
HAL Id: hal-01121924
https://hal.science/hal-01121924v1

Preprint submitted on 2 Mar 2015 (v1), last revised 8 Oct 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hilbert-Post completeness for the state and the
exception effects

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous,
Jean-Claude Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous, Jean-Claude Reynaud.
Hilbert-Post completeness for the state and the exception effects. 2015. �hal-01121924v1�

https://hal.science/hal-01121924v1
https://hal.archives-ouvertes.fr

Hilbert-Post completeness for the state and the

exception effects

Jean-Guillaume Dumas∗ Dominique Duval∗ Burak Ekici∗

Damien Pous† Jean-Claude Reynaud‡

March 2, 2015

Abstract

In this paper, we present a novel framework for studying the syntactic

completeness of computational effects and we apply it to the exception

effect. When applied to the states effect, our framework can be seen as a

generalization of Pretnar’s work on this subject. We first introduce a rela-

tive notion of Hilbert-Post completeness, well-suited to the composition of

effects. Then we prove that the exception effect is relatively Hilbert-Post

complete, as well as the “core” language which may be used for imple-

menting it; these proofs have been formalized and checked with the proof

assistant Coq.

1 Introduction

In order to add reasoning capabilities to computer algebra systems one has
to be able to deal with various programming languages, including languages
which involve computational effects. For instance at CICM Workshops 2014
we presented a method for certified proofs in programs involving exceptions,
with its implementation in Coq and an application to exact linear algebra. A
major difficulty for reasoning about programs involving computational effects
is that their syntax does not look like their interpretation: typically, a piece of
program with arguments in X that returns a value in Y is not interpreted as a
function from X to Y, because of the effects. The best-known algebraic approach
of this problem has been initiated by Moggi and implemented in Haskell; it
focuses on the case where the interpretation is a function from X to T(Y) for
a monad T [10]. Monads have then been extended to Lawvere theories and

∗Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des
Mathématiques, umr CNRS 5224, bp 53X, F38041 Grenoble, France,
{Jean-Guillaume.Dumas,Dominique.Duval,Burak.Ekici}@imag.fr.

†Plume team, CNRS, ENS Lyon, Université de Lyon, INRIA, UMR 5668, France,
Damien.Pous@ens-lyon.fr.

‡Reynaud Consulting (RC), Jean-Claude.Reynaud@imag.fr.

1

mailto:Jean-Guillaume.Dumas@imag.fr,Dominique.Duval@imag.fr,Burak.Ekici@imag.fr
mailto:Damien.Pous@ens-lyon.fr
mailto:Jean-Claude.Reynaud@imag.fr

algebraic handlers [12, 13] while other approaches include effect systems [9], or
Hoare logic [1]. Following this line, completeness results have been obtained for
(global) states [11] and for local states [14]. We instead mix effect systems and
algebraic theories by adding decorations to terms and equations for staying close
to the syntax while reasoning with effects. Such decorated logical systems have
been designed for the state (variables and memory) and exception (throwing
and handling) effects and recently implemented in Coq [2, 5, 6]. They have
been built so as to be sound with respect to their intended interpretation, but
little is known about their completeness.

Then, Hilbert-Post completeness (also called Post completeness) is a syntac-
tic notion of completeness which does not use any notion of negation, so that
it is well-suited for equational logic. In a given logic L, we call theory a set of
sentences which is deductively closed: everything you can derive from it (using
the rules of L) is already in it. A theory is (Hilbert-Post) consistent if it does
not contain all sentences, and it is (Hilbert-Post) complete if it is consistent and
if any sentence which is added to it generates an inconsistent theory [15, Def.
4].

In this paper, we first introduce a relative notion of Hilbert-Post complete-
ness in a logic L with respect to a sublogic L0; it is still a syntactic notion of
completeness using no negation, but it allows to express more flexible properties
than the usual (or absolute) Hilbert-Post completeness. It can be proved that
the decorated theory for global states is relatively Hilbert-Post complete. This
proof is presented in Appendix A. It follows the same lines as the Hilbert-Post
completeness proof for global states in [11]. In this paper, we prove a novel
result: the decorated theory for exceptions is relatively Hilbert-Post complete,
and moreover this property holds also for the core theory which may be used
for implementing exceptions, as described in [5]. Our completeness proofs are
mainly based on the approach given in [11]: first canonical forms are highlighted
for syntactical terms and, second, theories are restricted to these forms so that
the proofs follow. All the completeness proofs have been verified with the Coq
proof assistant, using the framework introduced in [6] for the state effect.

Thus, in Section 2 we define the relative Hilbert-Post completeness. Then,
using the relevant decorated logics, we prove the relative Hilbert-Post complete-
ness of the theory of exceptions in Section 3 and of the corresponding core theory
in Section 4. We conclude with a short description of the implementation of the
proofs in Coq. The relative Hilbert-Post completeness of the decorated theory
of states is proved in Appendix A.

2 Relative Hilbert-Post completeness

Each logic in this paper comes with a language, which is a set of formulas,
and with deduction rules. Deduction rules are used for deriving (or generating)
theorems, which are some formulas, from some chosen formulas called axioms. A
theory T is a set of theorems which is deductively closed, in the sense that every
theorem which can be derived from T using the rules of the logic is already in

2

T . We describe a set-theoretic intended model for each logic we introduce; the
rules of the logic are designed so as to be sound with respect to this intended
model. Given a logic L, the theories of L are partially ordered by inclusion.
There is a maximal theory Tmax , where all formulas are theorems. There is a
minimal theory Tmin , which is generated by the empty set of axioms. For all
theories T and T ′, we denote by T + T ′ the theory generated from T and T ′.

Example 2.1. With this point of view there are many different equational logics,
with the same deduction rules but with different languages, depending on the
definition of terms. In an equational logic, formulas are pairs of parallel terms
(f, g) : X → Y and theorems are equations f ≡ g : X → Y . Typically, the
language of an equational logic may be defined from a signature (made of sorts
and operations). The deduction rules are such that the equations in a theory
form a congruence, i.e., an equivalence relation compatible with the structure of
the terms. For instance, we may consider the logic “of naturals” Lnat , with its
language generated from the signature made of a sort N , a constant 0 : 1 → N
and an operation s : N → N . For this logic, the minimal theory is the theory “of
naturals” Tnat , the maximal theory is such that sk ≡ sℓ and sk ◦0 ≡ sℓ ◦0 for all
natural numbers k and ℓ, and (for instance) the theory “of naturals modulo 6”
Tmod6 can be generated from the equation s6 ≡ idN . We consider models of
equational logics in sets: each type X is interpreted as a set (still denoted X),
which is a singleton when X is 1, each term f : X → Y as a function from X
to Y (still denoted f : X → Y), and each equation as an equality of functions.

Definition 2.2. Given a logic L and its maximal theory Tmax , a theory T is
consistent if T 6= Tmax , and it is Hilbert-Post complete if it is consistent and if
any theory which contains T coincides with Tmax or with T .

Example 2.3. In Example 2.1 we considered two theories for the logic Lnat : the
theory “of naturals” Tnat and the theory “of naturals modulo 6” Tmod6. Since
both are consistent and Tmod6 contains Tnat , the theory Tnat is not Hilbert-
Post complete. The unique Hilbert-Post complete theory for Lnat is made of all
equations but s ≡ idN , it can be generated from the axioms s◦0≡0 and s◦s≡s.

If a logic L is an extension of a sublogic L0, each theory T0 of L0 generates
a theory F (T0) of L. Conversely, each theory T of L determines a theory
G(T) of L0, made of the theorems of T which are formulas of L0, so that
G(Tmax) = Tmax ,0. The functions F and G are monotone and they form a
Galois connection, denoted F ⊣ G: for each theory T of L and each theory T0 of
L0 we have F (T0) ⊆ T if and only if T0 ⊆ G(T). It follows that T0 ⊆ G(F (T0))
and F (G(T)) ⊆ T .

Definition 2.4. Given a logic L0, an extension L of L0 and the associated
Galois connection F ⊣ G, a theory T ′ of L is L0-derivable from a theory T
of L if T ′ = T + F (T ′

0) for some theory T ′
0 of L0, and it is relatively Hilbert-

Post complete with respect to L0 if it is consistent and if any theory of L which
contains T is L0-derivable from T .

3

Each theory T is L0-derivable from itself, because T = T +F (Tmin,0), where
Tmin,0 is the minimal theory of L0. In addition, Theorem 2.6 shows that relative
completeness lifts the usual “absolute” completeness from L0 to L.

Lemma 2.5. Let us consider a logic L0, an extension L of L0 and the associated
Galois connection F ⊣ G. For each theory T of L, a theory T ′ of L is L0-
derivable from T if and only if T ′ = T + F (G(T ′)). As a special case, Tmax is
L0-derivable from T if and only if Tmax = T + F (Tmax ,0). A theory T of L is
relatively Hilbert-Post complete with respect to L0 if and only if it is consistent
and every theory T ′ of L which contains T is such that T ′ = T + F (G(T ′)).

