Hilbert-Post completeness for the state and the exception effects
 Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous, Jean-Claude Reynaud

- To cite this version:

Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous, Jean-Claude Reynaud. Hilbert-Post completeness for the state and the exception effects. 2015. hal-01121924v1

HAL Id: hal-01121924
https://hal.science/hal-01121924v1
Preprint submitted on 2 Mar 2015 (v1), last revised 8 Oct 2015 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hilbert-Post completeness for the state and the exception effects

Jean-Guillaume Dumas* Dominique Duval* Burak Ekici*
Damien Pous ${ }^{\dagger} \quad$ Jean-Claude Reynaud ${ }^{\ddagger}$

March 2, 2015

Abstract

In this paper, we present a novel framework for studying the syntactic completeness of computational effects and we apply it to the exception effect. When applied to the states effect, our framework can be seen as a generalization of Pretnar's work on this subject. We first introduce a relative notion of Hilbert-Post completeness, well-suited to the composition of effects. Then we prove that the exception effect is relatively Hilbert-Post complete, as well as the "core" language which may be used for implementing it; these proofs have been formalized and checked with the proof assistant Coq.

1 Introduction

In order to add reasoning capabilities to computer algebra systems one has to be able to deal with various programming languages, including languages which involve computational effects. For instance at CICM Workshops 2014 we presented a method for certified proofs in programs involving exceptions, with its implementation in Coq and an application to exact linear algebra. A major difficulty for reasoning about programs involving computational effects is that their syntax does not look like their interpretation: typically, a piece of program with arguments in X that returns a value in Y is not interpreted as a function from X to Y , because of the effects. The best-known algebraic approach of this problem has been initiated by Moggi and implemented in Haskell; it focuses on the case where the interpretation is a function from X to $\mathrm{T}(\mathrm{Y})$ for a monad T [10]. Monads have then been extended to Lawvere theories and

[^0]algebraic handlers [12, 13] while other approaches include effect systems [9], or Hoare logic [1]. Following this line, completeness results have been obtained for (global) states [11] and for local states [14]. We instead mix effect systems and algebraic theories by adding decorations to terms and equations for staying close to the syntax while reasoning with effects. Such decorated logical systems have been designed for the state (variables and memory) and exception (throwing and handling) effects and recently implemented in Coq $[2,5,6]$. They have been built so as to be sound with respect to their intended interpretation, but little is known about their completeness.

Then, Hilbert-Post completeness (also called Post completeness) is a syntactic notion of completeness which does not use any notion of negation, so that it is well-suited for equational logic. In a given logic L, we call theory a set of sentences which is deductively closed: everything you can derive from it (using the rules of L) is already in it. A theory is (Hilbert-Post) consistent if it does not contain all sentences, and it is (Hilbert-Post) complete if it is consistent and if any sentence which is added to it generates an inconsistent theory [15, Def. 4].

In this paper, we first introduce a relative notion of Hilbert-Post completeness in a logic L with respect to a sublogic L_{0}; it is still a syntactic notion of completeness using no negation, but it allows to express more flexible properties than the usual (or absolute) Hilbert-Post completeness. It can be proved that the decorated theory for global states is relatively Hilbert-Post complete. This proof is presented in Appendix A. It follows the same lines as the Hilbert-Post completeness proof for global states in [11]. In this paper, we prove a novel result: the decorated theory for exceptions is relatively Hilbert-Post complete, and moreover this property holds also for the core theory which may be used for implementing exceptions, as described in [5]. Our completeness proofs are mainly based on the approach given in [11]: first canonical forms are highlighted for syntactical terms and, second, theories are restricted to these forms so that the proofs follow. All the completeness proofs have been verified with the Coq proof assistant, using the framework introduced in [6] for the state effect.

Thus, in Section 2 we define the relative Hilbert-Post completeness. Then, using the relevant decorated logics, we prove the relative Hilbert-Post completeness of the theory of exceptions in Section 3 and of the corresponding core theory in Section 4. We conclude with a short description of the implementation of the proofs in Coq. The relative Hilbert-Post completeness of the decorated theory of states is proved in Appendix A.

2 Relative Hilbert-Post completeness

Each logic in this paper comes with a language, which is a set of formulas, and with deduction rules. Deduction rules are used for deriving (or generating) theorems, which are some formulas, from some chosen formulas called axioms. A theory T is a set of theorems which is deductively closed, in the sense that every theorem which can be derived from T using the rules of the logic is already in
T. We describe a set-theoretic intended model for each logic we introduce; the rules of the logic are designed so as to be sound with respect to this intended model. Given a logic L, the theories of L are partially ordered by inclusion. There is a maximal theory $T_{\max }$, where all formulas are theorems. There is a minimal theory $T_{\min }$, which is generated by the empty set of axioms. For all theories T and T^{\prime}, we denote by $T+T^{\prime}$ the theory generated from T and T^{\prime}.
Example 2.1. With this point of view there are many different equational logics, with the same deduction rules but with different languages, depending on the definition of terms. In an equational logic, formulas are pairs of parallel terms $(f, g): X \rightarrow Y$ and theorems are equations $f \equiv g: X \rightarrow Y$. Typically, the language of an equational logic may be defined from a signature (made of sorts and operations). The deduction rules are such that the equations in a theory form a congruence, i.e., an equivalence relation compatible with the structure of the terms. For instance, we may consider the logic "of naturals" $L_{n a t}$, with its language generated from the signature made of a sort N, a constant $0: \mathbb{1} \rightarrow N$ and an operation $s: N \rightarrow N$. For this logic, the minimal theory is the theory "of naturals" $T_{n a t}$, the maximal theory is such that $s^{k} \equiv s^{\ell}$ and $s^{k} \circ 0 \equiv s^{\ell} \circ 0$ for all natural numbers k and ℓ, and (for instance) the theory "of naturals modulo 6 " $T_{\text {mod6 }}$ can be generated from the equation $s^{6} \equiv i d_{N}$. We consider models of equational logics in sets: each type X is interpreted as a set (still denoted X), which is a singleton when X is $\mathbb{1}$, each term $f: X \rightarrow Y$ as a function from X to Y (still denoted $f: X \rightarrow Y$), and each equation as an equality of functions.

Definition 2.2. Given a logic L and its maximal theory $T_{\max }$, a theory T is consistent if $T \neq T_{\max }$, and it is Hilbert-Post complete if it is consistent and if any theory which contains T coincides with $T_{\max }$ or with T.

Example 2.3. In Example 2.1 we considered two theories for the $\operatorname{logic} L_{n a t}$: the theory "of naturals" $T_{n a t}$ and the theory "of naturals modulo 6" $T_{\text {mod } 6}$. Since both are consistent and $T_{\text {mod } 6}$ contains $T_{n a t}$, the theory $T_{n a t}$ is not HilbertPost complete. The unique Hilbert-Post complete theory for $L_{n a t}$ is made of all equations but $s \equiv i d_{N}$, it can be generated from the axioms $s \circ 0 \equiv 0$ and $s \circ s \equiv s$.

If a logic L is an extension of a sublogic L_{0}, each theory T_{0} of L_{0} generates a theory $F\left(T_{0}\right)$ of L. Conversely, each theory T of L determines a theory $G(T)$ of L_{0}, made of the theorems of T which are formulas of L_{0}, so that $G\left(T_{\max }\right)=T_{\max , 0}$. The functions F and G are monotone and they form a Galois connection, denoted $F \dashv G$: for each theory T of L and each theory T_{0} of L_{0} we have $F\left(T_{0}\right) \subseteq T$ if and only if $T_{0} \subseteq G(T)$. It follows that $T_{0} \subseteq G\left(F\left(T_{0}\right)\right)$ and $F(G(T)) \subseteq T$.

Definition 2.4. Given a logic L_{0}, an extension L of L_{0} and the associated Galois connection $F \dashv G$, a theory T^{\prime} of L is L_{0}-derivable from a theory T of L if $T^{\prime}=T+F\left(T_{0}^{\prime}\right)$ for some theory T_{0}^{\prime} of L_{0}, and it is relatively HilbertPost complete with respect to L_{0} if it is consistent and if any theory of L which contains T is L_{0}-derivable from T.

Each theory T is L_{0}-derivable from itself, because $T=T+F\left(T_{\text {min }, 0}\right)$, where $T_{\min , 0}$ is the minimal theory of L_{0}. In addition, Theorem 2.6 shows that relative completeness lifts the usual "absolute" completeness from L_{0} to L.

Lemma 2.5. Let us consider a logic L_{0}, an extension L of L_{0} and the associated Galois connection $F \dashv G$. For each theory T of L, a theory T^{\prime} of L is L_{0} derivable from T if and only if $T^{\prime}=T+F\left(G\left(T^{\prime}\right)\right)$. As a special case, $T_{\max }$ is L_{0}-derivable from T if and only if $T_{\max }=T+F\left(T_{\max , 0}\right)$. A theory T of L is relatively Hilbert-Post complete with respect to L_{0} if and only if it is consistent and every theory T^{\prime} of L which contains T is such that $T^{\prime}=T+F\left(G\left(T^{\prime}\right)\right)$.

Proof. Clearly, if $T^{\prime}=T+F\left(G\left(T^{\prime}\right)\right)$ then T^{\prime} is L_{0}-derivable from T. So, let T_{0}^{\prime} be a theory of L_{0} such that $T^{\prime}=T+F\left(T_{0}^{\prime}\right)$, and let us prove that $T^{\prime}=T+F\left(G\left(T^{\prime}\right)\right)$. For each theory T^{\prime} we know that $F\left(G\left(T^{\prime}\right)\right) \subseteq T^{\prime}$; since here $T \subseteq T^{\prime}$ we get $T+F\left(G\left(T^{\prime}\right)\right) \subseteq T^{\prime}$. Conversely, for each theory T_{0}^{\prime} we know that $T_{0}^{\prime} \subseteq G\left(F\left(T_{0}^{\prime}\right)\right)$ and that $G\left(F\left(T_{0}^{\prime}\right)\right) \subseteq G(T)+G\left(F\left(T_{0}^{\prime}\right)\right) \subseteq G\left(T+F\left(T_{0}^{\prime}\right)\right)$, so that $T_{0}^{\prime} \subseteq G\left(T+F\left(T_{0}^{\prime}\right)\right)$; since here $T^{\prime}=T+F\left(T_{0}^{\prime}\right)$ we get first $T_{0}^{\prime} \subseteq G\left(T^{\prime}\right)$ and then $T^{\prime} \subseteq T+F\left(G\left(T^{\prime}\right)\right)$. Then, the result for $T_{\max }$ comes from the fact that $G\left(T_{\max }\right)=T_{\max , 0}$. The last point follows immediately.

