with domain X and let us prove
that it is Texc-equivalent to a set of pure equations (i.e., equations between
pure terms). We distinguish two cases, whether X is empty or not. When X

is non-empty, then 〈 〉X is an epimorphism with respect to pure terms. Thus,
Propositions A.1 and A.2 prove that the given equation is Texc-equivalent to a set
of pure equations. When X is empty, then all terms from X to Y are equivalent
to [ ]Y (see Remark A.3), so that the given equation is Texc-equivalent to the
empty set of pure equations.

B Completeness of the core language for excep-

tions: proofs

This Appendix contains the proofs which are missing from Section 4: a proof
of the correction of the implementation of the programmers’ language by the
core language for exceptions, as stated in Proposition 4.1, and a proof of the
completeness Theorem 4.2. As for the proof of Theorem 3.2, for this proof
we first determine canonical forms and then we study the equations between
terms in canonical forms. First, some easily derived properties are stated in
Lemma B.1.

Lemma B.1.

1. tag◦untag ≡ id0 (this is the fundamental strong equation for exceptions).

2. Each f (2) : 0 → 0 is such that f ∼ id0, each f (1) : 0 → Y is such that
f ≡ [ ]Y , and each f (1) : 0 → 0 is such that f ≡ id0.
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3. For all pure terms u
(0)
1 , u

(0)
2 : X → P , one has: u1 ≡ u2 is Texc-core-

equivalent to tag ◦ u1 ≡ tag ◦ u2 and also to untag ◦ tag ◦ u1 ≡ untag ◦
tag ◦ u2.

4. For all pure terms u(0) : X → P , v(0) : X → 0, one has: u ≡ [ ]P ◦ v is
Texc-core-equivalent to tag ◦ u ≡ v.

Proof. 1. By replacement in the axiom (ax) we get tag ◦ untag ◦ tag ∼ tag;
then by rule (eq3) tag ◦ untag ≡ id0.

2. Clear.

3. Implications from left to right are clear. Conversely, if untag ◦ tag ◦ u1 ≡
untag ◦ tag ◦ u2, then using the axiom (ax) and the rule (subs∼) we get
u1 ∼ u2. Since u1 and u2 are pure this means that u1 ≡ u2.

4. First, since tag ◦ [ ]P : 0 → 0 is a propagator we have tag ◦ [ ]P ≡ id0.
Now, if u ≡ [ ]P ◦ v then tag ◦ u ≡ tag ◦ [ ]P ◦ v ≡ v. Conversely, if
tag ◦ u ≡ v then tag ◦ u ≡ tag ◦ [ ]P ◦ v, and by Point 3 this means that
u ≡ [ ]P ◦ v.

Proof of Proposition 4.1.

Proof. We have to prove that the images of the four basic properties of throw
and try-catch are satisfied.

• (propagate) For each a(1) : X → Y , the rules of Lexc-core imply that
a ◦ [ ]X ≡ [ ]Y , so that a ◦ [ ]X ◦ tag ≡ [ ]Y ◦ tag.

• (recover) For each u
(0)
1 , u

(0)
2 : X → P , if [ ]Y ◦tag◦u1 ≡ [ ]Y ◦tag◦u2 since

[ ]Y is a monomorphism with respect to propagators we have tag ◦ u1 ≡
tag ◦ u2, so that, by Point 3 in Lemma B.1, we get u1 ≡ u2.

• (try0) For each u(0) : X → Y and b(1) : P → Y , we have TRY(u, CATCH(b)) ∼
CATCH(b) ◦ u and CATCH(b) ◦ u ∼ u (because CATCH(b) ∼ id and u is pure),
so that TRY(u, CATCH(b)) ∼ u; since both sides are propagators, we get
TRY(u, CATCH(b)) ≡ u.

• (try1) For each u(0) : X → P and b(1) : P → Y , we have TRY([ ]Y ◦ tag ◦
u, CATCH(b)) ∼ CATCH(b) ◦ [ ]Y ◦ tag ◦ u and CATCH(b) ◦ [ ]Y ≡ b ◦ untag
so that TRY([ ]Y ◦ tag ◦ u, CATCH(b)) ∼ b ◦ untag ◦ tag ◦ u. We have also
untag ◦ tag ◦ u ∼ u (because untag ◦ tag ∼ id and u is pure), so that
TRY([ ]Y ◦ tag ◦ u, CATCH(b)) ∼ b ◦ u; since both sides are propagators, we
get TRY([ ]Y ◦ tag ◦ u, CATCH(b)) ≡ b ◦ u.
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Proposition B.2. 1. For each propagator a(1) : X → Y , either a is pure or

there is a pure term v(0) : X → P such that a(1) ≡ [ ]
(0)
Y ◦ tag(1) ◦ v(0).

And for each propagator a(1) : X → 0 (either pure or not), there is a pure
term v(0) : X → P such that a(1) ≡ tag(1) ◦ v(0).