Proof. Clearly, if T ′ = T + F (G(T ′)) then T ′ is L0-derivable from T . So,
let T ′

0 be a theory of L0 such that T ′ = T + F (T ′
0), and let us prove that

T ′ = T + F (G(T ′)). For each theory T ′ we know that F (G(T ′)) ⊆ T ′; since
here T ⊆ T ′ we get T +F (G(T ′)) ⊆ T ′. Conversely, for each theory T ′

0 we know
that T ′

0 ⊆ G(F (T ′
0)) and that G(F (T ′

0)) ⊆ G(T) + G(F (T ′
0)) ⊆ G(T + F (T ′

0)),
so that T ′

0 ⊆ G(T + F (T ′
0)); since here T ′ = T + F (T ′

0) we get first T ′
0 ⊆ G(T ′)

and then T ′ ⊆ T + F (G(T ′)). Then, the result for Tmax comes from the fact
that G(Tmax) = Tmax ,0. The last point follows immediately.

Theorem 2.6. Let us consider a logic L0, an extension L of L0 and the asso-
ciated Galois connection F ⊣ G. Let T0 be a theory of L0 and T = F (T0). If T0

is Hilbert-Post complete (in L0) and T is relatively Hilbert-Post complete with
respect to L0, then T is Hilbert-Post complete (in L).

Proof. Since T is relatively complete with respect to L0, it is consistent. Since
T = F (T0) we have T0 ⊆ G(T). Let T ′ be a theory such that T ⊆ T ′. Since T is
relatively complete with respect to L0, by Lemma 2.5 we have T ′ = T + F (T ′

0)
where T ′

0 = G(T ′). Since T ⊆ T ′, T0 ⊆ G(T) and T ′
0 = G(T ′), we get T0 ⊆ T ′

0.
Thus, since T0 is complete, either T ′

0 = T0 or T ′
0 = Tmax ,0; let us check that

then either T ′ = T or T ′ = Tmax . If T ′
0 = T0 then F (T ′

0) = F (T0) = T , so
that T ′ = T + F (T ′

0) = T . If T ′
0 = Tmax ,0 then F (T ′

0) = F (Tmax ,0); since T is
relatively complete with respect to L0, the theory Tmax is L0-derivable from T ,
which implies (by Lemma 2.5) that Tmax = T + F (Tmax ,0) = T ′.

Proposition 2.7 provides a characterization of relative Hilbert-Post complete-
ness which will be used in the next Sections. In a given logic L, we denote Th(E)
the theory generated by a set E of formulas and we say that two sets of formulas
E1, E2 are equivalent with respect to a theory T when T+Th(E1) = T+Th(E2).

Proposition 2.7. Let us consider a logic L0, an extension L of L0 and the
associated Galois connection F ⊣ G. Let T be a theory of L such that for each
formula e in L there is a set E0 of formulas of L0 equivalent to {e} with respect
to T . Then each theory T ′ of L which contains T is L0-derivable from T . Thus,
if T is consistent then it is relatively Hilbert-Post complete with respect to L0.

Proof. Let T ′ be a theory which contains T . Let T ′′ = T + F (G(T ′)), so that
T ⊆ T ′′ ⊆ T ′ (because F (G(T ′)) ⊆ T ′ for any T ′). Let us consider an arbitrary

4

formula e in T ′, by assumption there is a set E0 of formulas of L0 such that
T +Th({e}) = T +Th(E0). Since e is in T ′ and T ⊆ T ′ we have T +Th({e}) ⊆
T ′, so that T + Th(E0) ⊆ T ′. It follows that E0 is a set of theorems of T ′

which are formulas of L0, which means that E0 ⊆ G(T ′), and consequently
Th(E0) ⊆ F (G(T ′)), so that T+Th(E0) ⊆ T ′′. Since T+Th({e}) = T+Th(E0)
we get e ∈ T ′′. We have proved that T ′ = T ′′, so that T ′ is L0-derivable
from T .

3 Completeness for exceptions

Exception handling is provided by most modern programming languages. It
allows to deal with anomalous or exceptional events which require special pro-
cessing. E.g., one can easily and simultaneously compute dynamic evaluation
in exact linear algebra using exceptions [5]. There, we proposed to deal with
exceptions as a decorated effect, in order to prove properties of such programs:
a term f : X → Y is not interpreted as a function f : X → Y unless it is
pure. A term which may raise an exception is instead interpreted as a function
f : X → Y + E where ‘+’ is disjoint union operator and E is the set of excep-
tions. In this section, first following [5] we present a formalization of exceptions
in a decorated setting, then we prove its relative Hilbert-Post completeness in
Theorem 3.5.

As in [5], decorated logics for exceptions are obtained from equational logics
by classifying terms. Terms are classified as pure terms or propagators, which
is expressed by adding a decoration or superscript, respectively (0) or (1); dec-
oration and type information about terms may be omitted when they are clear
from the context or when they do not matter. All terms must propagate ex-
ceptions, and propagators are allowed to raise an exception while pure terms
are not. The fact of catching exceptions is hidden: it is embedded into the
try/catch construction, as explained below. In Section 4 we will consider an
implementation of exceptions by a more basic language, where some terms are
catchers, which means that they may recover form an exception, i.e., they do
not have to propagate exceptions.

Let us describe informally a decorated theory for exceptions and its intended
model. Each type X is interpreted as a set, still denoted X . The intended
model is described with respect to a set E called the set of exceptions, which
does not appear in the syntax. A pure term u(0) : X → Y is interpreted as a
function u : X → Y and a propagator a(1) : X → Y as a function a : X →
Y +E; equations are interpreted as equalities of functions. There is an obvious
conversion from pure terms to propagators, which allow to consider all terms
as propagators whenever needed; if a propagator a(1) : X → Y “is” a pure
term, in the sense that it has been obtained by conversion from a pure term,
then the function a : X → Y + E is such that a(x) ∈ Y for each x ∈ X .
The composition of propagators is the Kleisli composition associated to the
monad X +E, which simply means that exceptions are always propagated: the
interpretation of (b◦a)(1) : X → Z where a(1) : X → Y and b(1) : Y → Z is such

5

that (b ◦ a)(x) = b(a(x)) when a(x) is not an exception and (b ◦ a)(x) = e when
a(x) is the exception e. Exceptions may be classified according to their name, as
in [5]. Here, in order to focus on the main features of the proof of completeness,
we assume that there is only one exception name. Each exception is built by
encapsulating a parameter. Let P denote the type of parameters for exceptions.

The fundamental operations for raising exceptions are the propagators throw
(1)
Y :

P → Y for each type Y : this operation throws an exception with a parameter
p of type P and pretends that this exception has type Y . The interpretation

of the term throw
(1)
Y : P → Y is a function throwY : P → Y + E such that

throwY (p) ∈ E for each p ∈ P . The fundamental operations for handling
exceptions are the propagators (try(a)catch(b))(1) : X → Y for each terms
a : X → Y and b : P → Y : this operation first runs a until an exception with
parameter p is raised (if any), then, if such an exception has been raised, it runs
b(p). The interpretation of the term (try(a)catch(b))(1) : X → Y is a function
try(a)catch(b) : X → Y + E such that (try(a)catch(b))(x) = a(x) when a
is pure and (try(a)catch(b))(x) = b(p) when a(x) throws an exception with
parameter p.

More precisely, the decorated logic for exceptions Lexc is defined in Fig. 1

(next page). The pure sublogic L
(0)
exc, for dealing with pure terms, may be any

logic which extends a monadic equational logic Leq . A monadic equational logic
is made of types, terms and operations, where all operations are unary and

terms are simply paths. For instance, L
(0)
exc may be an equational logic, with

n-ary operations for arbitrary n. However, the rules for Lexc do not allow to
form tuples of decorated terms, so that the term op(f, g) (where op is a pure
operation of arity 2) is not well-formed, unless f and g are pure. It is well
known that there is no “canonical” interpretation for such terms; however, the
interpretation where f is runned before g can be formalized thanks to strong
monads [10] or sequential products [4]. In this paper, in order to focus on
completeness issues, we avoid such situations.

This pure sublogic L
(0)
exc is extended to form the corresponding decorated logic

for exceptions Lexc by applying the rules in Fig. 1, with the following intended
meanings:

• (propagate) for each a(1) : X → Y , a ◦ throwX ≡ throwY : exceptions are
always propagated.

• (recover) throwY is a monomorphism with respect to pure terms, for each
Y : the parameter used for throwing an exception may be recovered.

• (try0) for each u(0) : X → Y and b(1) : P → Y , try(u)catch(b) ≡ u: pure
code inside the try part never triggers the code inside the catch part.

• (try1) for each u(0) : X → P and b(1) : P → Y , try(throwY ◦u)catch(b) ≡
b ◦ u: code inside the catch part is executed as soon as an exception is
thrown inside the try part.