Theorem 2.6. Let us consider a logic L_{0}, an extension L of L_{0} and the associated Galois connection $F \dashv G$. Let T_{0} be a theory of L_{0} and $T=F\left(T_{0}\right)$. If T_{0} is Hilbert-Post complete (in L_{0}) and T is relatively Hilbert-Post complete with respect to L_{0}, then T is Hilbert-Post complete (in L).

Proof. Since T is relatively complete with respect to L_{0}, it is consistent. Since $T=F\left(T_{0}\right)$ we have $T_{0} \subseteq G(T)$. Let T^{\prime} be a theory such that $T \subseteq T^{\prime}$. Since T is relatively complete with respect to L_{0}, by Lemma 2.5 we have $T^{\prime}=T+F\left(T_{0}^{\prime}\right)$ where $T_{0}^{\prime}=G\left(T^{\prime}\right)$. Since $T \subseteq T^{\prime}, T_{0} \subseteq G(T)$ and $T_{0}^{\prime}=G\left(T^{\prime}\right)$, we get $T_{0} \subseteq T_{0}^{\prime}$. Thus, since T_{0} is complete, either $T_{0}^{\prime}=T_{0}$ or $T_{0}^{\prime}=T_{\max , 0}$; let us check that then either $T^{\prime}=T$ or $T^{\prime}=T_{\max }$. If $T_{0}^{\prime}=T_{0}$ then $F\left(T_{0}^{\prime}\right)=F\left(T_{0}\right)=T$, so that $T^{\prime}=T+F\left(T_{0}^{\prime}\right)=T$. If $T_{0}^{\prime}=T_{\max , 0}$ then $F\left(T_{0}^{\prime}\right)=F\left(T_{\max , 0}\right)$; since T is relatively complete with respect to L_{0}, the theory $T_{\max }$ is L_{0}-derivable from T, which implies (by Lemma 2.5) that $T_{\max }=T+F\left(T_{\max , 0}\right)=T^{\prime}$.

Proposition 2.7 provides a characterization of relative Hilbert-Post completeness which will be used in the next Sections. In a given logic L, we denote $\operatorname{Th}(E)$ the theory generated by a set E of formulas and we say that two sets of formulas E_{1}, E_{2} are equivalent with respect to a theory T when $T+T h\left(E_{1}\right)=T+T h\left(E_{2}\right)$.

Proposition 2.7. Let us consider a logic L_{0}, an extension L of L_{0} and the associated Galois connection $F \dashv G$. Let T be a theory of L such that for each formula e in L there is a set E_{0} of formulas of L_{0} equivalent to $\{e\}$ with respect to T. Then each theory T^{\prime} of L which contains T is L_{0}-derivable from T. Thus, if T is consistent then it is relatively Hilbert-Post complete with respect to L_{0}.

Proof. Let T^{\prime} be a theory which contains T. Let $T^{\prime \prime}=T+F\left(G\left(T^{\prime}\right)\right)$, so that $T \subseteq T^{\prime \prime} \subseteq T^{\prime}$ (because $F\left(G\left(T^{\prime}\right)\right) \subseteq T^{\prime}$ for any T^{\prime}). Let us consider an arbitrary
formula e in T^{\prime}, by assumption there is a set E_{0} of formulas of L_{0} such that $T+T h(\{e\})=T+T h\left(E_{0}\right)$. Since e is in T^{\prime} and $T \subseteq T^{\prime}$ we have $T+T h(\{e\}) \subseteq$ T^{\prime}, so that $T+T h\left(E_{0}\right) \subseteq T^{\prime}$. It follows that E_{0} is a set of theorems of T^{\prime} which are formulas of L_{0}, which means that $E_{0} \subseteq G\left(T^{\prime}\right)$, and consequently $T h\left(E_{0}\right) \subseteq F\left(G\left(T^{\prime}\right)\right)$, so that $T+T h\left(E_{0}\right) \subseteq T^{\prime \prime}$. Since $T+T h(\{e\})=T+T h\left(E_{0}\right)$ we get $e \in T^{\prime \prime}$. We have proved that $T^{\prime}=T^{\prime \prime}$, so that T^{\prime} is L_{0}-derivable from T.

3 Completeness for exceptions

Exception handling is provided by most modern programming languages. It allows to deal with anomalous or exceptional events which require special processing. E.g., one can easily and simultaneously compute dynamic evaluation in exact linear algebra using exceptions [5]. There, we proposed to deal with exceptions as a decorated effect, in order to prove properties of such programs: a term $f: X \rightarrow Y$ is not interpreted as a function $f: X \rightarrow Y$ unless it is pure. A term which may raise an exception is instead interpreted as a function $f: X \rightarrow Y+E$ where ' + ' is disjoint union operator and E is the set of exceptions. In this section, first following [5] we present a formalization of exceptions in a decorated setting, then we prove its relative Hilbert-Post completeness in Theorem 3.5.

As in [5], decorated logics for exceptions are obtained from equational logics by classifying terms. Terms are classified as pure terms or propagators, which is expressed by adding a decoration or superscript, respectively (0) or (1); decoration and type information about terms may be omitted when they are clear from the context or when they do not matter. All terms must propagate exceptions, and propagators are allowed to raise an exception while pure terms are not. The fact of catching exceptions is hidden: it is embedded into the try/catch construction, as explained below. In Section 4 we will consider an implementation of exceptions by a more basic language, where some terms are catchers, which means that they may recover form an exception, i.e., they do not have to propagate exceptions.

Let us describe informally a decorated theory for exceptions and its intended model. Each type X is interpreted as a set, still denoted X. The intended model is described with respect to a set E called the set of exceptions, which does not appear in the syntax. A pure term $u^{(0)}: X \rightarrow Y$ is interpreted as a function $u: X \rightarrow Y$ and a propagator $a^{(1)}: X \rightarrow Y$ as a function $a: X \rightarrow$ $Y+E$; equations are interpreted as equalities of functions. There is an obvious conversion from pure terms to propagators, which allow to consider all terms as propagators whenever needed; if a propagator $a^{(1)}: X \rightarrow Y$ "is" a pure term, in the sense that it has been obtained by conversion from a pure term, then the function $a: X \rightarrow Y+E$ is such that $a(x) \in Y$ for each $x \in X$. The composition of propagators is the Kleisli composition associated to the monad $X+E$, which simply means that exceptions are always propagated: the interpretation of $(b \circ a)^{(1)}: X \rightarrow Z$ where $a^{(1)}: X \rightarrow Y$ and $b^{(1)}: Y \rightarrow Z$ is such
that $(b \circ a)(x)=b(a(x))$ when $a(x)$ is not an exception and $(b \circ a)(x)=e$ when $a(x)$ is the exception e. Exceptions may be classified according to their name, as in [5]. Here, in order to focus on the main features of the proof of completeness, we assume that there is only one exception name. Each exception is built by encapsulating a parameter. Let P denote the type of parameters for exceptions. The fundamental operations for raising exceptions are the propagators throw ${ }_{Y}^{(1)}$: $P \rightarrow Y$ for each type Y : this operation throws an exception with a parameter p of type P and pretends that this exception has type Y. The interpretation of the term $\operatorname{throw}_{Y}^{(1)}: P \rightarrow Y$ is a function $\operatorname{throw}_{Y}: P \rightarrow Y+E$ such that $\operatorname{throw}_{Y}(p) \in E$ for each $p \in P$. The fundamental operations for handling exceptions are the propagators $(\operatorname{try}(a) \operatorname{catch}(b))^{(1)}: X \rightarrow Y$ for each terms $a: X \rightarrow Y$ and $b: P \rightarrow Y:$ this operation first runs a until an exception with parameter p is raised (if any), then, if such an exception has been raised, it runs $b(p)$. The interpretation of the term $(\operatorname{try}(a) \operatorname{catch}(b))^{(1)}: X \rightarrow Y$ is a function $\operatorname{try}(a) \operatorname{catch}(b): X \rightarrow Y+E$ such that $(\operatorname{try}(a) \operatorname{catch}(b))(x)=a(x)$ when a is pure and $(\operatorname{try}(a) \operatorname{catch}(b))(x)=b(p)$ when $a(x)$ throws an exception with parameter p.

More precisely, the decorated logic for exceptions $L_{\text {exc }}$ is defined in Fig. 1 (next page). The pure sublogic $L_{\text {exc }}^{(0)}$, for dealing with pure terms, may be any logic which extends a monadic equational logic $L_{e q}$. A monadic equational logic is made of types, terms and operations, where all operations are unary and terms are simply paths. For instance, $L_{\text {exc }}^{(0)}$ may be an equational logic, with n-ary operations for arbitrary n. However, the rules for $L_{\text {exc }}$ do not allow to form tuples of decorated terms, so that the term $\operatorname{op}(f, g)$ (where op is a pure operation of arity 2) is not well-formed, unless f and g are pure. It is well known that there is no "canonical" interpretation for such terms; however, the interpretation where f is runned before g can be formalized thanks to strong monads [10] or sequential products [4]. In this paper, in order to focus on completeness issues, we avoid such situations.