2. For each catcher f (2) : X → Y , either f is a propagator or there is
an propagator a(1) : P → Y and a pure term u(0) : X → P such that
f (2) ≡ a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proof. 1. If the propagator a(1) : X → Y is not pure then it contains at
least one occurrence of tag(1). Thus, it can be written in a unique way
as a = b ◦ tag ◦ v for some propagator b(1) : 0 → Y and some pure term

v(0) : X → P . Since b(1) : 0 → Y we have b(1) ≡ [ ]
(0)
Y , and the first result

follows. When X = 0, it follows that a(1) ≡ tag(1) ◦v(0). When a : X → 0

is pure, one has a ≡ tag(1) ◦ ([ ]P ◦ a)(0).

2. The proof proceeds by structural induction. If f is pure the result is
obvious, otherwise f can be written in a unique way as f = g ◦ op ◦ u

where u is pure, op is either tag or untag and g is the remaining part
of f . By induction, either g is a propagator or g ≡ b ◦ untag ◦ tag ◦ v

for some pure term v and some propagator b. So, there are four cases to
consider. (1) If op = tag and g is a propagator then f is a propagator. (2)
If op = untag and g is a propagator then by Point 1 there is a pure term w

such that u ≡ tag◦w, so that f ≡ g(1) ◦untag◦tag◦w(0). (3) If op = tag

and g ≡ b(1) ◦ untag ◦ tag ◦ v(0) then f ≡ b ◦ untag ◦ tag ◦ v ◦ tag ◦ u.
Since v : 0 → P is pure we have tag ◦ v ≡ id0, so that f ≡ b(1) ◦
untag ◦ tag ◦ u(0). (4) If op = untag and g ≡ b(1) ◦ untag ◦ tag ◦ v(0)

then f ≡ b ◦ untag ◦ tag ◦ v ◦ untag ◦ u. Since v is pure, by (ax) and
(subs∼) we have untag ◦ tag ◦ v ∼ v. Besides, by (ax) and (repl∼) we
have v ◦ untag◦ tag ∼ v and untag◦ tag◦ v ◦ untag◦ tag ∼ untag◦ tag◦
v. Since ∼ is an equivalence relation these three weak equations imply
untag ◦ tag ◦ v ◦ untag ◦ tag ∼ v ◦ untag ◦ tag. By rule (eq3) we get
untag ◦ tag ◦ v ◦ untag ≡ v ◦ untag, and by Point 1 there is a pure term
w such that u ≡ tag ◦ w, so that f ≡ (b ◦ v)(1) ◦ untag ◦ tag ◦ w(0).

Thanks to Proposition B.2, in order to study equations in the logic Lexc-core

we may restrict our study to pure terms, propagators of the form [ ]
(0)
Y ◦tag(1) ◦

v(0) and catchers of the form a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proposition B.3. 1. For all a
(1)
1 , a

(1)
2 : P → Y and u

(0)
1 , u

(0)
2 : X → P , let

f
(2)
1 = a1 ◦untag◦tag◦u1 : X → Y and f

(2)
2 = a2 ◦untag◦tag◦u2 : X →

Y , then f1 ∼ f2 is Texc-core-equivalent to a1 ◦ u1 ≡ a2 ◦ u2 and f1 ≡ f2 is
Texc-core-equivalent to {a1 ≡ a2 , a1 ◦ u1 ≡ a2 ◦ u2}.

2. For all a
(1)
1 : P → Y , u

(0)
1 : X → P and a

(1)
2 : X → Y , let f

(2)
1 = a1 ◦

untag◦tag◦u1 : X → Y , then f1 ∼ a2 is Texc-core-equivalent to a1◦u1 ≡ a2
and f1 ≡ a2 is Texc-core-equivalent to {a1 ◦ u1 ≡ a2 , a1 ≡ [ ]Y ◦ tag}.
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3. Let us assume that [ ]
(0)
Y is a monomorphism with respect to propagators.

For all v
(0)
1 , v

(0)
2 : X → P , let a

(1)
1 = [ ]Y ◦ tag ◦ v1 : X → Y and

a
(1)
2 = [ ]Y ◦ tag ◦ v2 : X → Y . Then a1 ≡ a2 is Texc-core-equivalent to

v1 ≡ v2.

4. Let us assume that there is a unit type 1 and a boolean type B, in the sense

of Definition 3.1 and that 〈 〉
(0)
Y is an epimorphism with respect to pure

terms. For all v
(0)
1 : X → P and v

(0)
2 : X → Y , let a

(1)
1 = [ ]Y ◦ tag ◦ v1 :

X → Y . Then a1 ≡ v2 is Texc-core-equivalent to true ≡ false.

Proof. 1. Rule (eq2) implies that f1 ≡ f2 if and only if f1 ∼ f2 and f1◦[ ]X ≡
f2◦[ ]X . On the one hand, f1 ∼ f2 if and only if a1◦u1 ≡ a2◦u2: indeed, for
each i ∈ {1, 2}, by (ax) and (subs∼), since ui is pure we have fi ∼ ai ◦ ui.
On the other hand, let us prove that f1 ◦ [ ]X ≡ f2 ◦ [ ]X if and only
if a1 ≡ a2. For each i ∈ {1, 2}, the propagator tag ◦ ui ◦ [ ]X : 0 → 0

satisfies tag ◦ ui ◦ [ ]X ≡ id0, so that fi ◦ [ ]X ≡ ai ◦ untag. Thus,
f1 ◦ [ ]X ≡ f2 ◦ [ ]X if and only if a1 ◦ untag ≡ a2 ◦ untag. Clearly, if
a1 ≡ a2 then a1◦untag ≡ a2◦untag. Conversely, if a1◦untag ≡ a2◦untag
then a1 ◦untag◦tag ≡ a2 ◦untag◦tag, so that by (ax) and (repl∼) we get
a1 ∼ a2, which means that a1 ≡ a2 because a1 and a2 are propagators.