The theory of exceptions Texc is the theory of Lexc generated from some chosen

theory T (0) of L
(0)
exc; with the notations of Section 2, Texc = F (T (0)). The

6

soundness of the intended model follows, see, e.g., [5, §5.1] and [3], with the
description of the handling of exceptions in Java, see for instance [8, Ch. 14],
or in C++ [7, §15]. Now, in order to prove the completeness of the decorated

Monadic equational logic Leq:

Types: X,Y, Terms: f : X → Y, ... closed by composition:
fk ◦ · · · ◦ f1 : X0 → Xk for each (fi : Xi−1 → Xi)1≤i≤k

with the empty path (when k = 0) denoted idX : X → X for each X

Rules: (equiv)
f

f ≡ f

f ≡ g

g ≡ f

f ≡ g g ≡ h

f ≡ h

(subs)
f : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f ≡ g2 ◦ f
(repl)

g1 ≡ g2 : X → Y h : Y → Z

h ◦ g1 ≡ h ◦ g2
Decorated logic for exceptions Lexc:

Pure part: some logic L
(0)
exc extending Leq , with a distinguished type P

Decorated terms: throw
(1)
Y : P → Y for each type Y ,

(try(a)catch(b))(1) : X → Y for each a(1) : X → Y and b(1) : P → Y , and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

conversions from f (0) : X → Y to f (1) : X → Y
Rules:
(equiv), (subs), (repl) for all decorations

(propagate)
a(1) : X → Y

a ◦ throwX ≡ throwY

(recover)
u
(0)
1 , u

(0)
2 : X → P throwY ◦ u1 ≡ throwY ◦ u2

u1 ≡ u2

(try0)
u(0) :X → Y b(1) :P → Y

try(u)catch(b) ≡ u

(try1)
u(0) :X → P b(1) :P → Y

try(throwY ◦ u)catch(b) ≡ b ◦ u

Figure 1: Logic for exceptions

theory for exceptions under suitable assumptions, we first determine canonical
forms and then we study the equations between terms in canonical forms.

Proposition 3.1. For each term a(1) : X → Y , either there exists some pure
term u(0) : X → Y such that a ≡ u or there exists some pure term u(0) : X → P
such that a ≡ throwY ◦ u.

Proof. The proof proceeds by structural induction. If a is pure the result is
obvious, otherwise a can be written in a unique way as a = b ◦ op ◦ v where v is
pure, op is either throwZ for some Z or try(c)catch(d) for some c and d, and
b is the remaining part of a.

• If a = b(1) ◦ throwZ ◦ v(0), then by (propagate) a ≡ throwY ◦ v(0).

7

• If a = b(1) ◦ (try(c(1))catch(d(1))) ◦ v(0), then by induction we consider
two subcases.

– If c ≡ w(0) then by (try0) a ≡ b(1) ◦ w(0) ◦ v(0) and by induction
we consider two subcases: if b ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if
b ≡ throwY ◦ t(0) then a ≡ throwY ◦ (t ◦ w ◦ v)(0).

– If c ≡ throwZ ◦w(0) then by (try1) a ≡ b(1) ◦ d(1) ◦w(0) ◦ v(0) and by
induction we consider two subcases: if b◦d ≡ t(0) then a ≡ (t◦w◦v)(0)

and if b ◦ d ≡ throwY ◦ t(0) then a ≡ throwY ◦ (t ◦ w ◦ v)(0).

Thanks to Proposition 3.1, in order to study equations in the logic Lexc we
may restrict our study to pure terms and to propagators of the form throwY ◦ v
where v is pure. In order to express the distinction between exceptions and non-
exceptions we need some kind of “booleans”. In this equational setting without
negations, this is obtained by introducing a type B with two constants true

and false such that the equation true ≡ false corresponds to the logical
contradiction ’⊥’, in the sense that it makes everything collapse: the theory
generated by the equation true ≡ false is the maximal theory.

Definition 3.2. A type 1 is a unit if for each type X there is a pure term

〈 〉
(0)
X : X → 1 and every pure term u(0) : X → 1 is such that u ≡ 〈 〉X .

If there is a unit type 1, a type B is a boolean type if there are pure terms
true(0), false(0) : 1 → B such that whenever true ≡ false we have a1 ≡ a2
for each pair of parallel terms (a1, a2).

Proposition 3.3. 1. For all v
(0)
1 , v

(0)
2 : X → P let a

(1)
1 = throwY ◦v1 : X →

Y and a
(1)
2 = throwY ◦ v2 : X → Y . Then a

(1)
1 ≡ a

(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 .

2. Let us assume that there is a unit type 1 and a boolean type B in the sense

of Definition 3.2 and that 〈 〉
(0)
X is an epimorphism with respect to pure

terms. For all v
(0)
1 : X → P and v

(0)
2 : X → Y , let a

(1)
1 = throwY ◦ v1 :

X → Y . Then a
(1)
1 ≡ v

(0)
2 ⇐⇒ true(0) ≡ false(0).

Proof. 1. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if
throwY ◦ v1 ≡ throwY ◦ v2, then by rule (recover) it follows that v1 ≡ v2.

2. If true ≡ false then according to the definition of a boolean type we
have a1 ≡ v2. Conversely, if a1 ≡ v2, then true ◦ 〈 〉Y ◦ a1 ≡ true ◦
〈 〉Y ◦ v2 : X → B, where true ◦ 〈 〉Y ◦ a1 = true ◦ 〈 〉Y ◦ throwY ◦ v1 ≡
throwB ◦ v1 by rule (propagate) and true ◦ 〈 〉Y ◦ v2 ≡ true ◦ 〈 〉X , so
that we get throwB ◦ v1 ≡ true ◦ 〈 〉X . Let b = false ◦ 〈 〉P : P → B

then we get try(throwB ◦ v1)catch(b) ≡ try(true ◦ 〈 〉X)catch(b), where
try(throwB ◦ v1)catch(b) ≡ b ◦ v1 ≡ false ◦ 〈 〉P ◦ v1 ≡ false ◦ 〈 〉X by
(try1) and try(true ◦ 〈 〉X)catch(b) ≡ true ◦ 〈 〉X by (try0). Thus, we
obtain false ◦ 〈 〉X ≡ true ◦ 〈 〉X , and since 〈 〉X is an epimorphism with
respect to pure terms this implies true ≡ false.

8

Remark 3.4. The assumption that 〈 〉
(0)
X is an epimorphism with respect to pure

terms in Point 2 of Proposition 3.3 cannot be satisfied when the interpretation
of X is the empty set. Thus, we have to handle the empty type in a specific
way. In the decorated logic for exceptions, an empty type is defined as a type

0 such that for each Y there is a pure term []
(0)
Y : 0 → Y such that f ≡ []Y

for each term f : 0 → Y (which may be a propagator). This definition is sound
with respect to the intended model: it means that 0 is interpreted as the empty
set.

Theorem 3.5. If there is a unit type 1 and a boolean type B in the sense of

Definition 3.2 and if 〈 〉
(0)
X is an epimorphism with respect to pure terms for

each non-empty type X, the theory of exceptions Texc is relatively Hilbert-Post

complete with respect to the pure sublogic L
(0)
exc of Lexc.

Proof. The proof relies upon Propositions 3.1, 3.3 and 2.7. The theory Texc is

consistent: it cannot be proved that throw
(1)
P ≡ id

(0)
P because the logic Lexc is

sound with respect to its intended model and the interpretation of this equation
in the intended model is false: indeed, throwP (p) ∈ E for each p ∈ P , and
since P +E is a disjoint union we have throwP (p) 6= p. Now, let us consider an
equation between terms with domainX and let us prove that it is Texc-equivalent
to a set of pure equations (i.e., equations between pure terms). We distinguish
two cases, whether X is empty or not. When X is non-empty, then 〈 〉X is an
epimorphism with respect to pure terms. Thus, Propositions 3.1 and 3.3 prove
that the given equation is Texc-equivalent to a set of pure equations. When X
is empty, then all terms from X to Y are equivalent to []Y (see Remark 3.4), so
that the given equation is Texc-equivalent to the empty set of pure equations.
Thus, in both cases the result follows from Proposition 2.7.

4 Completeness of the core language for excep-

tions

In this section, first following [5] we describe an implementation of the language
for exceptions from Section 3 using a core language, then we prove the relative
Hilbert-Post completeness of this core language in Theorem 4.5.

Let us call the usual language for exceptions with throw and try/catch, as
described in Section 3, the programmers’ language for exceptions. The docu-
mentation on the behaviour of exceptions in many languages (for instance in
java [8]) makes use of a core language for exceptions which is studied in [5].
In this language, the empty type plays an important role and the fundamental
operations for dealing with exceptions are tag(1) : P → 0 for encapsulating a
parameter inside an exception and untag(2) : 0 → P for recovering its parameter
from any given exception. The new decoration (2) corresponds to catchers : a

9

catcher may recover from an exception, it does not have to propagate it. More-
over, the equations also are decorated: in addition to the equations ’≡’ as in
Section 3, now called strong equations, there are weak equations denoted ’∼’.

As in Section 3, a set E of exceptions is chosen; the intended model interprets
each type X as a set X , each pure term u(0) : X → Y as a function u :
X → Y , each propagator a(1) : X → Y as a function a : X → Y + E and
each catcher f (2) : X → Y as a function f : X + E → Y + E. There is
an obvious conversion from propagators to catchers; the interpretation of the
composition of catchers is straightforward, and it is compatible with the Kleisli
composition for the composition of propagators. Weak and strong equations
coincide on propagators, where they are interpreted as equalities, but they differ
on catchers: f (2) ∼ g(2) : X → Y means that the functions f, g : X+E → Y +E
coincide on X , but maybe not on E. The interpretation of tag(1) : P → 0 is
a function tag : P → E and the interpretation of untag(2) : 0 → P is the
function untag : E → P +E such that untag(tag(p)) = p for each parameter p.
Thus, the fundamental axiom relating tag(1) and untag(2) is the weak equation
untag ◦ tag ∼ idP .