This pure sublogic $L_{\text {exc }}^{(0)}$ is extended to form the corresponding decorated logic for exceptions $L_{\text {exc }}$ by applying the rules in Fig. 1, with the following intended meanings:

- (propagate) for each $a^{(1)}: X \rightarrow Y, a \circ$ throw $_{X} \equiv$ throw $_{Y}$: exceptions are always propagated.
- (recover) throw $_{Y}$ is a monomorphism with respect to pure terms, for each Y : the parameter used for throwing an exception may be recovered.
- (try_{0}) for each $u^{(0)}: X \rightarrow Y$ and $b^{(1)}: P \rightarrow Y, \operatorname{try}(u) \operatorname{catch}(b) \equiv u:$ pure code inside the try part never triggers the code inside the catch part.
- $\left(\operatorname{try}_{1}\right)$ for each $u^{(0)}: X \rightarrow P$ and $b^{(1)}: P \rightarrow Y$, $\operatorname{try}^{\left(\operatorname{throw}_{Y} \circ u\right) \operatorname{catch}(b) \equiv}$ $b \circ u$: code inside the catch part is executed as soon as an exception is thrown inside the try part.
The theory of exceptions $T_{\text {exc }}$ is the theory of $L_{\text {exc }}$ generated from some chosen theory $T^{(0)}$ of $L_{e x c}^{(0)}$; with the notations of Section 2, $T_{e x c}=F\left(T^{(0)}\right)$. The
soundness of the intended model follows, see, e.g., [5, §5.1] and [3], with the description of the handling of exceptions in Java, see for instance [8, Ch. 14], or in $\mathrm{C}++[7, \S 15]$. Now, in order to prove the completeness of the decorated

Monadic equational logic $L_{e q}$:

Types: X, Y, \ldots Terms: $f: X \rightarrow Y, \ldots$ closed by composition:
$f_{k} \circ \cdots \circ f_{1}: X_{0} \rightarrow X_{k}$ for each $\left(f_{i}: X_{i-1} \rightarrow X_{i}\right)_{1 \leq i \leq k}$
with the empty path (when $k=0$) denoted $i d_{X}: X \rightarrow X$ for each X
Rules: (equiv) $\frac{f}{f \equiv f} \frac{f \equiv g}{g \equiv f} \quad \frac{f \equiv g \quad g \equiv h}{f \equiv h}$
(subs) $\frac{f: X \rightarrow Y g_{1} \equiv g_{2}: Y \rightarrow Z}{g_{1} \circ f \equiv g_{2} \circ f} \quad($ repl $) \quad \frac{g_{1} \equiv g_{2}: X \rightarrow Y h: Y \rightarrow Z}{h \circ g_{1} \equiv h \circ g_{2}}$
Decorated logic for exceptions $L_{\text {exc }}$:
Pure part: some logic $L_{e x c}^{(0)}$ extending $L_{e q}$, with a distinguished type P
Decorated terms: $\operatorname{throw}_{Y}^{(1)}: P \rightarrow Y$ for each type Y,
$(\operatorname{try}(a) \operatorname{catch}(b))^{(1)}: X \rightarrow Y$ for each $a^{(1)}: X \rightarrow Y$ and $b^{(1)}: P \rightarrow Y$, and $\left(f_{k} \circ \cdots \circ f_{1}\right)^{\left(\max \left(d_{1}, \ldots, d_{k}\right)\right)}: X_{0} \rightarrow X_{k}$ for each $\left(f_{i}^{\left(d_{i}\right)}: X_{i-1} \rightarrow X_{i}\right)_{1 \leq i \leq k}$ conversions from $f^{(0)}: X \rightarrow Y$ to $f^{(1)}: X \rightarrow Y$
Rules:
(equiv), (subs), (repl) for all decorations
(propagate) $\frac{a^{(1)}: X \rightarrow Y}{a \circ \operatorname{throw}_{X} \equiv \operatorname{throw}_{Y}}$
(recover) $\frac{u_{1}^{(0)}, u_{2}^{(0)}: X \rightarrow P \text { throw }_{Y} \circ u_{1} \equiv \text { throw }_{Y} \circ u_{2}}{u_{1} \equiv u_{2}}$
$\left(\operatorname{try}_{0}\right) \frac{u^{(0)}: X \rightarrow Y \quad b^{(1)}: P \rightarrow Y}{\operatorname{try}(u) \operatorname{catch}(b) \equiv u}$
$\left(\operatorname{try}_{1}\right) \frac{u^{(0)}: X \rightarrow P \quad b^{(1)}: P \rightarrow Y}{\operatorname{try}\left(\operatorname{throw}_{Y} \circ u\right) \operatorname{catch}(b) \equiv b \circ u}$

Figure 1: Logic for exceptions
theory for exceptions under suitable assumptions, we first determine canonical forms and then we study the equations between terms in canonical forms.

Proposition 3.1. For each term $a^{(1)}: X \rightarrow Y$, either there exists some pure term $u^{(0)}: X \rightarrow Y$ such that $a \equiv u$ or there exists some pure term $u^{(0)}: X \rightarrow P$ such that $a \equiv \operatorname{throw}_{Y} \circ u$.

Proof. The proof proceeds by structural induction. If a is pure the result is obvious, otherwise a can be written in a unique way as $a=b \circ \circ$ op v where v is pure, op is either throw_{Z} for some Z or $\operatorname{try}(c) \operatorname{catch}(d)$ for some c and d, and b is the remaining part of a.

- If $a=b^{(1)} \circ \operatorname{throw}_{Z} \circ v^{(0)}$, then by (propagate) $a \equiv \operatorname{throw~}_{Y} \circ v^{(0)}$.
- If $a=b^{(1)} \circ\left(\operatorname{try}\left(c^{(1)}\right) \operatorname{catch}\left(d^{(1)}\right)\right) \circ v^{(0)}$, then by induction we consider two subcases.
- If $c \equiv w^{(0)}$ then by $\left(\operatorname{try}_{0}\right) a \equiv b^{(1)} \circ w^{(0)} \circ v^{(0)}$ and by induction we consider two subcases: if $b \equiv t^{(0)}$ then $a \equiv(t \circ w \circ v)^{(0)}$ and if $b \equiv \operatorname{throw}_{Y} \circ t^{(0)}$ then $a \equiv \operatorname{thr}{ }^{(}{ }_{Y} \circ(t \circ w \circ v)^{(0)}$.
- If $c \equiv \operatorname{throw}_{Z} \circ w^{(0)}$ then by $\left(\operatorname{try}_{1}\right) a \equiv b^{(1)} \circ d^{(1)} \circ w^{(0)} \circ v^{(0)}$ and by induction we consider two subcases: if $b \circ d \equiv t^{(0)}$ then $a \equiv(t \circ w \circ v)^{(0)}$ and if $b \circ d \equiv \operatorname{thr}{ }^{(}{ }_{Y} \circ t^{(0)}$ then $a \equiv \operatorname{throw}_{Y} \circ(t \circ w \circ v)^{(0)}$.

Thanks to Proposition 3.1, in order to study equations in the logic $L_{e x c}$ we may restrict our study to pure terms and to propagators of the form $\operatorname{thr}^{\circ} \mathrm{ow}_{Y} \circ v$ where v is pure. In order to express the distinction between exceptions and nonexceptions we need some kind of "booleans". In this equational setting without negations, this is obtained by introducing a type \mathbb{B} with two constants true and false such that the equation true \equiv false corresponds to the logical contradiction ' \perp ', in the sense that it makes everything collapse: the theory generated by the equation true $\equiv \mathrm{false}$ is the maximal theory.

Definition 3.2. A type $\mathbb{1}$ is a unit if for each type X there is a pure term $\left\rangle_{X}^{(0)}: X \rightarrow \mathbb{1}\right.$ and every pure term $u^{(0)}: X \rightarrow \mathbb{1}$ is such that $u \equiv\left\rangle_{X}\right.$. If there is a unit type $\mathbb{1}$, a type \mathbb{B} is a boolean type if there are pure terms true ${ }^{(0)}$, false $^{(0)}: \mathbb{1} \rightarrow \mathbb{B}$ such that whenever true \equiv false we have $a_{1} \equiv a_{2}$ for each pair of parallel terms $\left(a_{1}, a_{2}\right)$.
Proposition 3.3. 1. For all $v_{1}^{(0)}, v_{2}^{(0)}: X \rightarrow P$ let $a_{1}^{(1)}=\operatorname{throw}_{Y} \circ v_{1}: X \rightarrow$ Y and $a_{2}^{(1)}=$ throw $_{Y} \circ v_{2}: X \rightarrow Y$. Then $a_{1}^{(1)} \equiv a_{2}^{(1)} \Longleftrightarrow v_{1}^{(0)} \equiv v_{2}^{(0)}$.
2. Let us assume that there is a unit type $\mathbb{1}$ and a boolean type \mathbb{B} in the sense of Definition 3.2 and that $\left\rangle_{X}^{(0)}\right.$ is an epimorphism with respect to pure terms. For all $v_{1}^{(0)}: X \rightarrow P$ and $v_{2}^{(0)}: X \rightarrow Y$, let $a_{1}^{(1)}=\operatorname{throw}{ }_{Y} \circ v_{1}$: $X \rightarrow Y$. Then $a_{1}^{(1)} \equiv v_{2}^{(0)} \Longleftrightarrow$ true $^{(0)} \equiv$ false ${ }^{(0)}$.

Proof. 1. Clearly, if $v_{1} \equiv v_{2}$ then $a_{1} \equiv a_{2}$. Conversely, if $a_{1} \equiv a_{2}$, i.e., if throw $_{Y} \circ v_{1} \equiv$ throw $_{Y} \circ v_{2}$, then by rule (recover) it follows that $v_{1} \equiv v_{2}$.
2. If true \equiv false then according to the definition of a boolean type we have $a_{1} \equiv v_{2}$. Conversely, if $a_{1} \equiv v_{2}$, then true $\circ\left\rangle_{Y} \circ a_{1} \equiv\right.$ true \circ $\left\rangle_{Y} \circ v_{2}: X \rightarrow \mathbb{B}\right.$, where true $\circ\left\rangle_{Y} \circ a_{1}=\operatorname{true} \circ\langle \rangle_{Y} \circ \operatorname{throw}_{Y} \circ v_{1} \equiv\right.$ throw $_{B} \circ v_{1}$ by rule (propagate) and true $\circ\left\rangle_{Y} \circ v_{2} \equiv\right.$ true $\circ\left\rangle_{X}\right.$, so that we get throw ${ }_{\mathbb{B}} \circ v_{1} \equiv$ true $\circ\left\rangle_{X}\right.$. Let $b=\mathrm{false} \circ\langle \rangle_{P}: P \rightarrow \mathbb{B}$ then we get $\operatorname{try}\left(\operatorname{throw}_{\mathbb{B}} \circ v_{1}\right) \operatorname{catch}(b) \equiv \operatorname{try}\left(\operatorname{true} \circ\left\rangle_{X}\right) \operatorname{catch}(b)\right.$, where $\operatorname{try}\left(\right.$ throw $\left._{\mathbb{B}} \circ v_{1}\right) \operatorname{catch}(b) \equiv b \circ v_{1} \equiv \mathrm{false} \circ\langle \rangle_{P} \circ v_{1} \equiv \mathrm{false} \circ\langle \rangle_{X}$ by $\left(\operatorname{try}_{1}\right)$ and try $\left(\right.$ true $\circ\left\rangle_{X}\right) \operatorname{catch}(b) \equiv \operatorname{true} \circ\left\rangle_{X}\right.$ by $\left(\operatorname{try}_{0}\right)$. Thus, we obtain false $\circ\left\rangle_{X} \equiv\right.$ true $\circ\left\rangle_{X}\right.$, and since $\left\rangle_{X}\right.$ is an epimorphism with respect to pure terms this implies true \equiv false.