2. Rule (eq2) implies that f1 ≡ a2 if and only if f1 ∼ a2 and f1 ◦ [ ]X ≡
a2 ◦ [ ]X . On the one hand, f1 ∼ a2 if and only if a1 ◦ u1 ≡ a2: indeed,
by (ax) and (subs∼), since u1 is pure we have f1 ∼ a1 ◦ u1. On the
other hand, let us prove that f1 ◦ [ ]X ≡ a2 ◦ [ ]X if and only if a1 ≡
[ ]Y ◦ tag, in two steps. Since a2 ◦ [ ]X : 0 → Y is a propagator, we
have a2 ◦ [ ]X ≡ [ ]Y . Since f1 ◦ [ ]X = a1 ◦ untag ◦ tag ◦ u1 ◦ [ ]X with
tag ◦ u1 ◦ [ ]X : 0 → 0 a propagator, we have tag ◦ u1 ◦ [ ]X ≡ id0 and
thus we get f1 ◦ [ ]X ≡ a1 ◦ untag. Thus, f1 ◦ [ ]X ≡ a2 ◦ [ ]X if and only if
a1 ◦ untag ≡ [ ]Y . If a1 ◦ untag ≡ [ ]Y then a1 ◦ untag ◦ tag ≡ [ ]Y ◦ tag,
by (ax) and (repl∼) this implies a1 ∼ [ ]Y ◦ tag, which is a strong equality
because both members are propagators. Conversely, if a1 ≡ [ ]Y ◦tag then
a1 ◦ untag ≡ [ ]Y ◦ tag ◦ untag, by Point 1 in Lemma B.1 this implies
a1 ◦ untag ≡ [ ]Y . Thus, a1 ◦ untag ≡ [ ]Y if and only if a1 ≡ [ ]Y ◦ tag.

3. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if [ ]Y ◦
tag ◦ v1 ≡ [ ]Y ◦ tag ◦ v2, since [ ]Y is a monomorphism with respect to
propagators we get tag ◦ v1 ≡ tag ◦ v2. By Point 3 in Lemma B.1, this
means that v1 ≡ v2.

4. If true ≡ false then according to the definition of a boolean type we
have a1 ≡ v2. Conversely if a1 ≡ v2, let a′1 = true ◦ 〈 〉Y ◦ a1 : X → B

and a′2 = true ◦ 〈 〉Y ◦ v2 : X → B and b = false ◦ 〈 〉P : P → B,
then TRY(a′1, CATCH(b)) ≡ TRY(a′2, CATCH(b)). Let us prove that this im-
plies true ◦ 〈 〉X ≡ false ◦ 〈 〉X . On the right hand side, since a′2 is
pure we can use the substitution rule for weak equations, so that we
get TRY(a′2, CATCH(b)) ∼ CATCH(b) ◦ a′2 ∼ idB ◦ a′2 ∼ a′2. Since both
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TRY(a′2, CATCH(b)) and a′2 are propagators we get TRY(a′2, CATCH(b)) ≡ a′2.
And since a′2 = true ◦ 〈 〉Y ◦ v2 ≡ true ◦ 〈 〉X we get TRY(a′2, CATCH(b)) ≡
true◦〈 〉X . On the left hand side we get TRY(a′1, CATCH(b)) ∼ CATCH(b)◦a′1
where a′1 = true ◦ 〈 〉Y ◦ a1 = true ◦ 〈 〉Y ◦ [ ]Y ◦ tag ◦ v1. Since
true ◦ 〈 〉Y ◦ [ ]Y : 0 → B is pure we have true ◦ 〈 〉Y ◦ [ ]Y ≡ [ ]B, thus
a′1 ≡ [ ]B◦tag◦v1. It follows that CATCH(b)◦a

′

1 ≡ CATCH(b)◦[ ]B◦tag◦v1 ≡
b ◦ untag ◦ tag ◦ v1. Since untag ◦ tag ∼ idP and v1 is pure we get
CATCH(b) ◦ a′1 ∼ b ◦ v1, where b ◦ v1 = false ◦ 〈 〉P ◦ v1 ≡ false ◦ 〈 〉X .
Altogether, we have TRY(a′1, CATCH(b)) ≡ false ◦ 〈 〉X . Thus, we have
proved that if a1 ≡ v2 then true ◦ 〈 〉X ≡ false ◦ 〈 〉X . Since 〈 〉X is an
epimorphism with respect to pure terms, we obtain true ≡ false.

Proof of Theorem 4.2.