More precisely, the decorated logic for the core langage for exceptions Lexc-core

is defined in Fig. 2. Its pure sublogic L
(0)
exc-core may be any logic which extends a

monadic equational logic with an empty type Leq,0. There is an obvious conver-
sion from strong to weak equations (≡-to-∼), and in addition strong and weak

equations coincide on propagators by rule (eq1). Two catchers f
(2)
1 , f

(2)
2 : X →

Y behave in the same way on exceptions if and only if f1◦[]X ≡ f2◦[]X : 0 → Y ,
where []X : 0 → X builds a term of type X from any exception. Then rule (eq2)
expresses the fact that weak and strong equations are related by the property
that f1 ≡ f2 if and only if f1 ∼ f2 and f1 ◦ []X ≡ f2 ◦ []X . This can also
be expressed as a pair of weak equations: f1 ≡ f2 if and only if f1 ∼ f2 and
f1 ◦ []X ◦ tag ≡ f2 ◦ []X ◦ tag by rule (eq3). The core theory of exceptions
Texc-core is the theory of Lexc-core generated from some chosen theory T (0) of

L
(0)
exc-core . Some easily derived properties are stated in Lemma 4.1; Point 1 will

be used repeatedly.

Lemma 4.1. 1. each f (2) : 0 → 0 is such that f ∼ id0, each f (1) : 0 → Y is
such that f ≡ []Y , and each f (1) : 0 → 0 is such that f ≡ id0.

2. The fundamental strong equation for exceptions is tag ◦ untag ≡ id0.

3. For all pure terms u
(0)
1 , u

(0)
2 : X → P , one has: u1 ≡ u2 ⇐⇒ tag ◦ u1 ≡

tag ◦ u2 ⇐⇒ untag ◦ tag ◦ u1 ≡ untag ◦ tag ◦ u2.

4. For all pure terms u(0) : X → P , v(0) : X → 0, one has: u ≡ []P ◦ v ⇐⇒
tag ◦ u ≡ v.

Proof. 1. Clear.

2. By replacement in the axiom (ax) we get tag ◦ untag ◦ tag ∼ tag; then
by rule (eq3) tag ◦ untag ∼ id0.

10

Monadic equational logic with empty type Leq,0:

Types and terms: as for monadic equational logic, plus
an empty type 0 and a term []Y : 0 → Y for each Y

Rules: as for monadic equational logic, plus (empty)
f : 0 → Y

f ≡ []Y
Decorated logic for the core language for exceptions Lexc:

Pure part: some logic L
(0)
exc-core extending Leq,0, with a distinguished type P

Decorated terms: tag(1) : P → 0, untag(2) : 0 → P , and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:
(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (repl∼) for all decorations, (subs∼) only when h is pure

(empty∼)
f : 0 → X

f ∼ []X
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

untag ◦ tag ∼ idP

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 f1 ◦ []X ≡ f2 ◦ []X

f1 ≡ f2

(eq3)
f1, f2 : 0 → X f1 ◦ tag ∼ f2 ◦ tag

f1 ≡ f2

Figure 2: Logic for the core language for exceptions

3. Implications from left to right are clear. Conversely, if untag ◦ tag ◦ u1 ≡
untag ◦ tag ◦ u2, then using the axiom (ax) and the rule (subs∼) we get
u1 ∼ u2. Since u1 and u2 are pure this means that u1 ≡ u2.

4. First, since tag ◦ []P : 0 → 0 is a propagator we have tag ◦ []P ≡ id0.
Now, if u ≡ []P ◦ v then tag ◦ u ≡ tag ◦ []P ◦ v ≡ v. Conversely, if
tag ◦ u ≡ v then tag ◦ u ≡ tag ◦ []P ◦ v, and by Point 3 this means that
u ≡ []P ◦ v.

The operation untag in the core language can be used for decomposing the
try/catch construction in the programmer’s language in two steps: a step for
catching the exception, which is nested into a second step inside the try/catch
block: this corresponds to an implementation of the programmer’s language
by the core language, as in [5], which is reminded below; then Proposition 4.2
proves the correction of this implementation. In view of this implementation we
extend the core language with:

• for each b(1) : P → Y , a catcher (CATCH(b))(2) : Y → Y such that
CATCH(b) ∼ idY and CATCH(b) ◦ []Y ≡ b ◦ untag: if the argument of

11

CATCH(b) is non-exceptional then nothing is done, otherwise the parame-
ter p of the exception is recovered and b(p) is runned.

• for each a(1) : X → Y and k(2) : Y → Y , a propagator (TRY(a, k))(1) :
X → Y such that TRY(a, k) ∼ k ◦ a: thus TRY(a, k) behaves as k ◦ a on
non-exceptional arguments, but it does always propagate exceptions.

Then, an implementation of the programmer’s language of exceptions by the
core language is easily obtained:

• for each type Y : throw
(1)
Y = []Y ◦ tag : P → Y .

• for each a(1) :X→Y , b(1) :P →Y : (try(a)catch(b))(1) = TRY(a, CATCH(b)).

Proposition 4.2. If the pure term []Y : 0 → Y is a monomorphism with respect
to propagators for each type Y , the above implementation of the programmers’
language for exceptions by the core language is correct.

Proof. We have to prove that the images of the four basic properties of throw
and try/catch are satisfied.

• (propagate) For each a(1) : X → Y , the rules of Lexc-core imply that
a ◦ []X ≡ []Y , so that a ◦ []X ◦ tag ≡ []Y ◦ tag.

• (recover) For each u
(0)
1 , u

(0)
2 : X → P , if []Y ◦tag◦u1 ≡ []Y ◦tag◦u2 since

[]Y is a monomorphism with respect to propagators we have tag ◦ u1 ≡
tag ◦ u2, so that, by Point 3 in Lemma 4.1, we get u1 ≡ u2.

• (try0) For each u(0) : X → Y and b(1) : P → Y , we have TRY(u, CATCH(b)) ∼
CATCH(b) ◦ u and CATCH(b) ◦ u ∼ u (because CATCH(b) ∼ id and u is pure),
so that TRY(u, CATCH(b)) ∼ u; since both sides are propagators, we get
TRY(u, CATCH(b)) ≡ u.

• (try1) For each u(0) : X → P and b(1) : P → Y , we have TRY([]Y ◦ tag ◦
u, CATCH(b)) ∼ CATCH(b) ◦ []Y ◦ tag ◦ u and CATCH(b) ◦ []Y ≡ b ◦ untag
so that TRY([]Y ◦ tag ◦ u, CATCH(b)) ∼ b ◦ untag ◦ tag ◦ u. We have also
untag ◦ tag ◦ u ∼ u (because untag ◦ tag ∼ id and u is pure), so that
TRY([]Y ◦ tag ◦ u, CATCH(b)) ∼ b ◦ u; since both sides are propagators, we
get TRY([]Y ◦ tag ◦ u, CATCH(b)) ≡ b ◦ u.

Now let us check that the core decorated theory for exceptions is also rela-
tively Hilbert-Post complete, under suitable assumptions.

Proposition 4.3. 1. For each propagator a(1) : X → Y , either a is pure or

there is a pure term v(0) : X → P such that a(1) ≡ []
(0)
Y ◦ tag(1) ◦ v(0).

And for each propagator a(1) : X → 0 (either pure or not), there is a pure
term v(0) : X → P such that a(1) ≡ tag(1) ◦ v(0).

12

2. For each catcher f (2) : X → Y , either f is a propagator or there is
an propagator a(1) : P → Y and a pure term u(0) : X → P such that
f (2) ≡ a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proof. 1. If the propagator a(1) : X → Y is not pure then it contains at
least one occurrence of tag(1). Thus, it can be written in a unique way
as a = b ◦ tag ◦ v for some propagator b(1) : 0 → Y and some pure term

v(0) : X → P . Since b(1) : 0 → Y we have b(1) ≡ []
(0)
Y , and the first result

follows. When X = 0, it follows that a(1) ≡ tag(1) ◦v(0). When a : X → 0

is pure, one has a ≡ tag(1) ◦ ([]P ◦ a)(0).