Remark 3.4. The assumption that $\left\rangle_{X}^{(0)}\right.$ is an epimorphism with respect to pure terms in Point 2 of Proposition 3.3 cannot be satisfied when the interpretation of X is the empty set. Thus, we have to handle the empty type in a specific way. In the decorated logic for exceptions, an empty type is defined as a type © 0 such that for each Y there is a pure term []$_{Y}^{(0)}: \mathbb{0} \rightarrow Y$ such that $f \equiv[]_{Y}$ for each term $f: \mathbb{O} \rightarrow Y$ (which may be a propagator). This definition is sound with respect to the intended model: it means that \mathbb{O} is interpreted as the empty set.

Theorem 3.5. If there is a unit type $\mathbb{1}$ and a boolean type \mathbb{B} in the sense of Definition 3.2 and if $\left\rangle_{X}^{(0)}\right.$ is an epimorphism with respect to pure terms for each non-empty type X, the theory of exceptions $T_{\text {exc }}$ is relatively Hilbert-Post complete with respect to the pure sublogic $L_{\text {exc }}^{(0)}$ of $L_{\text {exc }}$.

Proof. The proof relies upon Propositions 3.1, 3.3 and 2.7. The theory $T_{\text {exc }}$ is consistent: it cannot be proved that $\operatorname{throw}_{P}^{(1)} \equiv i d_{P}^{(0)}$ because the logic $L_{\text {exc }}$ is sound with respect to its intended model and the interpretation of this equation in the intended model is false: indeed, $\operatorname{throw}_{P}(p) \in E$ for each $p \in P$, and since $P+E$ is a disjoint union we have $\operatorname{throw}_{P}(p) \neq p$. Now, let us consider an equation between terms with domain X and let us prove that it is $T_{\text {exc }}$-equivalent to a set of pure equations (i.e., equations between pure terms). We distinguish two cases, whether X is empty or not. When X is non-empty, then $\left\rangle_{X}\right.$ is an epimorphism with respect to pure terms. Thus, Propositions 3.1 and 3.3 prove that the given equation is $T_{\text {exc }}$-equivalent to a set of pure equations. When X is empty, then all terms from X to Y are equivalent to [] Y_{Y} (see Remark 3.4), so that the given equation is $T_{\text {exc }}$-equivalent to the empty set of pure equations. Thus, in both cases the result follows from Proposition 2.7.

4 Completeness of the core language for exceptions

In this section, first following [5] we describe an implementation of the language for exceptions from Section 3 using a core language, then we prove the relative Hilbert-Post completeness of this core language in Theorem 4.5.

Let us call the usual language for exceptions with throw and try/catch, as described in Section 3, the programmers' language for exceptions. The documentation on the behaviour of exceptions in many languages (for instance in java [8]) makes use of a core language for exceptions which is studied in [5]. In this language, the empty type plays an important role and the fundamental operations for dealing with exceptions are $\operatorname{tag}^{(1)}: P \rightarrow \mathbb{O}$ for encapsulating a parameter inside an exception and untag ${ }^{(2)}: \mathbb{O} \rightarrow P$ for recovering its parameter from any given exception. The new decoration (2) corresponds to catchers: a
catcher may recover from an exception, it does not have to propagate it. Moreover, the equations also are decorated: in addition to the equations ' \equiv ' as in Section 3, now called strong equations, there are weak equations denoted ' \sim '.

As in Section 3, a set E of exceptions is chosen; the intended model interprets each type X as a set X, each pure term $u^{(0)}: X \rightarrow Y$ as a function u : $X \rightarrow Y$, each propagator $a^{(1)}: X \rightarrow Y$ as a function $a: X \rightarrow Y+E$ and each catcher $f^{(2)}: X \rightarrow Y$ as a function $f: X+E \rightarrow Y+E$. There is an obvious conversion from propagators to catchers; the interpretation of the composition of catchers is straightforward, and it is compatible with the Kleisli composition for the composition of propagators. Weak and strong equations coincide on propagators, where they are interpreted as equalities, but they differ on catchers: $f^{(2)} \sim g^{(2)}: X \rightarrow Y$ means that the functions $f, g: X+E \rightarrow Y+E$ coincide on X, but maybe not on E. The interpretation of $\operatorname{tag}^{(1)}: P \rightarrow \mathbb{O}$ is a function tag : $P \rightarrow E$ and the interpretation of $\operatorname{untag}^{(2)}: \mathbb{O} \rightarrow P$ is the function untag : $E \rightarrow P+E$ such that untag $(\operatorname{tag}(p))=p$ for each parameter p. Thus, the fundamental axiom relating $\operatorname{tag}^{(1)}$ and untag ${ }^{(2)}$ is the weak equation untag $\circ \operatorname{tag} \sim i d_{P}$.

More precisely, the decorated logic for the core langage for exceptions $L_{\text {exc-core }}$ is defined in Fig. 2. Its pure sublogic $L_{\text {exc-core }}^{(0)}$ may be any logic which extends a monadic equational logic with an empty type $L_{e q, 0}$. There is an obvious conversion from strong to weak equations (\equiv-to-~), and in addition strong and weak equations coincide on propagators by rule (equ). Two catchers $f_{1}^{(2)}, f_{2}^{(2)}: X \rightarrow$ Y behave in the same way on exceptions if and only if $f_{1} \circ[]_{X} \equiv f_{2} \circ[]_{X}: \mathbb{O} \rightarrow Y$, where [$]_{X}: \mathbb{O} \rightarrow X$ builds a term of type X from any exception. Then rule (eq ${ }_{2}$) expresses the fact that weak and strong equations are related by the property that $f_{1} \equiv f_{2}$ if and only if $f_{1} \sim f_{2}$ and $f_{1} \circ[]_{X} \equiv f_{2} \circ[]_{X}$. This can also be expressed as a pair of weak equations: $f_{1} \equiv f_{2}$ if and only if $f_{1} \sim f_{2}$ and $f_{1} \circ[]_{X} \circ \operatorname{tag} \equiv f_{2} \circ[]_{X} \circ \operatorname{tag}$ by rule $\left(\mathrm{eq}_{3}\right)$. The core theory of exceptions $T_{\text {exc-core }}$ is the theory of $L_{\text {exc-core }}$ generated from some chosen theory $T^{(0)}$ of $L_{\text {exc-core }}^{(0)}$. Some easily derived properties are stated in Lemma 4.1; Point 1 will be used repeatedly.
Lemma 4.1. 1. each $f^{(2)}: \mathbb{O} \rightarrow \mathbb{O}$ is such that $f \sim i d_{\mathbb{0}}$, each $f^{(1)}: \mathbb{O} \rightarrow Y$ is such that $f \equiv[]_{Y}$, and each $f^{(1)}: \mathbb{O} \rightarrow \mathbb{O}$ is such that $f \equiv i d_{\mathbb{0}}$.
2. The fundamental strong equation for exceptions is tag \circ untag $\equiv i d_{0}$.
3. For all pure terms $u_{1}^{(0)}, u_{2}^{(0)}: X \rightarrow P$, one has: $u_{1} \equiv u_{2} \Longleftrightarrow \operatorname{tag} \circ u_{1} \equiv$ $\operatorname{tag} \circ u_{2} \Longleftrightarrow$ untag $\circ \operatorname{tag} \circ u_{1} \equiv$ untag $\circ \operatorname{tag} \circ u_{2}$.
4. For all pure terms $u^{(0)}: X \rightarrow P, v^{(0)}: X \rightarrow \mathbb{O}$, one has: $u \equiv[]_{P} \circ v \Longleftrightarrow$ $\operatorname{tag} \circ u \equiv v$.

Proof. 1. Clear.
2. By replacement in the axiom (ax) we get tag \circ untag $\circ \mathrm{tag} \sim \mathrm{tag}$; then by rule $\left(\mathrm{eq}_{3}\right)$ tag \circ untag $\sim i d_{0}$.