Proof. Using Corollary 2.10, the proof is based upon Propositions B.2 and B.3.
It follows the same lines as the proof of Theorem 3.2, except when X is empty:
because of catchers the proof here is slightly more subtle. First, the theory

Texc-core is consistent: it cannot be proved that untag(2) ≡ [ ]
(0)
P because be-

cause the logic Lexc-core is sound with respect to its intended model and the
interpretation of this equation in the intended model is false: indeed, the func-
tion untag : E → P + E is such that untag(tag(p)) = p ∈ P for each p ∈ P

while [ ]P (e) = e ∈ E for each e ∈ E, which includes e = tag(p); since P + E

is a disjoint union we have untag(e) 6= [ ]P (e) when e = tag(p). Now, let
us consider an equation between two terms f1 and f2 with domain X ; we dis-
tinguish two cases, whether X is empty or not. When X is non-empty, then
〈 〉X is an epimorphism with respect to pure terms. Thus, Propositions B.2
and B.3 prove that the given equation is Texc-core-equivalent to a finite set of
equations between pure terms. When X is empty, then all terms from X to
Y are only weakly equivalent to [ ]Y , so that we cannot conclude yet for any
given equation. Let us consider two cases. First, if the given equation is an
equation between propagators then both f1 and f2 are strongly equivalent to
[ ]Y so that the given equation is Texc-core-equivalent to the empty set of equa-
tions between pure terms. Otherwise, at least one of f1 and f2 is a catcher,
and there are two subcases to consider, whether the given equation is weak or
strong. If the equation is f1 ∼ f2 then since f1 ∼ [ ]Y and f2 ∼ [ ]Y it is still
Texc-core-equivalent to the empty set of equations between pure terms. Now,
if the equation is f1 ≡ f2 then by Point 1 or 2 of Proposition B.3, the equa-
tion f1 ≡ f2 is Texc-core-equivalent to a set of equations between propagators.
We have seen that each equation between propagators (whether X is empty or
not) is Texc-core-equivalent to a set of equations between pure terms, so that
f1 ≡ f2 is Texc-core-equivalent to the union of the corresponding sets of pure
equations.
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C Completeness for states

Most programming languages such as C/C++ and Java support the usage and
manipulation of the state (memory) structure. Even though the state structure
is never syntactically mentioned, the commands are allowed to use or manipu-
late it, for instance looking up or updating the value of variables. This provides
a great flexibility in programming, but in order to prove the correctness of pro-
grams, one usually has to revert to an explicit manipulation of the state. There-
fore, any access to the state, regardless of usage or manipulation, is treated as
a computational effect: a syntactical term f : X → Y is not interpreted as
f : X → Y unless it is pure, that is unless it does not use the variables in
any manner. Indeed, a term which updates the state has instead the following
interpretation: f : X × S → Y × S where ‘×’ is the product operator and S is
the set of possible states. In [9], we proposed a proof system to prove program
properties involving states effect, while keeping the memory manipulations im-
plicit. We summarize this system next and prove its Hilbert-Post completeness
in Theorem C.6.

As noticed in [8], the logic Lexc-core is exactly dual to the logic Lst for states
(as reminded below). Thus, the dual of the completeness Theorem 4.2 and of
all results in Appendix B are valid, with the dual proof. However, the intended
models for exceptions and for states rely on the category of sets, which is not
self-dual, and the additional assumptions in Theorem 4.2, like the existence of
a boolean type, cannot be dualized without loosing the soundness of the logic
with respect to its intended interpretation. It follows that the completeness
Theorem C.6 for the theory for states is not exactly the dual of Theorem 4.2. In
this Appendix, for the sake of readability, we give all the details of the proof of
Theorem C.6; we will mention which parts are not the dual of the corresponding
parts in the proof of Theorem 4.2.

As in [5], decorated logics for states are obtained from equational logics by
classifying terms and equations. Terms are classified as pure terms, accessors or
modifiers, which is expressed by adding a decoration or superscript, respectively
(0), (1) and (2); decoration and type information about terms may be omitted
when they are clear from the context or when they do not matter. Equations are
classified as strong or weak equations, denoted respectively by the symbols ≡
and ∼. Weak equations relates to the values returned by programs, while strong
equations relates to both values and side effects. In order to observe the state,
accessors may use the values stored in locations, and modifiers may update these
values. In order to focus on the main features of the proof of completeness, let us
assume that only one location can be observed and modified; the general case,
with an arbitrary number of locations, is considered in Remark C.7. The logic for
dealing with pure terms may be any logic which extends a monadic equational
logic with constants Leq,1; its terms are decorated as pure and its equations are

strong. This pure sublogic L
(0)
st is extended to form the corresponding decorated

logic for states Lst . The rules for Lst are given in Fig. 3. A theory T (0) of L
(0)
st

is chosen, then the theory of states Tst is the theory of Lst generated from T (0).
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Let us now discuss the logic Lst and its intended interpretation in sets; it is
assumed that some model of the pure subtheory T (0) in sets has been chosen;
the names of the rules refer to Fig. 3.