2. The proof proceeds by structural induction. If f is pure the result is
obvious, otherwise f can be written in a unique way as f = g ◦ op ◦ u
where u is pure, op is either tag or untag and g is the remaining part
of f . By induction, either g is a propagator or g ≡ b ◦ untag ◦ tag ◦ v
for some pure term v and some propagator b. So, there are four cases to
consider. (1) If op = tag and g is a propagator then f is a propagator. (2)
If op = untag and g is a propagator then by Point 1 there is a pure term w
such that u ≡ tag◦w, so that f ≡ g(1) ◦untag◦tag◦w(0). (3) If op = tag

and g ≡ b(1) ◦ untag ◦ tag ◦ v(0) then f ≡ b ◦ untag ◦ tag ◦ v ◦ tag ◦ u.
Since v : 0 → P is pure we have tag ◦ v ≡ id0, so that f ≡ b(1) ◦
untag ◦ tag ◦ u(0). (4) If op = untag and g ≡ b(1) ◦ untag ◦ tag ◦ v(0)

then f ≡ b ◦ untag ◦ tag ◦ v ◦ untag ◦ u. Since v is pure, by (ax) and
(subs∼) we have untag ◦ tag ◦ v ∼ v. Besides, by (ax) and (repl∼) we
have v ◦ untag◦ tag ∼ v and untag◦ tag◦ v ◦ untag◦ tag ∼ untag◦ tag◦
v. Since ∼ is an equivalence relation these three weak equations imply
untag ◦ tag ◦ v ◦ untag ◦ tag ∼ v ◦ untag ◦ tag. By rule (eq3) we get
untag ◦ tag ◦ v ◦ untag ≡ v ◦ untag, and by Point 1 there is a pure term
w such that u ≡ tag ◦ w, so that f ≡ (b ◦ v)(1) ◦ untag ◦ tag ◦ w(0).

Thanks to Proposition 4.3, in order to study equations in the logic Lexc-core

we may restrict our study to pure terms, propagators of the form []
(0)
Y ◦tag(1) ◦

v(0) and catchers of the form a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proposition 4.4. 1. For all a
(1)
1 , a

(1)
2 : P → Y and u

(0)
1 , u

(0)
2 : X → P , let

f
(2)
1 = a1 ◦ untag ◦ tag ◦ u1 : X → Y and f

(2)
2 = a2 ◦ untag ◦ tag ◦ u2 :

X → Y . Then f1 ∼ f2 ⇐⇒ a1 ◦ u1 ≡ a2 ◦ u2 and f1 ≡ f2 ⇐⇒ (a1 ≡
a2 and a1 ◦ u1 ≡ a2 ◦ u2).

2. For all a
(1)
1 : P → Y , u

(0)
1 : X → P and a

(1)
2 : X → Y , let f

(2)
1 =

a1 ◦ untag ◦ tag ◦ u1 : X → Y . Then f1 ∼ a2 ⇐⇒ a1 ◦ u1 ≡ a2 and
f1 ≡ a2 ⇐⇒ (a1 ◦ u1 ≡ a2 and a1 ≡ []Y ◦ tag).

3. Let us assume that []
(0)
Y is a monomorphism with respect to propagators.

For all v
(0)
1 , v

(0)
2 : X → P , let a

(1)
1 = []Y ◦ tag ◦ v1 : X → Y and

a
(1)
2 = []Y ◦ tag ◦ v2 : X → Y . Then a1 ≡ a2 ⇐⇒ v1 ≡ v2.

13

4. Let us assume that there is a unit type 1 and a boolean type B, in the sense

of Definition 3.2 and that 〈 〉
(0)
Y is an epimorphism with respect to pure

terms. For all v
(0)
1 : X → P and v

(0)
2 : X → Y , let a

(1)
1 = []Y ◦ tag ◦ v1 :

X → Y . Then a1 ≡ v2 ⇐⇒ true ≡ false.

Proof. 1. Rule (eq2) implies that f1 ≡ f2 if and only if f1 ∼ f2 and f1◦[]X ≡
f2◦[]X . On the one hand, f1 ∼ f2 if and only if a1◦u1 ≡ a2◦u2: indeed, for
each i ∈ {1, 2}, by (ax) and (subs∼), since ui is pure we have fi ∼ ai ◦ ui.
On the other hand, let us prove that f1 ◦ []X ≡ f2 ◦ []X if and only
if a1 ≡ a2. For each i ∈ {1, 2}, the propagator tag ◦ ui ◦ []X : 0 → 0

satisfies tag ◦ ui ◦ []X ≡ id0, so that fi ◦ []X ≡ ai ◦ untag. Thus,
f1 ◦ []X ≡ f2 ◦ []X if and only if a1 ◦ untag ≡ a2 ◦ untag. Clearly, if
a1 ≡ a2 then a1◦untag ≡ a2◦untag. Conversely, if a1◦untag ≡ a2◦untag
then a1 ◦untag◦tag ≡ a2 ◦untag◦tag, so that by (ax) and (repl∼) we get
a1 ∼ a2, which means that a1 ≡ a2 because a1 and a2 are propagators.

2. Rule (eq2) implies that f1 ≡ a2 if and only if f1 ∼ a2 and f1 ◦ []X ≡
a2 ◦ []X . On the one hand, f1 ∼ a2 if and only if a1 ◦ u1 ≡ a2: indeed,
by (ax) and (subs∼), since u1 is pure we have f1 ∼ a1 ◦ u1. On the
other hand, let us prove that f1 ◦ []X ≡ a2 ◦ []X if and only if a1 ≡
[]Y ◦ tag, in two steps. Since a2 ◦ []X : 0 → Y is a propagator, we
have a2 ◦ []X ≡ []Y . Since f1 ◦ []X = a1 ◦ untag ◦ tag ◦ u1 ◦ []X with
tag ◦ u1 ◦ []X : 0 → 0 a propagator, we have tag ◦ u1 ◦ []X ≡ id0 and
thus we get f1 ◦ []X ≡ a1 ◦ untag. Thus, f1 ◦ []X ≡ a2 ◦ []X if and only if
a1 ◦ untag ≡ []Y . If a1 ◦ untag ≡ []Y then a1 ◦ untag ◦ tag ≡ []Y ◦ tag,
by (ax) and (repl∼) this implies a1 ∼ []Y ◦ tag, which is a strong equality
because both members are propagators. Conversely, if a1 ≡ []Y ◦ tag

then a1 ◦ untag ≡ []Y ◦ tag◦ untag, by Point 2 in Lemma 4.1 this implies
a1 ◦ untag ≡ []Y . Thus, a1 ◦ untag ≡ []Y if and only if a1 ≡ []Y ◦ tag.

3. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if []Y ◦
tag ◦ v1 ≡ []Y ◦ tag ◦ v2, since []Y is a monomorphism with respect to
propagators we get tag ◦ v1 ≡ tag ◦ v2. By Point 3 in Lemma 4.1, this
means that v1 ≡ v2.

4. If true ≡ false then according to the definition of a boolean type we
have a1 ≡ v2. Conversely if a1 ≡ v2, let a′1 = true ◦ 〈 〉Y ◦ a1 : X → B

and a′2 = true ◦ 〈 〉Y ◦ v2 : X → B and b = false ◦ 〈 〉P : P → B,
then TRY(a′1, CATCH(b)) ≡ TRY(a′2, CATCH(b)). Let us prove that this im-
plies true ◦ 〈 〉X ≡ false ◦ 〈 〉X . On the right hand side, since a′2 is
pure we can use the substitution rule for weak equations, so that we
get TRY(a′2, CATCH(b)) ∼ CATCH(b) ◦ a′2 ∼ idB ◦ a′2 ∼ a′2. Since both
TRY(a′2, CATCH(b)) and a′2 are propagators we get TRY(a′2, CATCH(b)) ≡ a′2.
And since a′2 = true ◦ 〈 〉Y ◦ v2 ≡ true ◦ 〈 〉X we get TRY(a′2, CATCH(b)) ≡
true◦〈 〉X . On the left hand side we get TRY(a′1, CATCH(b)) ∼ CATCH(b)◦a′1
where a′1 = true ◦ 〈 〉Y ◦ a1 = true ◦ 〈 〉Y ◦ []Y ◦ tag ◦ v1. Since
true ◦ 〈 〉Y ◦ []Y : 0 → B is pure we have true ◦ 〈 〉Y ◦ []Y ≡ []B, thus

14

a′1 ≡ []B◦tag◦v1. It follows that CATCH(b)◦a
′
1 ≡ CATCH(b)◦[]B◦tag◦v1 ≡

b ◦ untag ◦ tag ◦ v1. Since untag ◦ tag ∼ idP and v1 is pure we get
CATCH(b) ◦ a′1 ∼ b ◦ v1, where b ◦ v1 = false ◦ 〈 〉P ◦ v1 ≡ false ◦ 〈 〉X .
Altogether, we have TRY(a′1, CATCH(b)) ≡ false ◦ 〈 〉X . Thus, we have
proved that if a1 ≡ v2 then true ◦ 〈 〉X ≡ false ◦ 〈 〉X . Since 〈 〉X is an
epimorphism with respect to pure terms, we obtain true ≡ false.

Theorem 4.5. If there is a unit type 1 and a boolean type B in the sense of

Definition 3.2, if []
(0)
Y is a monomorphism with respect to propagators and if

〈 〉
(0)
Y is an epimorphism with respect to pure terms for each non-empty type Y ,

the core theory of exceptions Texc-core is relatively Hilbert-Post complete with

respect to the pure sublogic L
(0)
exc-core of Lexc-core.