Monadic equational logic with empty type $L_{e q, 0}$:
Types and terms: as for monadic equational logic, plus an empty type $\mathbb{0}$ and a term []$_{Y}: \mathbb{O} \rightarrow Y$ for each Y
Rules: as for monadic equational logic, plus (empty) $\frac{f: \mathbb{O} \rightarrow Y}{f \equiv[]_{Y}}$
Decorated logic for the core language for exceptions $L_{\text {exc }}$:
Pure part: some logic $L_{\text {exc-core }}^{(0)}$ extending $L_{e q, 0}$, with a distinguished type
Decorated terms: $\operatorname{tag}^{(1)}: P \rightarrow \mathbb{O}$, untag ${ }^{(2)}: \mathbb{O} \rightarrow P$, and
$\left(f_{k} \circ \cdots \circ f_{1}\right)^{\left(\max \left(d_{1}, \ldots, d_{k}\right)\right)}: X_{0} \rightarrow X_{k}$ for each $\left(f_{i}^{\left(d_{i}\right)}: X_{i-1} \rightarrow X_{i}\right)_{1 \leq i \leq k}$
with conversions from $f^{(0)}$ to $f^{(1)}$ and from $f^{(1)}$ to $f^{(2)}$
Rules:
(equiv \equiv), (subs $\equiv),\left(\right.$ repl $\left._{\equiv}\right)$ for all decorations
(equiv~), (repl~) for all decorations, (subs~) only when h is pure
(empty \sim) $\frac{f: \mathbb{O} \rightarrow X}{f \sim[]_{X}} \quad($ 三-to- $\sim) \quad \frac{f \equiv g}{f \sim g} \quad$ (ax) $\quad \overline{\text { untag } \circ \operatorname{tag} \sim i d_{P}}$
(eq eq $) \frac{f_{1}^{\left(d_{1}\right)} \sim f_{2}^{\left(d_{2}\right)}}{f_{1} \equiv f_{2}}$ only when $d_{1} \leq 1$ and $d_{2} \leq 1$
$\left(\mathrm{eq}_{2}\right) \frac{f_{1}, f_{2}: X \rightarrow Y \quad f_{1} \sim f_{2} f_{1} \circ[]_{X} \equiv f_{2} \circ[]_{X}}{f_{1} \equiv f_{2}}$
$\left(\mathrm{eq}_{3}\right) \frac{f_{1}, f_{2}: \mathbb{O} \rightarrow X \quad f_{1} \circ \mathrm{tag}^{2} \sim f_{2} \circ \mathrm{tag}}{f_{1} \equiv f_{2}}$

Figure 2: Logic for the core language for exceptions
3. Implications from left to right are clear. Conversely, if untag $\circ \operatorname{tag} \circ u_{1} \equiv$ untag $\circ \operatorname{tag} \circ u_{2}$, then using the axiom (ax) and the rule (subs~) we get $u_{1} \sim u_{2}$. Since u_{1} and u_{2} are pure this means that $u_{1} \equiv u_{2}$.
4. First, since $\operatorname{tag} \circ[]_{P}: \mathbb{O} \rightarrow \mathbb{O}$ is a propagator we have $\operatorname{tag} \circ[]_{P} \equiv i d_{\mathbb{O}}$. Now, if $u \equiv[]_{P} \circ v$ then $\operatorname{tag} \circ u \equiv \operatorname{tag} \circ[]_{P} \circ v \equiv v$. Conversely, if $\operatorname{tag} \circ u \equiv v$ then $\operatorname{tag} \circ u \equiv \operatorname{tag} \circ[]_{P} \circ v$, and by Point 3 this means that $u \equiv[]_{P} \circ v$.

The operation untag in the core language can be used for decomposing the try/catch construction in the programmer's language in two steps: a step for catching the exception, which is nested into a second step inside the try/catch block: this corresponds to an implementation of the programmer's language by the core language, as in [5], which is reminded below; then Proposition 4.2 proves the correction of this implementation. In view of this implementation we extend the core language with:

- for each $b^{(1)}: P \rightarrow Y$, a catcher $(\operatorname{CATCH}(b))^{(2)}: Y \rightarrow Y$ such that $\operatorname{CATCH}(b) \sim i d_{Y}$ and $\operatorname{CATCH}(b) \circ[]_{Y} \equiv b \circ$ untag: if the argument of
$\operatorname{CATCH}(b)$ is non-exceptional then nothing is done, otherwise the parameter p of the exception is recovered and $b(p)$ is runned.
- for each $a^{(1)}: X \rightarrow Y$ and $k^{(2)}: Y \rightarrow Y$, a propagator $(\operatorname{TRY}(a, k))^{(1)}$: $X \rightarrow Y$ such that $\operatorname{TRY}(a, k) \sim k \circ a$: thus $\operatorname{TRY}(a, k)$ behaves as $k \circ a$ on non-exceptional arguments, but it does always propagate exceptions.

Then, an implementation of the programmer's language of exceptions by the core language is easily obtained:

- for each type $Y: \operatorname{throw}_{Y}^{(1)}=[]_{Y} \circ \operatorname{tag}: P \rightarrow Y$.
- for each $a^{(1)}: X \rightarrow Y, b^{(1)}: P \rightarrow Y:(\operatorname{try}(a) \operatorname{catch}(b))^{(1)}=\operatorname{TRY}(a, \operatorname{CATCH}(b))$.

Proposition 4.2. If the pure term [] $]_{Y}: \mathbb{O} \rightarrow Y$ is a monomorphism with respect to propagators for each type Y, the above implementation of the programmers' language for exceptions by the core language is correct.

Proof. We have to prove that the images of the four basic properties of throw and try/catch are satisfied.

- (propagate) For each $a^{(1)}: X \rightarrow Y$, the rules of $L_{\text {exc-core }}$ imply that $a \circ[]_{X} \equiv[]_{Y}$, so that $a \circ[]_{X} \circ \operatorname{tag} \equiv[]_{Y} \circ$ tag.
- (recover) For each $u_{1}^{(0)}, u_{2}^{(0)}: X \rightarrow P$, if []$_{Y} \circ$ tag $\circ u_{1} \equiv[]_{Y} \circ \operatorname{tag} \circ u_{2}$ since [$]_{Y}$ is a monomorphism with respect to propagators we have tag $\circ u_{1} \equiv$ tag $\circ u_{2}$, so that, by Point 3 in Lemma 4.1, we get $u_{1} \equiv u_{2}$.
- $\left(\operatorname{try}_{0}\right)$ For each $u^{(0)}: X \rightarrow Y$ and $b^{(1)}: P \rightarrow Y$, we have TRY $(u, \operatorname{CATCH}(b)) \sim$ $\operatorname{CATCH}(b) \circ u$ and $\operatorname{CATCH}(b) \circ u \sim u$ (because $\operatorname{CATCH}(b) \sim i d$ and u is pure), so that $\operatorname{TRY}(u, \operatorname{CATCH}(b)) \sim u$; since both sides are propagators, we get $\operatorname{TRY}(u, \operatorname{CATCH}(b)) \equiv u$.
- $\left(\operatorname{try}_{1}\right)$ For each $u^{(0)}: X \rightarrow P$ and $b^{(1)}: P \rightarrow Y$, we have TRY $\left([]_{Y} \circ \operatorname{tag} \circ\right.$ $u, \operatorname{CATCH}(b)) \sim \operatorname{CATCH}(b) \circ[]_{Y} \circ \operatorname{tag} \circ u$ and $\operatorname{CATCH}(b) \circ[]_{Y} \equiv b \circ$ untag so that $\operatorname{TRY}\left([]_{Y} \circ \operatorname{tag} \circ u, \operatorname{CATCH}(b)\right) \sim b \circ$ untag $\circ \operatorname{tag} \circ u$. We have also untag $\circ \operatorname{tag} \circ u \sim u$ (because untag $\circ \operatorname{tag} \sim i d$ and u is pure), so that $\operatorname{TRY}\left([]_{Y} \circ \operatorname{tag} \circ u, \operatorname{CATCH}(b)\right) \sim b \circ u$; since both sides are propagators, we get $\operatorname{TRY}\left([]_{Y} \circ \operatorname{tag} \circ u, \operatorname{CATCH}(b)\right) \equiv b \circ u$.

Now let us check that the core decorated theory for exceptions is also relatively Hilbert-Post complete, under suitable assumptions.

Proposition 4.3. 1. For each propagator $a^{(1)}: X \rightarrow Y$, either a is pure or there is a pure term $v^{(0)}: X \rightarrow P$ such that $a^{(1)} \equiv[]_{Y}^{(0)} \circ \operatorname{tag}^{(1)} \circ v^{(0)}$. And for each propagator $a^{(1)}: X \rightarrow \mathbb{O}$ (either pure or not), there is a pure term $v^{(0)}: X \rightarrow P$ such that $a^{(1)} \equiv \operatorname{tag}{ }^{(1)} \circ v^{(0)}$.
2. For each catcher $f^{(2)}: X \rightarrow Y$, either f is a propagator or there is an propagator $a^{(1)}: P \rightarrow Y$ and a pure term $u^{(0)}: X \rightarrow P$ such that $f^{(2)} \equiv a^{(1)} \circ \operatorname{untag}^{(2)} \circ \operatorname{tag}^{(1)} \circ u^{(0)}$.

Proof. 1. If the propagator $a^{(1)}: X \rightarrow Y$ is not pure then it contains at least one occurrence of $\operatorname{tag}^{(1)}$. Thus, it can be written in a unique way as $a=b \circ \operatorname{tag} \circ v$ for some propagator $b^{(1)}: \mathbb{O} \rightarrow Y$ and some pure term $v^{(0)}: X \rightarrow P$. Since $b^{(1)}: \mathbb{O} \rightarrow Y$ we have $b^{(1)} \equiv[]_{Y}^{(0)}$, and the first result follows. When $X=\mathbb{O}$, it follows that $a^{(1)} \equiv \operatorname{tag}^{(1)} \circ v^{(0)}$. When $a: X \rightarrow \mathbb{O}$ is pure, one has $a \equiv \operatorname{tag}^{(1)} \circ\left([]_{P} \circ a\right)^{(0)}$.
2. The proof proceeds by structural induction. If f is pure the result is obvious, otherwise f can be written in a unique way as $f=g \circ \circ \mathrm{p} \circ u$ where u is pure, op is either tag or untag and g is the remaining part of f. By induction, either g is a propagator or $g \equiv b \circ$ untag $\circ \operatorname{tag} \circ v$ for some pure term v and some propagator b. So, there are four cases to consider. (1) If $\mathrm{op}=\operatorname{tag}$ and g is a propagator then f is a propagator. (2) If op $=$ untag and g is a propagator then by Point 1 there is a pure term w such that $u \equiv$ tago w, so that $f \equiv g^{(1)} \circ$ untag $\circ \mathrm{tag} \circ w^{(0)}$. (3) If op $=\mathrm{tag}$ and $g \equiv b^{(1)} \circ$ untag $\circ \operatorname{tag} \circ v^{(0)}$ then $f \equiv b \circ$ untag $\circ \operatorname{tag} \circ v \circ \operatorname{tag} \circ u$. Since $v: \mathbb{O} \rightarrow P$ is pure we have $\operatorname{tag} \circ v \equiv i d_{\mathbb{D}}$, so that $f \equiv b^{(1)} \circ$ untag $\circ \operatorname{tag} \circ u^{(0)}$. (4) If op $=$ untag and $g \equiv b^{(1)} \circ$ untag $\circ \operatorname{tag} \circ v^{(0)}$ then $f \equiv b \circ$ untag $\circ \operatorname{tag} \circ v \circ$ untag $\circ u$. Since v is pure, by (ax) and (subs~) we have untag $\circ \operatorname{tag} \circ v \sim v$. Besides, by (ax) and (repl) we have $v \circ$ untag $\circ \operatorname{tag} \sim v$ and untag $\circ \operatorname{tag} \circ v \circ$ untag $\circ \operatorname{tag} \sim$ untag $\circ \operatorname{tag} \circ$ v. Since \sim is an equivalence relation these three weak equations imply untag $\circ \operatorname{tag} \circ v \circ$ untag $\circ \mathrm{tag} \sim v \circ$ untag $\circ \mathrm{tag}$. By rule $\left(\mathrm{eq}_{3}\right)$ we get untag $\circ \operatorname{tag} \circ v \circ$ untag $\equiv v \circ$ untag, and by Point 1 there is a pure term w such that $u \equiv \operatorname{tag} \circ w$, so that $f \equiv(b \circ v)^{(1)} \circ$ untag $\circ \operatorname{tag} \circ w^{(0)}$.