Each type X is interpreted as a set, denoted X . The intended model is
described with respect to a set S called the set of states, which does not appear
in the syntax. A pure term u(0) : X → Y is interpreted as a function u : X → Y ,
an accessor a(1) : X → Y as a function a : S × X → Y , and a modifier
f (2) : X → Y as a function f : S ×X → S × Y . There are obvious conversions
from pure terms to accessors and from accessors to modifiers, which allow to
consider all terms as modifiers whenever needed; for instance, this allows to
interpret the composition of terms without mentioning Kleisli composition; the
complete characterization is given in [5].

Here, for the sake of simplicity, we consider a single variable (as done, e.g.,
in [16] and [19]), and dually to the choice of a unique exception name in Section 4.
See Remark C.7 for the generalization to an arbitrary number of variables.
The values of the unique location have type V . The fundamental operations
for dealing with the state are the accessor lookup(1) : 1 → V for reading
the value of the location and the modifier update(2) : V → 1 for updating
this value. According to their decorations, they are interpreted respectively as
functions lookup : S → V and update : S × V → S. Since there is only one
location, it might be assumed that lookup : S → V is a bijection and that
update : S × V → S maps each (s, v) ∈ S × V to the unique s′ ∈ S such that
lookup(s′) = v: this is expressed by a weak equation, as explained below.

A strong equation f ≡ g means that f and g return the same result and
modify the state in “the same way”, which means that no difference can be
observed between the side-effects performed by f and by g. Whenever lookup :
S → V is a bijection, a strong equation f (2) ≡ g(2) : X → Y is interpreted as
the equality f = g : S×X → S×Y : for each (s, x) ∈ S×X , let f(s, x) = (s′, y′)
and g(s, x) = (s′′, y′′), then f ≡ g means that y′ = y′′ and s′ = s′′ for all (s, x).
Strong equations form a congruence. A weak equation f ∼ g means that f

and g return the same result although they may modify the state in different
ways. Thus, a weak equation f (2) ∼ g(2) : X → Y is interpreted as the equality
prY ◦ f = prY ◦ g : S × X → Y , where prY : S × Y → Y is the projection;
with the same notations as above, this means that y′ = y′′ for all (s, x). Weak
equations do not form a congruence: the replacement rule holds only when the
replaced term is pure. The fundamental equation for states is provided by rule
(ax): lookup(1) ◦ update(2) ∼ idV . This means that updating the location with
a value v and then observing the value of the location does return v. Clearly
this is only a weak equation: its right-hand side does not modify the state while
its left-hand side usually does. There is an obvious conversion from strong to
weak equations (≡-to-∼), and in addition strong and weak equations coincide

on accessors by rule (eq1). Two modifiers f
(2)
1 , f

(2)
2 : X → Y modify the state

in the same way if and only if 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 : X → 1, where 〈 〉Y : Y → 1

throws out the returned value. Then weak and strong equations are related by
the property that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2,
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by rule (eq2). This can be expressed as a pair of weak equations f1 ∼ f2 and
lookup ◦ 〈 〉Y ◦ f1 ∼ lookup ◦ 〈 〉Y ◦ f2, by rule (eq3). Some easily derived
properties are stated in Lemma C.1; Point 2 will be used repeatedly.

Monadic equational logic with constants Leq,1:

Types and terms: as for monadic equational logic, plus
a unit type 1 and a term 〈 〉X : X → 1 for each X

Rules: as for monadic equational logic, plus (unit)
f : X → 1

f ≡ 〈 〉X
Decorated logic for states Lst :

Pure part: some logic L
(0)
st extending Leq,1, with a distinguished type V

Decorated terms: lookup(1) : 1 → V , update(2) : V → 1, and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:
(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (subs∼) for all decorations, (repl∼) only when h is pure

(unit∼)
f : X → 1

f ∼ 〈 〉X
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

lookup ◦ update ∼ idV

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2

f1 ≡ f2

(eq3)
f1, f2 : X → 1 lookup ◦ f1 ∼ lookup ◦ f2

f1 ≡ f2

Figure 3: Decorated logic for states (dual to Fig. 2)

Lemma C.1. 1. update ◦ lookup ≡ id1. (this is the fundamental strong
equation for states).

2. each f (2) : 1 → 1 is such that f ∼ id1, each f (1) : X → 1 is such that
f ≡ 〈 〉X , and each f (1) : 1 → 1 is such that f ≡ id1.

3. For all pure terms u
(0)
1 , u

(0)
2 : V → Y , one has: u1 ≡ u2 is Tst -equivalent

to u1 ◦ lookup ≡ u2 ◦ lookup and also to u1 ◦ lookup ◦ update ≡ u2 ◦
lookup ◦ update.

4. For all pure terms u(0) : V → Y , v(0) : 1 → Y , one has: u ≡ v ◦ 〈 〉V is
Tst -equivalent to u ◦ lookup ≡ v.

Proof. 1. By substitution in the axiom (ax) we get lookup◦update◦lookup ∼
lookup; then by rule (eq3) update ◦ lookup ≡ id1.