Proof. The proof is based upon Propositions 4.3, 4.4 and 2.7. It follows the same
lines as the proof of Theorem 3.5, except when X is empty: because of catchers
the proof here is slightly more subtle. First, the theory Texc-core is consistent:

it cannot be proved that untag(2) ≡ []
(0)
P because because the logic Lexc-core is

sound with respect to its intended model and the interpretation of this equation
in the intended model is false: indeed, the function untag : E → P + E is such
that untag(tag(p)) = p ∈ P for each p ∈ P while []P (e) = e ∈ E for each
e ∈ E, which includes e = tag(p); since P + E is a disjoint union we have
untag(e) 6= []P (e) when e = tag(p). Now, let us consider an equation between
two terms f1 and f2 with domain X ; we distinguish two cases, whether X is
empty or not. When X is non-empty, then 〈 〉X is an epimorphism with respect
to pure terms. Thus, Propositions 4.3 and 4.4 prove that the given equation
is Texc-core-equivalent to a finite set of equations between pure terms. When
X is empty, then all terms from X to Y are only weakly equivalent to []Y , so
that we cannot conclude yet for any given equation. Let us consider two cases.
First, if the given equation is an equation between propagators then both f1
and f2 are strongly equivalent to []Y so that the given equation is Texc-core-
equivalent to the empty set of equations between pure terms. Otherwise, at
least one of f1 and f2 is a catcher, and there are two subcases to consider,
whether the given equation is weak or strong. If the equation is f1 ∼ f2 then
since f1 ∼ []Y and f2 ∼ []Y it is still Texc-core-equivalent to the empty set
of equations between pure terms. Now, if the equation is f1 ≡ f2 then by
Point 1 or 2 of Proposition 4.4, the equation f1 ≡ f2 is Texc-core-equivalent
to a set of equations between propagators. We have seen that each equation
between propagators (whether X is empty or not) is Texc-core-equivalent to a
set of equations between pure terms, so that f1 ≡ f2 is Texc-core-equivalent to
the union of the corresponding sets of pure equations. Finally, the result follows
from Proposition 2.7.

15

5 Verification of Hilbert-Post Completeness in

Coq

All the statements of Sections 3 and 4 have been checked in Coq. The proofs can
be found in https://forge.imag.fr/frs/download.php/645/hp-0.2.tar.gz,
as well as an almost dual proof for the completeness of the state. They share
the same framework, defined in [6]:

1. the terms of each logic are inductively defined through the dependent type
named term which builds a new Type out of two input Types. For instance,
term Y X is the Type of all terms of the form f : X → Y;

2. the decorations are enumerated: pure and propagator for both languages,
and catcher for the core language;

3. decorations are inductively assigned to the terms via the dependent type
called is. The latter builds a proposition (a Prop instance in Coq) out of a
term and a decoration. Accordingly, is pure (id X) is a Prop instance;

4. for the core language, we state the rules with respect to weak and strong
equalities by defining them in a mutually inductive way.

For instance, the completeness proof for the exceptions core language is 950
SLOC in Coq where it is 460 SLOC in LATEX. Full certification runs in 6.745s
on a Intel i7-3630QM @2.40GHz using the Coq Proof Assistant, v. 8.4pl3.

Below table details the proof lengths and timings for each library.

Proof lengths & Benchmarks
package source length in Coq length in LATEX Coq cert. time
exc cl-hp HPCompleteCoq.v 40 KB 15 KB 6.745 sec.
exc pl-hp HPCompleteCoq.v 8 KB 6 KB 1.704 sec.
exc impl Proofs.v 4 KB 2 KB 1.696 sec.
st-hp HPCompleteCoq.v 48 KB 15 KB 7.183 sec.

References

[1] Viviana Bono and Manfred Kerber. Extending Hoare Calculus to Deal with
Crash. The University of Birmingham, School of Computer Science. Re-
search Reports, CSR-06-08.

[2] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude
Reynaud. Decorated proofs for computational effects: States. ACCAT
2012. Electronic Proceedings in Theoretical Computer Science 93, p. 45-59
(2012).

[3] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude
Reynaud. A duality between exceptions and states. Mathematical Struc-
tures in Computer Science 22, p. 719-722 (2012).

16

https://forge.imag.fr/frs/download.php/645/hp-0.2.tar.gz
ftp://ftp.cs.bham.ac.uk/pub/authors/M.Kerber/TR/CSR-06-08.pdf
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ACCAT2012.3.pdf
http://arxiv.org/pdf/1112.2394v1

[4] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Carte-
sian effect categories are Freyd-categories. J. of Symb. Comput. 46, p. 272-
293 (2011).

[5] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Jean-Claude
Reynaud. Certified proofs in programs involving exceptions. CICM 2014,
Coimbra, Portugal, 7–11 July 2014. CEURWorkshop Proceedings, no 1186,
paper 20.

[6] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous. For-
mal verification in Coq of program properties involving the global state.
JFLA 2014, pages 1–15, Frejus, France, 8–11 January 2014.

[7] Working Draft, Standard for Programming Language C++. ISO/IEC
JTC1/SC22/WG21 standard 14882:2011.

[8] James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley Longman (2005).

[9] John M. Lucassen, David K. Gifford. Polymorphic effect systems. POPL
1988. ACM Press, p. 47-57.

[10] Eugenio Moggi. Notions of Computation and Monads. Information and
Computation 93(1), p. 55-92 (1991).

[11] Matija Pretnar. The Logic and Handling of Algebraic Effects. PhD. Uni-
versity of Edinburgh 2010.

[12] Gordon D. Plotkin, John Power. Notions of Computation Determine Mon-
ads. FoSSaCS 2002. LNCS, Vol. 2620, p. 342-356, Springer (2002).

[13] Gordon D. Plotkin, Matija Pretnar. Handlers of Algebraic Effects. ESOP
2009. LNCS, Vol. 5502, p. 80-94, Mpringer (2009).

[14] Sam Staton. Completeness for Algebraic Theories of Local State. FoSSaCS
2010. LNCS, Vol. 6014, p. 48-63, Springer (2010).

[15] Alfred Tarski. III On some fundamental concepts in mathematics. In Logic,
Semantics, Metamathematics: Papers from 1923 to 1938 by Alfred Tarski,
p. 30-37. Oxford University Press (1956).

A Completeness for states

Most programming languages such as C/C++ and Java support the usage and
manipulation of the state (memory) structure. Even though the state structure
is never syntactically mentioned, the commands are allowed to use or manipu-
late it, for instance looking up or updating the value of variables. This provides
a great flexibility in programming, but in order to prove the correctness of pro-
grams, one usually has to revert to an explicit manipulation of the state. There-
fore, any access to the state, regardless of usage or manipulation, is treated as

17

http://arxiv.org/pdf/0903.3311v3
http://ceur-ws.org/Vol-1186/paper-20.pdf
http://arxiv.org/pdf/1310.0794v2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.cs.ioc.ee/ewscs/2010/mycroft/lucassen-popl88.pdf
http://www.cs.cmu.edu/afs/cs/user/crary/www/819-f09/Moggi91.pdf
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf
http://link.springer.com/chapter/10.1007/3-540-45931-6_24
http://homepages.inf.ed.ac.uk/gdp/publications/Effect_Handlers.pdf
http://www.cs.ru.nl/~sstaton/papers/fossacs10.pdf

a computational effect: a syntactical term f : X → Y is not interpreted as
f : X → Y unless it is pure, that is unless it does not use the variables in
any manner. Indeed, a term which updates the state has instead the following
interpretation: f : X × S → Y × S where ‘×’ is the product operator and S is
the set of possible states. In [6], we proposed a proof system to prove program
properties involving states effect, while keeping the memory manipulations im-
plicit. We summarize this system next and prove its Hilbert-Post completeness
in Theorem A.6, as a variant of Pretnar’s result [11].

As noticed in [5], the logic Lexc-core is exactly dual to the logic Lst for states
(as reminded below). Thus, the dual of all results in Section 4 are valid, with the
dual proof. This holds for the completeness Theorem 4.5. However, the intended
models for exceptions and for states rely on the category of sets, which is not
self-dual, and the additional assumptions in Theorem 4.5, like the existence of
a boolean type, cannot be dualized without loosing the soundness of the logic
with respect to its intended interpretation. It follows that the completeness
Theorem A.6 for the theory for states is not exactly the dual of Theorem 4.5.
In this Appendix, for the sake of readability, we give all the details of the proof of
Theorem A.6; we will mention which parts are not the dual of the corresponding
parts in the proof of Theorem 4.5.

As in [2], decorated logics for states are obtained from equational logics by
classifying terms and equations. Terms are classified as pure terms, accessors or
modifiers, which is expressed by adding a decoration or superscript, respectively
(0), (1) and (2); decoration and type information about terms may be omitted
when they are clear from the context or when they do not matter. Equations are
classified as strong or weak equations, denoted respectively by the symbols ≡
and ∼. Weak equations relates to the values returned by programs, while strong
equations relates to both values and side effects. In order to observe the state,
accessors may use the values stored in locations, and modifiers may update these
values. In order to focus on the main features of the proof of completeness, let us
assume that only one location can be observed and modified; the general case,
with an arbitrary number of locations, is considered in Remark A.7. The logic
for dealing with pure terms may be any logic which extends a monadic equational
logic with constants Leq,1; its terms are decorated as pure and its equations are

strong. This pure sublogic L
(0)
st is extended to form the corresponding decorated

logic for states Lst . The rules for Lst are given in Fig. 3. A theory T (0) of L
(0)
st

is chosen, then the theory of states Tst is the theory of Lst generated from T (0).
Let us now discuss the logic Lst and its intended interpretation in sets; it is
assumed that some model of the pure subtheory T (0) in sets has been chosen;
the names of the rules refer to Fig. 3.