Thanks to Proposition 4.3, in order to study equations in the logic $L_{\text {exc-core }}$ we may restrict our study to pure terms, propagators of the form [$]_{Y}^{(0)} \circ \operatorname{tag}^{(1)} \circ$ $v^{(0)}$ and catchers of the form $a^{(1)} \circ \operatorname{untag}^{(2)} \circ \operatorname{tag}^{(1)} \circ u^{(0)}$.
Proposition 4.4. 1. For all $a_{1}^{(1)}, a_{2}^{(1)}: P \rightarrow Y$ and $u_{1}^{(0)}, u_{2}^{(0)}: X \rightarrow P$, let $f_{1}^{(2)}=a_{1} \circ$ untag $\circ \operatorname{tag} \circ u_{1}: X \rightarrow Y$ and $f_{2}^{(2)}=a_{2} \circ$ untag $\circ \operatorname{tag} \circ u_{2}:$ $X \rightarrow Y$. Then $f_{1} \sim f_{2} \Longleftrightarrow a_{1} \circ u_{1} \equiv a_{2} \circ u_{2}$ and $f_{1} \equiv f_{2} \Longleftrightarrow\left(a_{1} \equiv\right.$ $a_{2} \quad$ and $\left.a_{1} \circ u_{1} \equiv a_{2} \circ u_{2}\right)$.
2. For all $a_{1}^{(1)}: P \rightarrow Y, u_{1}^{(0)}: X \rightarrow P$ and $a_{2}^{(1)}: X \rightarrow Y$, let $f_{1}^{(2)}=$ $a_{1} \circ$ untag $\circ \operatorname{tag} \circ u_{1}: X \rightarrow Y$. Then $f_{1} \sim a_{2} \Longleftrightarrow a_{1} \circ u_{1} \equiv a_{2}$ and $f_{1} \equiv a_{2} \Longleftrightarrow\left(a_{1} \circ u_{1} \equiv a_{2}\right.$ and $\left.a_{1} \equiv[]_{Y} \circ \mathrm{tag}\right)$.
3. Let us assume that []$_{Y}^{(0)}$ is a monomorphism with respect to propagators. For all $v_{1}^{(0)}, v_{2}^{(0)}: X \rightarrow P$, let $a_{1}^{(1)}=[]_{Y} \circ \operatorname{tag} \circ v_{1}: X \rightarrow Y$ and $a_{2}^{(1)}=[]_{Y} \circ \operatorname{tag} \circ v_{2}: X \rightarrow Y$. Then $a_{1} \equiv a_{2} \Longleftrightarrow v_{1} \equiv v_{2}$.
4. Let us assume that there is a unit type $\mathbb{1}$ and a boolean type \mathbb{B}, in the sense of Definition 3.2 and that $\left\rangle_{Y}^{(0)}\right.$ is an epimorphism with respect to pure terms. For all $v_{1}^{(0)}: X \rightarrow P$ and $v_{2}^{(0)}: X \rightarrow Y$, let $a_{1}^{(1)}=[]_{Y} \circ \operatorname{tag} \circ v_{1}:$ $X \rightarrow Y$. Then $a_{1} \equiv v_{2} \Longleftrightarrow$ true \equiv false.

Proof. 1. Rule (eq_{2}) implies that $f_{1} \equiv f_{2}$ if and only if $f_{1} \sim f 2$ and $f_{1} \circ[]_{X} \equiv$ $f_{2} \circ[]_{X}$. On the one hand, $f_{1} \sim f_{2}$ if and only if $a_{1} \circ u_{1} \equiv a_{2} \circ u_{2}$: indeed, for each $i \in\{1,2\}$, by (ax) and (subs $)^{\text {) , since }} u_{i}$ is pure we have $f_{i} \sim a_{i} \circ u_{i}$. On the other hand, let us prove that $f_{1} \circ[]_{X} \equiv f_{2} \circ[]_{X}$ if and only if $a_{1} \equiv a_{2}$. For each $i \in\{1,2\}$, the propagator $\operatorname{tag} \circ u_{i} \circ[]_{X}: \mathbb{O} \rightarrow \mathbb{O}$ satisfies tag $\circ u_{i} \circ[]_{X} \equiv i d_{\mathbb{O}}$, so that $f_{i} \circ[]_{X} \equiv a_{i} \circ$ untag. Thus, $f_{1} \circ[]_{X} \equiv f_{2} \circ[]_{X}$ if and only if $a_{1} \circ$ untag $\equiv a_{2} \circ$ untag. Clearly, if $a_{1} \equiv a_{2}$ then a_{1} ountag $\equiv a_{2}$ ountag. Conversely, if $a_{1} \circ$ untag $\equiv a_{2}$ ountag then $a_{1} \circ$ untagotag $\equiv a_{2} \circ$ untag○tag, so that by (ax) and (repl) we get $a_{1} \sim a_{2}$, which means that $a_{1} \equiv a_{2}$ because a_{1} and a_{2} are propagators.
2. Rule (eq_{2}) implies that $f_{1} \equiv a_{2}$ if and only if $f_{1} \sim a_{2}$ and $f_{1} \circ[]_{X} \equiv$ $a_{2} \circ[]_{X}$. On the one hand, $f_{1} \sim a_{2}$ if and only if $a_{1} \circ u_{1} \equiv a_{2}$: indeed, by (ax) and (subs $)$, since u_{1} is pure we have $f_{1} \sim a_{1} \circ u_{1}$. On the other hand, let us prove that $f_{1} \circ[]_{X} \equiv a_{2} \circ[]_{X}$ if and only if $a_{1} \equiv$ []$_{Y} \circ \mathrm{tag}$, in two steps. Since $a_{2} \circ[]_{X}: \mathbb{O} \rightarrow Y$ is a propagator, we have $a_{2} \circ[]_{X} \equiv[]_{Y}$. Since $f_{1} \circ[]_{X}=a_{1} \circ$ untag $\circ \operatorname{tag} \circ u_{1} \circ[]_{X}$ with $\operatorname{tag} \circ u_{1} \circ[]_{X}: \mathbb{O} \rightarrow \mathbb{O}$ a propagator, we have $\operatorname{tag} \circ u_{1} \circ[]_{X} \equiv i d_{0}$ and thus we get $f_{1} \circ[]_{X} \equiv a_{1} \circ$ untag. Thus, $f_{1} \circ[]_{X} \equiv a_{2} \circ[]_{X}$ if and only if $a_{1} \circ$ untag $\equiv[]_{Y}$. If $a_{1} \circ$ untag $\equiv[]_{Y}$ then $a_{1} \circ$ untag \circ tag $\equiv[]_{Y} \circ$ tag, by (ax) and (repl l_{\sim}) this implies $a_{1} \sim[]_{Y} \circ$ tag, which is a strong equality because both members are propagators. Conversely, if $a_{1} \equiv[]_{Y} \circ \mathrm{tag}$ then $a_{1} \circ$ untag $\equiv[]_{Y} \circ$ tag \circ untag, by Point 2 in Lemma 4.1 this implies $a_{1} \circ$ untag $\equiv[]_{Y}$. Thus, $a_{1} \circ$ untag $\equiv[]_{Y}$ if and only if $a_{1} \equiv[]_{Y} \circ$ tag.
3. Clearly, if $v_{1} \equiv v_{2}$ then $a_{1} \equiv a_{2}$. Conversely, if $a_{1} \equiv a_{2}$, i.e., if [] ${ }_{Y} \circ$ $\operatorname{tag} \circ v_{1} \equiv[]_{Y} \circ \operatorname{tag} \circ v_{2}$, since []$_{Y}$ is a monomorphism with respect to propagators we get $\operatorname{tag} \circ v_{1} \equiv \operatorname{tag} \circ v_{2}$. By Point 3 in Lemma 4.1, this means that $v_{1} \equiv v_{2}$.
4. If true \equiv false then according to the definition of a boolean type we have $a_{1} \equiv v_{2}$. Conversely if $a_{1} \equiv v_{2}$, let $a_{1}^{\prime}=$ true $\circ\left\rangle_{Y} \circ a_{1}: X \rightarrow \mathbb{B}\right.$ and $a_{2}^{\prime}=$ true $\circ\left\rangle_{Y} \circ v_{2}: X \rightarrow \mathbb{B}\right.$ and $b=$ false $\circ\left\rangle_{P}: P \rightarrow \mathbb{B}\right.$, then $\operatorname{TRY}\left(a_{1}^{\prime}, \operatorname{CATCH}(b)\right) \equiv \operatorname{TRY}\left(a_{2}^{\prime}, \operatorname{CATCH}(b)\right)$. Let us prove that this implies true $\circ\left\rangle_{X} \equiv\right.$ false $\circ\left\rangle_{X}\right.$. On the right hand side, since a_{2}^{\prime} is pure we can use the substitution rule for weak equations, so that we get $\operatorname{TRY}\left(a_{2}^{\prime}, \operatorname{CATCH}(b)\right) \sim \operatorname{CATCH}(b) \circ a_{2}^{\prime} \sim i d_{\mathbb{B}} \circ a_{2}^{\prime} \sim a_{2}^{\prime}$. Since both $\operatorname{TRY}\left(a_{2}^{\prime}, \operatorname{CATCH}(b)\right)$ and a_{2}^{\prime} are propagators we get $\operatorname{TRY}\left(a_{2}^{\prime}, \operatorname{CATCH}(b)\right) \equiv a_{2}^{\prime}$. And since $a_{2}^{\prime}=$ true $\circ\left\rangle_{Y} \circ v_{2} \equiv\right.$ true $\circ\left\rangle_{X}\right.$ we get $\operatorname{TRY}\left(a_{2}^{\prime}, \operatorname{CATCH}(b)\right) \equiv$ true $\circ\left\rangle_{X}\right.$. On the left hand side we get $\operatorname{TRY}\left(a_{1}^{\prime}, \operatorname{CATCH}(b)\right) \sim \operatorname{CATCH}(b) \circ a_{1}^{\prime}$ where $a_{1}^{\prime}=$ true $\circ\left\rangle_{Y} \circ a_{1}=\right.$ true $\circ\left\rangle_{Y} \circ[]_{Y} \circ \operatorname{tag} \circ v_{1}\right.$. Since true $\circ\left\rangle_{Y} \circ[]_{Y}: \mathbb{O} \rightarrow \mathbb{B}\right.$ is pure we have true $\circ\left\rangle_{Y} \circ[]_{Y} \equiv[]_{B}\right.$, thus
$a_{1}^{\prime} \equiv[]_{B} \circ \operatorname{tag} \circ v_{1}$. It follows that $\operatorname{CATCH}(b) \circ a_{1}^{\prime} \equiv \operatorname{CATCH}(b) \circ[]_{B} \circ \operatorname{tag} \circ v_{1} \equiv$ $b \circ$ untag $\circ \operatorname{tag} \circ v_{1}$. Since untag $\circ \operatorname{tag} \sim i d_{P}$ and v_{1} is pure we get $\operatorname{CATCH}(b) \circ a_{1}^{\prime} \sim b \circ v_{1}$, where $b \circ v_{1}=\mathrm{false} \circ\langle \rangle_{P} \circ v_{1} \equiv \mathrm{false} \circ\langle \rangle_{X}$. Altogether, we have $\operatorname{TRY}\left(a_{1}^{\prime}, \operatorname{CATCH}(b)\right) \equiv$ false $\circ\left\rangle_{X}\right.$. Thus, we have proved that if $a_{1} \equiv v_{2}$ then true $\circ\left\rangle_{X} \equiv\right.$ false $\circ\left\rangle_{X}\right.$. Since $\left\rangle_{X}\right.$ is an epimorphism with respect to pure terms, we obtain true \equiv false.