2. Clear.

3. Implications from left to right are clear. Conversely, if u1 ◦ lookup ◦
update ≡ u2 ◦ lookup ◦ update, then using the axiom (ax) and the rule
(repl∼) we get u1 ∼ u2. Since u1 and u2 are pure this means that u1 ≡ u2.
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4. First, since 〈 〉V ◦lookup : 1 → 1 is an accessor we have 〈 〉V ◦lookup ≡ id1.
Now, if u ≡ v◦〈 〉V then u◦lookup ≡ v◦〈 〉V ◦lookup, so that u◦lookup ≡
v. Conversely, if u ◦ lookup ≡ v then u ◦ lookup ≡ v ◦ 〈 〉V ◦ lookup, and
by Point (3) this means that u ≡ v ◦ 〈 〉V .

Our main result is Theorem C.6 about the relative Hilbert-Post completeness
of the decorated theory of states under suitable assumptions.

Proposition C.2. 1. For each accessor a(1) : X → Y , either a is pure or

there is a pure term v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1) ◦ 〈 〉
(0)
X .

For each accessor a(1) : 1 → Y (either pure or not), there is a pure term
v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1).

2. For each modifier f (2) : X → Y , either f is an accessor or there is an
accessor a(1) : X → V and a pure term u(0) : V → Y such that f (2) ≡
u(0) ◦ lookup(1) ◦ update(2) ◦ a(1).

Proof. 1. If the accessor a(1) : X → Y is not pure then it contains at least
one occurrence of lookup(1). Thus, it can be written in a unique way as
a = v ◦ lookup ◦ b for some pure term v(0) : V → Y and some accessor

b(1) : X → 1. Since b(1) : X → 1 we have b(1) ≡ 〈 〉
(0)
X , and the first

result follows. When X = 1, it follows that a(1) ≡ v(0) ◦ lookup(1). When
a : 1 → Y is pure, one has a ≡ (a ◦ 〈 〉V )

(0) ◦ lookup(1).

2. The proof proceeds by structural induction. If f is pure the result is
obvious, otherwise f can be written in a unique way as f = u ◦ op ◦ g

where u is pure, op is either lookup or update and g is the remaining part
of f . By induction, either g is an accessor or g ≡ v ◦ lookup ◦ update ◦ b
for some pure term v and some accessor b. So, there are four cases to
consider.

• If op = lookup and g is an accessor then f is an accessor.

• If op = update and g is an accessor then by Point 1 there is a pure
term w such that u ≡ w◦lookup, so that f ≡ w(0)◦lookup◦update◦
g(1).

• If op = lookup and g ≡ v(0) ◦ lookup ◦ update ◦ b(1) then f ≡
u ◦ lookup◦ v ◦ lookup ◦ update◦ b. Since v : V → 1 is pure we have
v ◦ lookup ≡ id1, so that f ≡ u(0) ◦ lookup ◦ update ◦ b(1).

• If op = update and g ≡ v(0) ◦ lookup ◦ update ◦ b(1) then f ≡
u(0)◦update◦v(0)◦lookup◦update◦b(1). Since v is pure, by (ax) and
(repl∼) we have v◦lookup◦update ∼ v. Besides, by (ax) and (subs∼)
we have lookup ◦ update ◦ v ∼ v and lookup ◦ update ◦ v ◦ lookup ◦
update ∼ v◦lookup◦update. Since ∼ is an equivalence relation these
three weak equations imply lookup◦ update◦ v ◦ lookup◦ update ∼
lookup◦update◦v. By rule (eq3) we get update◦v◦lookup◦update ≡
update ◦ v, so that f ≡ u(0) ◦ update ◦ (v ◦ b)(1).
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Thanks to Proposition C.2, in order to study equations in the logic Lst we

may restrict our study to pure terms, accessors of the form v(0)◦lookup(1)◦〈 〉
(0)
X

and modifiers of the form u(0) ◦ lookup(1) ◦ update(2) ◦ a(1).
Point 4 in Proposition C.2 is not dual to Point 4 in Proposition B.2

Proposition C.3. 1. For all a
(1)
1 , a

(1)
2 : X → V and u

(0)
1 , u

(0)
2 : V → Y , let

f
(2)
1 = u1◦lookup◦update◦a1 : X → Y and f

(2)
2 = u2◦lookup◦update◦

a2 : X → Y , then f1 ∼ f2 is Tst -equivalent to u1◦a1 ≡ u2 ◦a2 and f1 ≡ f2
is Tst -equivalent to {a1 ≡ a2 , u1 ◦ a1 ≡ u2 ◦ a2}.

2. For all a
(1)
1 : X → V , u

(0)
1 : V → Y and a

(1)
2 : X → Y , let f

(2)
1 =

u1 ◦ lookup ◦ update ◦ a1 : X → Y , then f1 ∼ a2 is Tst -equivalent to
u1◦a1 ≡ a2 f1 ≡ a2 is Tst -equivalent to {u1◦a1 ≡ a2 , a1 ≡ lookup◦〈 〉X}.

3. Let us assume that 〈 〉
(0)
X is an epimorphism with respect to accessors.

For all v
(0)
1 , v

(0)
2 : V → Y let a

(1)
1 = v1 ◦ lookup ◦ 〈 〉X : X → Y and

a
(1)
2 = v2 ◦ lookup ◦ 〈 〉X : X → Y . Then a1 ≡ a2 is Tst -equivalent to

v1 ≡ v2.