Each type X is interpreted as a set, denoted X . The intended model is
described with respect to a set S called the set of states, which does not appear
in the syntax. A pure term u(0) : X → Y is interpreted as a function u : X → Y ,
an accessor a(1) : X → Y as a function a : S × X → Y , and a modifier
f (2) : X → Y as a function f : S ×X → S × Y . There are obvious conversions
from pure terms to accessors and from accessors to modifiers, which allow to

18

consider all terms as modifiers whenever needed; for instance, this allows to
interpret the composition of terms without mentioning Kleisli composition; the
complete characterization is given in [2].

Here, for the sake of simplicity, we consider a single variable (as done, e.g.,
in [11] and [14]), and dually to the choice of a unique exception name in Section 4.
See Remark A.7 for the generalization to an arbitrary number of variables.
The values of the unique location have type V . The fundamental operations
for dealing with the state are the accessor lookup(1) : 1 → V for reading
the value of the location and the modifier update(2) : V → 1 for updating
this value. According to their decorations, they are interpreted respectively as
functions lookup : S → V and update : S × V → S. Since there is only one
location, it might be assumed that lookup : S → V is a bijection and that
update : S × V → S maps each (s, v) ∈ S × V to the unique s′ ∈ S such that
lookup(s′) = v: this is expressed by a weak equation, as explained below.

A strong equation f ≡ g means that f and g return the same result and
modify the state in “the same way”, which means that no difference can be
observed between the side-effects performed by f and by g. Whenever lookup :
S → V is a bijection, a strong equation f (2) ≡ g(2) : X → Y is interpreted as
the equality f = g : S×X → S×Y : for each (s, x) ∈ S×X , let f(s, x) = (s′, y′)
and g(s, x) = (s′′, y′′), then f ≡ g means that y′ = y′′ and s′ = s′′ for all (s, x).
Strong equations form a congruence. A weak equation f ∼ g means that f
and g return the same result although they may modify the state in different
ways. Thus, a weak equation f (2) ∼ g(2) : X → Y is interpreted as the equality
prY ◦ f = prY ◦ g : S × X → Y , where prY : S × Y → Y is the projection;
with the same notations as above, this means that y′ = y′′ for all (s, x). Weak
equations do not form a congruence: the replacement rule holds only when the
replaced term is pure. The fundamental equation for states is provided by rule
(ax): lookup(1) ◦ update(2) ∼ idV . This means that updating the location with
a value v and then observing the value of the location does return v. Clearly
this is only a weak equation: its right-hand side does not modify the state while
its left-hand side usually does. There is an obvious conversion from strong to
weak equations (≡-to-∼), and in addition strong and weak equations coincide

on accessors by rule (eq1). Two modifiers f
(2)
1 , f

(2)
2 : X → Y modify the state

in the same way if and only if 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 : X → 1, where 〈 〉Y : Y → 1

throws out the returned value. Then weak and strong equations are related by
the property that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2,
by rule (eq2). This can be expressed as a pair of weak equations f1 ∼ f2 and
lookup ◦ 〈 〉Y ◦ f1 ∼ lookup ◦ 〈 〉Y ◦ f2, by rule (eq3). Some easily derived
properties are stated in Lemma A.1; Point 1 will be used repeatedly.

Lemma A.1. 1. each f (2) : 1 → 1 is such that f ∼ id1, each f (1) : X → 1

is such that f ≡ 〈 〉X , and each f (1) : 1 → 1 is such that f ≡ id1.

2. The fundamental strong equation for states is update ◦ lookup ≡ id1.

3. For all pure terms u
(0)
1 , u

(0)
2 : V → Y , one has: u1 ≡ u2 ⇐⇒ u1 ◦

lookup ≡ u2 ◦ lookup ⇐⇒ u1 ◦ lookup◦ update ≡ u2 ◦ lookup◦ update.

19

Monadic equational logic with constants Leq,1:

Types and terms: as for monadic equational logic, plus
a unit type 1 and a term 〈 〉X : X → 1 for each X

Rules: as for monadic equational logic, plus (unit)
f : X → 1

f ≡ 〈 〉X
Decorated logic for states Lst :

Pure part: some logic L
(0)
st extending Leq,1, with a distinguished type V

Decorated terms: lookup(1) : 1 → V , update(2) : V → 1, and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:
(equiv≡), (subs≡), (repl≡) for all decorations
(equiv∼), (subs∼) for all decorations, (repl∼) only when h is pure

(unit∼)
f : X → 1

f ∼ 〈 〉X
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

lookup ◦ update ∼ idV

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2

f1 ≡ f2

(eq3)
f1, f2 : X → 1 lookup ◦ f1 ∼ lookup ◦ f2

f1 ≡ f2

Figure 3: Logic for states (dual to Fig. 2)

4. For all pure terms u(0) : V → Y , v(0) : 1 → Y , one has: u ≡ v ◦ 〈 〉V ⇐⇒
u ◦ lookup ≡ v.

Proof. 1. Clear.

2. By substitution in the axiom (ax) we get lookup ◦ update ◦ lookup ∼
lookup; then by rule (eq3) update ◦ lookup ≡ id1.

3. Implications from left to right are clear. Conversely, if u1 ◦ lookup ◦
update ≡ u2 ◦ lookup ◦ update, then using the axiom (ax) and the rule
(repl∼) we get u1 ∼ u2. Since u1 and u2 are pure this means that u1 ≡ u2.

4. First, since 〈 〉V ◦lookup : 1 → 1 is an accessor we have 〈 〉V ◦lookup ≡ id1.
Now, if u ≡ v◦〈 〉V then u◦lookup ≡ v◦〈 〉V ◦lookup, so that u◦lookup ≡
v. Conversely, if u ◦ lookup ≡ v then u ◦ lookup ≡ v ◦ 〈 〉V ◦ lookup, and
by Point (3) this means that u ≡ v ◦ 〈 〉V .

Our main result is Theorem A.6 about the relative Hilbert-Post completeness
of the decorated theory of states under suitable assumptions.

20

Proposition A.2. 1. For each accessor a(1) : X → Y , either a is pure or

there is a pure term v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1) ◦ 〈 〉
(0)
X .

For each accessor a(1) : 1 → Y (either pure or not), there is a pure term
v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1).

2. For each modifier f (2) : X → Y , either f is an accessor or there is an
accessor a(1) : X → V and a pure term u(0) : V → Y such that f (2) ≡
u(0) ◦ lookup(1) ◦ update(2) ◦ a(1).

Proof. 1. If the accessor a(1) : X → Y is not pure then it contains at least
one occurrence of lookup(1). Thus, it can be written in a unique way as
a = v ◦ lookup ◦ b for some pure term v(0) : V → Y and some accessor

b(1) : X → 1. Since b(1) : X → 1 we have b(1) ≡ 〈 〉
(0)
X , and the first

result follows. When X = 1, it follows that a(1) ≡ v(0) ◦ lookup(1). When
a : 1 → Y is pure, one has a ≡ (a ◦ 〈 〉V)

(0) ◦ lookup(1).

2. The proof proceeds by structural induction. If f is pure the result is
obvious, otherwise f can be written in a unique way as f = u ◦ op ◦ g
where u is pure, op is either lookup or update and g is the remaining part
of f . By induction, either g is an accessor or g ≡ v ◦ lookup ◦ update ◦ b
for some pure term v and some accessor b. So, there are four cases to
consider.

• If op = lookup and g is an accessor then f is an accessor.

• If op = update and g is an accessor then by Point 1 there is a pure
term w such that u ≡ w◦lookup, so that f ≡ w(0)◦lookup◦update◦
g(1).

• If op = lookup and g ≡ v(0) ◦ lookup ◦ update ◦ b(1) then f ≡
u ◦ lookup◦ v ◦ lookup ◦ update◦ b. Since v : V → 1 is pure we have
v ◦ lookup ≡ id1, so that f ≡ u(0) ◦ lookup ◦ update ◦ b(1).

• If op = update and g ≡ v(0) ◦ lookup ◦ update ◦ b(1) then f ≡
u(0)◦update◦v(0)◦lookup◦update◦b(1). Since v is pure, by (ax) and
(repl∼) we have v◦lookup◦update ∼ v. Besides, by (ax) and (subs∼)
we have lookup ◦ update ◦ v ∼ v and lookup ◦ update ◦ v ◦ lookup ◦
update ∼ v◦lookup◦update. Since ∼ is an equivalence relation these
three weak equations imply lookup◦ update◦ v ◦ lookup◦ update ∼
lookup◦update◦v. By rule (eq3) we get update◦v◦lookup◦update ≡
update ◦ v, so that f ≡ u(0) ◦ update ◦ (v ◦ b)(1).