Theorem 4.5. If there is a unit type $\mathbb{1}$ and a boolean type \mathbb{B} in the sense of Definition 3.2, if []$_{Y}^{(0)}$ is a monomorphism with respect to propagators and if $\left\rangle_{Y}^{(0)}\right.$ is an epimorphism with respect to pure terms for each non-empty type Y, the core theory of exceptions $T_{\text {exc-core }}$ is relatively Hilbert-Post complete with respect to the pure sublogic $L_{\text {exc-core }}^{(0)}$ of $L_{\text {exc-core }}$.

Proof. The proof is based upon Propositions 4.3, 4.4 and 2.7. It follows the same lines as the proof of Theorem 3.5, except when X is empty: because of catchers the proof here is slightly more subtle. First, the theory $T_{\text {exc-core }}$ is consistent: it cannot be proved that untag ${ }^{(2)} \equiv[]_{P}^{(0)}$ because because the logic $L_{\text {exc-core }}$ is sound with respect to its intended model and the interpretation of this equation in the intended model is false: indeed, the function untag : $E \rightarrow P+E$ is such that $\operatorname{untag}(\operatorname{tag}(p))=p \in P$ for each $p \in P$ while []$_{P}(e)=e \in E$ for each $e \in E$, which includes $e=\operatorname{tag}(p)$; since $P+E$ is a disjoint union we have untag $(e) \neq[]_{P}(e)$ when $e=\operatorname{tag}(p)$. Now, let us consider an equation between two terms f_{1} and f_{2} with domain X; we distinguish two cases, whether X is empty or not. When X is non-empty, then $\left\rangle_{X}\right.$ is an epimorphism with respect to pure terms. Thus, Propositions 4.3 and 4.4 prove that the given equation is $T_{\text {exc-core-equivalent }}$ to a finite set of equations between pure terms. When X is empty, then all terms from X to Y are only weakly equivalent to [] ${ }_{Y}$, so that we cannot conclude yet for any given equation. Let us consider two cases. First, if the given equation is an equation between propagators then both f_{1} and f_{2} are strongly equivalent to []$_{Y}$ so that the given equation is $T_{\text {exc-core }}{ }^{-}$ equivalent to the empty set of equations between pure terms. Otherwise, at least one of f_{1} and f_{2} is a catcher, and there are two subcases to consider, whether the given equation is weak or strong. If the equation is $f_{1} \sim f_{2}$ then since $f_{1} \sim[]_{Y}$ and $f_{2} \sim[]_{Y}$ it is still $T_{\text {exc-core }}$-equivalent to the empty set of equations between pure terms. Now, if the equation is $f_{1} \equiv f_{2}$ then by Point 1 or 2 of Proposition 4.4, the equation $f_{1} \equiv f_{2}$ is $T_{\text {exc-core-equivalent }}$ to a set of equations between propagators. We have seen that each equation between propagators (whether X is empty or not) is $T_{\text {exc-core-equivalent to a }}$ set of equations between pure terms, so that $f_{1} \equiv f_{2}$ is $T_{\text {exc-core }}$-equivalent to the union of the corresponding sets of pure equations. Finally, the result follows from Proposition 2.7.

5 Verification of Hilbert-Post Completeness in Coq

All the statements of Sections 3 and 4 have been checked in Coq. The proofs can be found in https://forge.imag.fr/frs/download.php/645/hp-0.2.tar.gz, as well as an almost dual proof for the completeness of the state. They share the same framework, defined in [6]:

1. the terms of each logic are inductively defined through the dependent type named term which builds a new Type out of two input Types. For instance, term $Y X$ is the Type of all terms of the form $f: X \rightarrow Y$;
2. the decorations are enumerated: pure and propagator for both languages, and catcher for the core language;
3. decorations are inductively assigned to the terms via the dependent type called is. The latter builds a proposition (a Prop instance in Coq) out of a term and a decoration. Accordingly, is pure (id X) is a Prop instance;
4. for the core language, we state the rules with respect to weak and strong equalities by defining them in a mutually inductive way.

For instance, the completeness proof for the exceptions core language is 950 SLOC in Coq where it is 460 SLOC in $\mathrm{LAT}_{\mathrm{E}} \mathrm{C}$. Full certification runs in 6.745 s on a Intel i7-3630QM @2.40GHz using the Coq Proof Assistant, v. 8.4pl3.

Below table details the proof lengths and timings for each library.

Proof lengths \& Benchmarks				
package	source	length in Coq	length in AATEX	Coq cert. time
exc_cl-hp	HPCompleteCoq.v	40 KB	15 KB	6.745 sec.
exc_pl-hp	HPCompleteCoq.v	8 KB	6 KB	1.704 sec.
exc_impl	Proofs.v	4 KB	2 KB	1.696 sec.
st-hp	HPCompleteCoq.v	48 KB	15 KB	7.183 sec.

References

[1] Viviana Bono and Manfred Kerber. Extending Hoare Calculus to Deal with Crash. The University of Birmingham, School of Computer Science. Research Reports, CSR-06-08.
[2] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. Decorated proofs for computational effects: States. ACCAT 2012. Electronic Proceedings in Theoretical Computer Science 93, p. 45-59 (2012).
[3] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. A duality between exceptions and states. Mathematical Structures in Computer Science 22, p. 719-722 (2012).
[4] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect categories are Freyd-categories. J. of Symb. Comput. 46, p. 272293 (2011).
[5] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Jean-Claude Reynaud. Certified proofs in programs involving exceptions. CICM 2014, Coimbra, Portugal, 7-11 July 2014. CEUR Workshop Proceedings, no 1186, paper 20.
[6] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous. Formal verification in Coq of program properties involving the global state. JFLA 2014, pages 1-15, Frejus, France, 8-11 January 2014.
[7] Working Draft, Standard for Programming Language C++. ISO/IEC JTC1/SC22/WG21 standard 14882:2011.
[8] James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language Specification, Third Edition. Addison-Wesley Longman (2005).
[9] John M. Lucassen, David K. Gifford. Polymorphic effect systems. POPL 1988. ACM Press, p. 47-57.
[10] Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93(1), p. 55-92 (1991).
[11] Matija Pretnar. The Logic and Handling of Algebraic Effects. PhD. University of Edinburgh 2010.
[12] Gordon D. Plotkin, John Power. Notions of Computation Determine Monads. FoSSaCS 2002. LNCS, Vol. 2620, p. 342-356, Springer (2002).
[13] Gordon D. Plotkin, Matija Pretnar. Handlers of Algebraic Effects. ESOP 2009. LNCS, Vol. 5502, p. 80-94, Mpringer (2009).
[14] Sam Staton. Completeness for Algebraic Theories of Local State. FoSSaCS 2010. LNCS, Vol. 6014, p. 48-63, Springer (2010).
[15] Alfred Tarski. III On some fundamental concepts in mathematics. In Logic, Semantics, Metamathematics: Papers from 1923 to 1938 by Alfred Tarski, p. 30-37. Oxford University Press (1956).