4. Let us assume that 〈 〉
(0)
V is an epimorphism with respect to accessors and

that there exists a pure term k
(0)
X : 1 → X. For all v

(0)
1 : V → Y and

v
(0)
2 : X → Y , let a

(1)
1 = v1 ◦ lookup ◦ 〈 〉X : X → Y . Then a1 ≡ v2 is

Tst -equivalent to {v1 ≡ v2 ◦ kX ◦ 〈 〉V , v2 ≡ v2 ◦ kX ◦ 〈 〉X}.

Proof. 1. Rule (eq2) implies that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦f1 ≡
〈 〉Y ◦f2. On the one hand, f1 ∼ f2 if and only if u1 ◦a1 ≡ u1 ◦a2: indeed,
for each i ∈ {1, 2}, by (ax) and (repl∼), since ui is pure we have fi ∼ ui◦ai.
On the other hand, let us prove that 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 if and only if
a1 ≡ a2.

• For each i ∈ {1, 2}, the accessor 〈 〉Y ◦ ui ◦ lookup : 1 → 1 satisfies
〈 〉Y ◦ ui ◦ lookup ≡ id1, so that 〈 〉Y ◦ fi ≡ update ◦ ai. Thus,
〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 if and only if update ◦ a1 ≡ update ◦ a2.

• Clearly, if a1 ≡ a2 then update ◦ a1 ≡ update ◦ a2. Conversely, if
update ◦ a1 ≡ update ◦ a2 then lookup ◦ update ◦ a1 ≡ lookup ◦
update ◦ a2, so that by (ax) and (subs∼) we get a1 ∼ a2, which
means that a1 ≡ a2 because a1 and a2 are accessors.

2. Rule (eq2) implies that f1 ≡ a2 if and only if f1 ∼ a2 and 〈 〉Y ◦ f1 ≡
〈 〉Y ◦ a2. On the one hand, f1 ∼ a2 if and only if u1 ◦ a1 ≡ a2: indeed, by
(ax) and (repl∼), since u1 is pure we have f1 ∼ u1◦a1. On the other hand,
let us prove that 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ a2 if and only if a1 ≡ lookup ◦ 〈 〉X , in
two steps.
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• Since 〈 〉Y ◦a2 : X → 1 is an accessor, we have 〈 〉Y ◦a2 ≡ 〈 〉X . Since
〈 〉Y ◦ f1 = 〈 〉Y ◦ u1 ◦ lookup ◦ update ◦ a1 with 〈 〉Y ◦ u1 ◦ lookup :
1 → 1 an accessor, we have 〈 〉Y ◦ u1 ◦ lookup ≡ id1 and thus we get
〈 〉Y ◦ f1 ≡ update ◦ a1. Thus, 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ a2 if and only if
update ◦ a1 ≡ 〈 〉X .

• If update ◦ a1 ≡ 〈 〉X then lookup ◦ update ◦ a1 ≡ lookup ◦ 〈 〉X ,
by (ax) and (subs∼) this implies a1 ∼ lookup ◦ 〈 〉X , which is a
strong equality because both members are accessors. Conversely, if
a1 ≡ lookup ◦ 〈 〉X then update ◦ a1 ≡ update ◦ lookup ◦ 〈 〉X ,
by Point 1 in Lemma C.1 this implies update ◦ a1 ≡ 〈 〉X . Thus,
update ◦ a1 ≡ 〈 〉X if and only if a1 ≡ lookup ◦ 〈 〉X .

3. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if v1◦lookup◦
〈 〉X ≡ v2 ◦ lookup ◦ 〈 〉X , since 〈 〉X is an epimorphism with respect to
accessors we get v1 ◦ lookup ≡ v2 ◦ lookup. By Point 3 in Lemma C.1,
this means that v1 ≡ v2.

4. Let w
(0)
2 = v2 ◦ kX : 1 → Y . Let us assume that v1 ≡ w2 ◦ 〈 〉V and

v2 ≡ w2◦〈 〉X . Equation v1 ≡ w2◦〈 〉V implies a1 ≡ w2◦〈 〉V ◦lookup◦〈 〉X .
Since 〈 〉V ◦ lookup ≡ id1 we get a1 ≡ w2 ◦ 〈 〉X . Then, equation v2 ≡
w2 ◦ 〈 〉X implies a1 ≡ v2. Conversely, let us assume that a1 ≡ v2, which
means that v1 ◦ lookup ◦ 〈 〉X ≡ v2. Then v1 ◦ lookup ◦ 〈 〉X ◦ kX ◦ 〈 〉V ≡
v2 ◦kX ◦ 〈 〉V , which reduces to v1 ◦lookup◦ 〈 〉V ≡ w2 ◦ 〈 〉V . Since 〈 〉V is
an epimorphism with respect to accessors we get v1 ◦ lookup ≡ w2, which
means that v1 ≡ w2 ◦ 〈 〉V by Point 4 in Lemma C.1. Now let us come
back to equation v1 ◦ lookup ◦ 〈 〉X ≡ v2; since v1 ≡ w2 ◦ 〈 〉V , it yields
w2 ◦ 〈 〉V ◦ lookup ◦ 〈 〉X ≡ v2, so that w2 ◦ 〈 〉X ≡ v2.