Thanks to Proposition A.2, in order to study equations in the logic Lst we

may restrict our study to pure terms, accessors of the form v(0)◦lookup(1)◦〈 〉
(0)
X

and modifiers of the form u(0) ◦ lookup(1) ◦ update(2) ◦ a(1).
Point 4 in Proposition A.2 is not dual to Point 4 in Proposition 4.3

21

Proposition A.3. 1. For all a
(1)
1 , a

(1)
2 : X → V and u

(0)
1 , u

(0)
2 : V → Y , let

f
(2)
1 = u1◦lookup◦update◦a1 : X → Y and f

(2)
2 = u2◦lookup◦update◦

a2 : X → Y . Then

{

f1 ∼ f2 ⇐⇒ u1 ◦ a1 ≡ u2 ◦ a2

f1 ≡ f2 ⇐⇒ a1 ≡ a2 and u1 ◦ a1 ≡ u2 ◦ a2

2. For all a
(1)
1 : X → V , u

(0)
1 : V → Y and a

(1)
2 : X → Y , let f

(2)
1 =

u1 ◦ lookup ◦ update ◦ a1 : X → Y . Then

{

f1 ∼ a2 ⇐⇒ u1 ◦ a1 ≡ a2

f1 ≡ a2 ⇐⇒ u1 ◦ a1 ≡ a2 and a1 ≡ lookup ◦ 〈 〉X

3. Let us assume that 〈 〉
(0)
X is an epimorphism with respect to accessors.

For all v
(0)
1 , v

(0)
2 : V → Y let a

(1)
1 = v1 ◦ lookup ◦ 〈 〉X : X → Y and

a
(1)
2 = v2 ◦ lookup ◦ 〈 〉X : X → Y . Then

a1 ≡ a2 ⇐⇒ v1 ≡ v2

4. Let us assume that 〈 〉
(0)
V is an epimorphism with respect to accessors and

that there exists a pure term k
(0)
X : 1 → X. For all v

(0)
1 : V → Y and

v
(0)
2 : X → Y , let a

(1)
1 = v1 ◦ lookup ◦ 〈 〉X : X → Y . Then

a1 ≡ v2 ⇐⇒ v1 ≡ v2 ◦ kX ◦ 〈 〉V and v2 ≡ v2 ◦ kX ◦ 〈 〉X

Proof. 1. Rule (eq2) implies that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦f1 ≡
〈 〉Y ◦f2. On the one hand, f1 ∼ f2 if and only if u1 ◦a1 ≡ u1 ◦a2: indeed,
for each i ∈ {1, 2}, by (ax) and (repl∼), since ui is pure we have fi ∼ ui◦ai.
On the other hand, let us prove that 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 if and only if
a1 ≡ a2.

• For each i ∈ {1, 2}, the accessor 〈 〉Y ◦ ui ◦ lookup : 1 → 1 satisfies
〈 〉Y ◦ ui ◦ lookup ≡ id1, so that 〈 〉Y ◦ fi ≡ update ◦ ai. Thus,
〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2 if and only if update ◦ a1 ≡ update ◦ a2.

• Clearly, if a1 ≡ a2 then update ◦ a1 ≡ update ◦ a2. Conversely, if
update ◦ a1 ≡ update ◦ a2 then lookup ◦ update ◦ a1 ≡ lookup ◦
update ◦ a2, so that by (ax) and (subs∼) we get a1 ∼ a2, which
means that a1 ≡ a2 because a1 and a2 are accessors.

2. Rule (eq2) implies that f1 ≡ a2 if and only if f1 ∼ a2 and 〈 〉Y ◦ f1 ≡
〈 〉Y ◦ a2. On the one hand, f1 ∼ a2 if and only if u1 ◦ a1 ≡ a2: indeed, by
(ax) and (repl∼), since u1 is pure we have f1 ∼ u1◦a1. On the other hand,
let us prove that 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ a2 if and only if a1 ≡ lookup ◦ 〈 〉X , in
two steps.

22

• Since 〈 〉Y ◦a2 : X → 1 is an accessor, we have 〈 〉Y ◦a2 ≡ 〈 〉X . Since
〈 〉Y ◦ f1 = 〈 〉Y ◦ u1 ◦ lookup ◦ update ◦ a1 with 〈 〉Y ◦ u1 ◦ lookup :
1 → 1 an accessor, we have 〈 〉Y ◦ u1 ◦ lookup ≡ id1 and thus we get
〈 〉Y ◦ f1 ≡ update ◦ a1. Thus, 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ a2 if and only if
update ◦ a1 ≡ 〈 〉X .

• If update ◦ a1 ≡ 〈 〉X then lookup ◦ update ◦ a1 ≡ lookup ◦ 〈 〉X ,
by (ax) and (subs∼) this implies a1 ∼ lookup ◦ 〈 〉X , which is a
strong equality because both members are accessors. Conversely, if
a1 ≡ lookup ◦ 〈 〉X then update ◦ a1 ≡ update ◦ lookup ◦ 〈 〉X ,
by Point 2 in Lemma A.1 this implies update ◦ a1 ≡ 〈 〉X . Thus,
update ◦ a1 ≡ 〈 〉X if and only if a1 ≡ lookup ◦ 〈 〉X .

3. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if v1◦lookup◦
〈 〉X ≡ v2 ◦ lookup ◦ 〈 〉X , since 〈 〉X is an epimorphism with respect to
accessors we get v1 ◦ lookup ≡ v2 ◦ lookup. By Point 3 in Lemma A.1,
this means that v1 ≡ v2.

4. Let w
(0)
2 = v2 ◦ kX : 1 → Y . Let us assume that v1 ≡ w2 ◦ 〈 〉V and

v2 ≡ w2◦〈 〉X . Equation v1 ≡ w2◦〈 〉V implies a1 ≡ w2◦〈 〉V ◦lookup◦〈 〉X .
Since 〈 〉V ◦ lookup ≡ id1 we get a1 ≡ w2 ◦ 〈 〉X . Then, equation v2 ≡
w2 ◦ 〈 〉X implies a1 ≡ v2. Conversely, let us assume that a1 ≡ v2, which
means that v1 ◦ lookup ◦ 〈 〉X ≡ v2. Then v1 ◦ lookup ◦ 〈 〉X ◦ kX ◦ 〈 〉V ≡
v2 ◦kX ◦ 〈 〉V , which reduces to v1 ◦lookup◦ 〈 〉V ≡ w2 ◦ 〈 〉V . Since 〈 〉V is
an epimorphism with respect to accessors we get v1 ◦ lookup ≡ w2, which
means that v1 ≡ w2 ◦ 〈 〉V by Point 4 in Lemma A.1. Now let us come
back to equation v1 ◦ lookup ◦ 〈 〉X ≡ v2; since v1 ≡ w2 ◦ 〈 〉V , it yields
w2 ◦ 〈 〉V ◦ lookup ◦ 〈 〉X ≡ v2, so that w2 ◦ 〈 〉X ≡ v2.

The assumption for Theorem A.6 comes form the fact that the existence

of a pure term k
(0)
X : 1 → X , which is used in Point 4 of Proposition A.3,

is incompatible with the intended model of states if X is interpreted as the
empty set. The assumption for Theorem A.6 is not dual to the assumption for
Theorem 4.5.

Definition A.4. A type X is inhabited if there exists a pure term k
(0)
X : 1 → X .

A type 0 is empty if for each type Y there is a pure term []
(0)
Y : 0 → Y , and

every term f : 0 → Y is such that f ≡ []Y .

Remark A.5. WhenX is inhabited then for any k
(0)
X : 1 → X we have 〈 〉X◦kX ≡

id1, so that 〈 〉X is a split epimorphism; it follows that 〈 〉X is an epimorphism
with respect to all terms, and especially with respect to accessors.

Theorem A.6. If every non-empty type is inhabited and if V is non-empty, the
theory of states Tst is relatively Hilbert-Post complete with respect to the pure

sublogic L
(0)
st of Lst .

23

Proof. The proof relies upon Propositions A.2, A.3 and 2.7; it follows the same
lines as the proofs of Theorems 3.5 and 4.5. The theory Tst is consistent: it

cannot be proved that update(2) ≡ 〈 〉
(0)
V because the logic Lst is sound with

respect to its intended model and the interpretation of this equation in the
intended model is false as sson as V has at least two elements: indeed, for
each state s and each x ∈ V , lookup ◦ update(x, s) = x because of (ax) while
lookup ◦ 〈 〉V (x, s) = lookup(s) does not depend on x. Let us consider an
equation (strong or weak) between terms with domain X in Lst ; we distinguish
two cases, whether X is empty or not. When X is empty, then all terms from X
to Y are strongly equivalent to []Y , so that the given equation is Tst -equivalent
to the empty set of equations between pure terms. When X is non-empty then
it is inhabited, thus by Remark A.5 〈 〉X is an epimorphism with respect to
accessors. Thus, Propositions A.2 and A.3 prove that the given equation is Tst -
equivalent to a finite set of equations between pure terms. Thus, in both cases,
the result follows from Proposition 2.7.

Remark A.7. This can be generalized to an arbitrary number of locations. The
logic Lst and the theory Tst have to be generalized as in [2], then Proposition A.2
has to be adapted using the basic properties of lookup and update, as stated
in [12]; these properties can be deduced from the decorated theory for states,
as proved in [6]. The rest of the proof generalizes accordingly, as in [11].

24

	Introduction
	Relative Hilbert-Post completeness
	Completeness for exceptions
	Completeness of the core language for exceptions
	Verification of Hilbert-Post Completeness in Coq
	Completeness for states