The assumption for Theorem C.6 comes form the fact that the existence

of a pure term k
(0)
X : 1 → X , which is used in Point 4 of Proposition C.3,

is incompatible with the intended model of states if X is interpreted as the
empty set. The assumption for Theorem C.6 is not dual to the assumption for
Theorem 4.2.

Definition C.4. A type X is inhabited if there exists a pure term k
(0)
X : 1 → X .

A type 0 is empty if for each type Y there is a pure term [ ]
(0)
Y : 0 → Y , and

every term f : 0 → Y is such that f ≡ [ ]Y .

Remark C.5. WhenX is inhabited then for any k
(0)
X : 1 → X we have 〈 〉X◦kX ≡

id1, so that 〈 〉X is a split epimorphism; it follows that 〈 〉X is an epimorphism
with respect to all terms, and especially with respect to accessors.

Theorem C.6. If every non-empty type is inhabited and if V is non-empty,
the theory of states Tst is Hilbert-Post complete with respect to the pure sublogic

L
(0)
st of Lst .
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Proof. Using Corollary 2.10, the proof relies upon Propositions C.2 and C.3.
it follows the same lines as the proofs of Theorems 3.2 and 4.2. The theory

Tst is consistent: it cannot be proved that update(2) ≡ 〈 〉
(0)
V because the logic

Lst is sound with respect to its intended model and the interpretation of this
equation in the intended model is false as sson as V has at least two elements:
indeed, for each state s and each x ∈ V , lookup ◦ update(x, s) = x because
of (ax) while lookup ◦ 〈 〉V (x, s) = lookup(s) does not depend on x. Let us
consider an equation (strong or weak) between terms with domain X in Lst ; we
distinguish two cases, whether X is empty or not. When X is empty, then all
terms from X to Y are strongly equivalent to [ ]Y , so that the given equation
is Tst -equivalent to the empty set of equations between pure terms. When X

is non-empty then it is inhabited, thus by Remark C.5 〈 〉X is an epimorphism
with respect to accessors. Thus, Propositions C.2 and C.3 prove that the given
equation is Tst -equivalent to a finite set of equations between pure terms.

Remark C.7. This can be generalized to an arbitrary number of locations. The
logic Lst and the theory Tst have to be generalized as in [5], then Proposition C.2
has to be adapted using the basic properties of lookup and update, as stated
in [17]; these properties can be deduced from the decorated theory for states,
as proved in [9]. The rest of the proof generalizes accordingly, as in [16].

D More about Coq implementation

The correspondence between the propositions and theorems in this paper and
their proofs in Coq is given in Fig. 4, and the dependency chart for the main
results in Fig. 5. For instance, here is the way Point 1 in Proposition A.2 is
expressed in Coq:

forall {X Y} (a1 a2: term X Y) (v1 v2: term (Val e) Y),

(is pure v1) /\ (is pure v2) /\
(a1 = ((@throw X e) o v1)) /\ (a2 = ((@throw X e) o v2)) -> ((a1 == a2) <-> (v1 == v2)).
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hp-0.3/exc impl/Implementation.v

Proposition 4.1 (propagate) propagate

Proposition 4.1 (recover) recover

Proposition 4.1 (try0) try0

Proposition 4.1 (try1) try1

hp-0.3/exc pl-hp/HPCompleteCoq.v

Proposition A.1 can form th

Proposition A.2 Point 1 eq th 1 eq pu

Proposition A.2 Point 2 eq th pu abs

Theorem 3.2 HPC exc pl

hp-0.3/exc cl-hp/HPCompleteCoq.v

Proposition B.2 Point 1 can form pr

Proposition B.2 Point 2 can form ca

Proposition B.3 Point 1 eq ca 2 eq pr

Proposition B.3 Point 2 eq ca pr 2 eq pr

Proposition B.3 Point 3 eq pr 1 eq pu

Proposition B.3 Point 4 eq pr pu abs

Theorem 4.2 HPC exc core

hp-0.3/st-hp/HPCompleteCoq.v

Proposition C.2 Point 1 can form ac

Proposition C.2 Point 2 can form mo

Proposition C.3 Point 1 eq mo 2 eq ac

Proposition C.3 Point 2 eq mo ac 2 eq ac

Proposition C.3 Point 3 eq ac 1 eq pu

Proposition C.3 Point 4 eq ac pu 2 eq pu

Theorem C.6 HPC st

Figure 4: Correspondence table
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can form ca

++XX
XXX

XXX
X

eq ca 1 or 2 eq pr

))
SS

SS
SS

SS
SS

SS
SS

SS
S

��
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

eq ca pr 2 eq pr

33ffffffff

eq ca abs or 2 eq pu

''
OO

OO
OO

OO
OO

OO
OO

can form pr

++XX
XXX

XXX
X

eq pr 1 eq pu // eq pr abs or 1 eq pu

55kkkkkkkkkkkkkkkkk

))
SS

SS
SS

SS
SS

SS
SS

SS
S

HPC exc

eq pr pu abs

33ffffffff

eq ca abs 2 eq pu dom emp

77ooooooooooooooo

eq pr dom emp

22eeeeeeeeee

Figure 5: Dependency chart
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