A Completeness for states

Most programming languages such as $\mathrm{C} / \mathrm{C}++$ and Java support the usage and manipulation of the state (memory) structure. Even though the state structure is never syntactically mentioned, the commands are allowed to use or manipulate it, for instance looking up or updating the value of variables. This provides a great flexibility in programming, but in order to prove the correctness of programs, one usually has to revert to an explicit manipulation of the state. Therefore, any access to the state, regardless of usage or manipulation, is treated as
a computational effect: a syntactical term $f: X \rightarrow Y$ is not interpreted as $f: X \rightarrow Y$ unless it is pure, that is unless it does not use the variables in any manner. Indeed, a term which updates the state has instead the following interpretation: $f: X \times S \rightarrow Y \times S$ where ' \times ' is the product operator and S is the set of possible states. In [6], we proposed a proof system to prove program properties involving states effect, while keeping the memory manipulations implicit. We summarize this system next and prove its Hilbert-Post completeness in Theorem A.6, as a variant of Pretnar's result [11].

As noticed in [5], the logic $L_{\text {exc-core }}$ is exactly dual to the logic $L_{s t}$ for states (as reminded below). Thus, the dual of all results in Section 4 are valid, with the dual proof. This holds for the completeness Theorem 4.5. However, the intended models for exceptions and for states rely on the category of sets, which is not self-dual, and the additional assumptions in Theorem 4.5, like the existence of a boolean type, cannot be dualized without loosing the soundness of the logic with respect to its intended interpretation. It follows that the completeness Theorem A. 6 for the theory for states is not exactly the dual of Theorem 4.5. In this Appendix, for the sake of readability, we give all the details of the proof of Theorem A.6; we will mention which parts are not the dual of the corresponding parts in the proof of Theorem 4.5.

As in [2], decorated logics for states are obtained from equational logics by classifying terms and equations. Terms are classified as pure terms, accessors or modifiers, which is expressed by adding a decoration or superscript, respectively $(0),(1)$ and (2); decoration and type information about terms may be omitted when they are clear from the context or when they do not matter. Equations are classified as strong or weak equations, denoted respectively by the symbols \equiv and \sim. Weak equations relates to the values returned by programs, while strong equations relates to both values and side effects. In order to observe the state, accessors may use the values stored in locations, and modifiers may update these values. In order to focus on the main features of the proof of completeness, let us assume that only one location can be observed and modified; the general case, with an arbitrary number of locations, is considered in Remark A.7. The logic for dealing with pure terms may be any logic which extends a monadic equational logic with constants $L_{e q, \mathbb{1}} ;$ its terms are decorated as pure and its equations are strong. This pure sublogic $L_{s t}^{(0)}$ is extended to form the corresponding decorated logic for states $L_{s t}$. The rules for $L_{s t}$ are given in Fig. 3. A theory $T^{(0)}$ of $L_{s t}^{(0)}$ is chosen, then the theory of states $T_{s t}$ is the theory of $L_{s t}$ generated from $T^{(0)}$. Let us now discuss the logic $L_{s t}$ and its intended interpretation in sets; it is assumed that some model of the pure subtheory $T^{(0)}$ in sets has been chosen; the names of the rules refer to Fig. 3.

Each type X is interpreted as a set, denoted X. The intended model is described with respect to a set S called the set of states, which does not appear in the syntax. A pure term $u^{(0)}: X \rightarrow Y$ is interpreted as a function $u: X \rightarrow Y$, an accessor $a^{(1)}: X \rightarrow Y$ as a function $a: S \times X \rightarrow Y$, and a modifier $f^{(2)}: X \rightarrow Y$ as a function $f: S \times X \rightarrow S \times Y$. There are obvious conversions from pure terms to accessors and from accessors to modifiers, which allow to
consider all terms as modifiers whenever needed; for instance, this allows to interpret the composition of terms without mentioning Kleisli composition; the complete characterization is given in [2].

Here, for the sake of simplicity, we consider a single variable (as done, e.g., in [11] and [14]), and dually to the choice of a unique exception name in Section 4. See Remark A. 7 for the generalization to an arbitrary number of variables. The values of the unique location have type V. The fundamental operations for dealing with the state are the accessor lookup ${ }^{(1)}: \mathbb{1} \rightarrow V$ for reading the value of the location and the modifier update ${ }^{(2)}: V \rightarrow \mathbb{1}$ for updating this value. According to their decorations, they are interpreted respectively as functions lookup : $S \rightarrow V$ and update : $S \times V \rightarrow S$. Since there is only one location, it might be assumed that lookup : S $\rightarrow V$ is a bijection and that update : $S \times V \rightarrow S$ maps each $(s, v) \in S \times V$ to the unique $s^{\prime} \in S$ such that lookup $\left(s^{\prime}\right)=v$: this is expressed by a weak equation, as explained below.

A strong equation $f \equiv g$ means that f and g return the same result and modify the state in "the same way", which means that no difference can be observed between the side-effects performed by f and by g. Whenever lookup : $S \rightarrow V$ is a bijection, a strong equation $f^{(2)} \equiv g^{(2)}: X \rightarrow Y$ is interpreted as the equality $f=g: S \times X \rightarrow S \times Y$: for each $(s, x) \in S \times X$, let $f(s, x)=\left(s^{\prime}, y^{\prime}\right)$ and $g(s, x)=\left(s^{\prime \prime}, y^{\prime \prime}\right)$, then $f \equiv g$ means that $y^{\prime}=y^{\prime \prime}$ and $s^{\prime}=s^{\prime \prime}$ for all (s, x). Strong equations form a congruence. A weak equation $f \sim g$ means that f and g return the same result although they may modify the state in different ways. Thus, a weak equation $f^{(2)} \sim g^{(2)}: X \rightarrow Y$ is interpreted as the equality $p r_{Y} \circ f=p r_{Y} \circ g: S \times X \rightarrow Y$, where $p r_{Y}: S \times Y \rightarrow Y$ is the projection; with the same notations as above, this means that $y^{\prime}=y^{\prime \prime}$ for all (s, x). Weak equations do not form a congruence: the replacement rule holds only when the replaced term is pure. The fundamental equation for states is provided by rule (ax): lookup ${ }^{(1)}$ oupdate ${ }^{(2)} \sim i d_{V}$. This means that updating the location with a value v and then observing the value of the location does return v. Clearly this is only a weak equation: its right-hand side does not modify the state while its left-hand side usually does. There is an obvious conversion from strong to weak equations (\equiv-to-~), and in addition strong and weak equations coincide on accessors by rule (eq eq_{1}). Two modifiers $f_{1}^{(2)}, f_{2}^{(2)}: X \rightarrow Y$ modify the state in the same way if and only if $\left\rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ f_{2}: X \rightarrow \mathbb{1}\right.$, where $\left\rangle_{Y}: Y \rightarrow \mathbb{1}\right.$ throws out the returned value. Then weak and strong equations are related by the property that $f_{1} \equiv f_{2}$ if and only if $f_{1} \sim f_{2}$ and $\left\rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ f_{2}\right.$, by rule $\left(\mathrm{eq}_{2}\right)$. This can be expressed as a pair of weak equations $f_{1} \sim f_{2}$ and lookup $\circ\left\rangle_{Y} \circ f_{1} \sim\right.$ lookup $\circ\left\rangle_{Y} \circ f_{2}\right.$, by rule (eq3). Some easily derived properties are stated in Lemma A.1; Point 1 will be used repeatedly.
Lemma A.1. 1. each $f^{(2)}: \mathbb{1} \rightarrow \mathbb{1}$ is such that $f \sim i_{\mathbb{1}}$, each $f^{(1)}: X \rightarrow \mathbb{1}$ is such that $f \equiv\left\rangle_{X}\right.$, and each $f^{(1)}: \mathbb{1} \rightarrow \mathbb{1}$ is such that $f \equiv i d_{\mathbb{1}}$.
2. The fundamental strong equation for states is update \circ lookup $\equiv i d_{\mathbb{1}}$.
3. For all pure terms $u_{1}^{(0)}, u_{2}^{(0)}: V \rightarrow Y$, one has: $u_{1} \equiv u_{2} \Longleftrightarrow u_{1} \circ$ lookup $\equiv u_{2} \circ$ lookup $\Longleftrightarrow u_{1} \circ$ lookup oupdate $\equiv u_{2} \circ$ lookup \circ update.

Monadic equational logic with constants $L_{e q, \mathbb{1}}$:

Types and terms: as for monadic equational logic, plus a unit type $\mathbb{1}$ and a term $\left\rangle_{X}: X \rightarrow \mathbb{1}\right.$ for each X
Rules: as for monadic equational logic, plus (unit) $\frac{f: X \rightarrow \mathbb{1}}{f \equiv\left\rangle_{X}\right.}$

Decorated logic for states $L_{s t}$:

Pure part: some logic $L_{s t}^{(0)}$ extending $L_{e q, \mathbb{1}}$, with a distinguished type V
Decorated terms: lookup ${ }^{(1)}: \mathbb{1} \rightarrow V$, update ${ }^{(2)}: V \rightarrow \mathbb{1}$, and $\left(f_{k} \circ \cdots \circ f_{1}\right)^{\left(\max \left(d_{1}, \ldots, d_{k}\right)\right)}: X_{0} \rightarrow X_{k}$ for each $\left(f_{i}^{\left(d_{i}\right)}: X_{i-1} \rightarrow X_{i}\right)_{1 \leq i \leq k}$ with conversions from $f^{(0)}$ to $f^{(1)}$ and from $f^{(1)}$ to $f^{(2)}$
Rules:
(equiv \equiv), (subs $\equiv),\left(\right.$ repl $\left._{\equiv}\right)$ for all decorations
(equiv~), (subs~) for all decorations, (repl $_{\sim}$) only when h is pure
(unit~) $\frac{f: X \rightarrow \mathbb{1}}{f \sim\left\rangle_{X}\right.} \quad\left(\equiv\right.$-to-~) $\quad \frac{f \equiv g}{f \sim g} \quad$ (ax) $\quad \overline{\text { lookup o update } \sim i d_{V}}$
(eq1) $\frac{f_{1}^{\left(d_{1}\right)} \sim f_{2}^{\left(d_{2}\right)}}{f_{1} \equiv f_{2}}$ only when $d_{1} \leq 1$ and $d_{2} \leq 1$
$\left(\mathrm{eq}_{2}\right) \frac{f_{1}, f_{2}: X \rightarrow Y f_{1} \sim f_{2}\langle \rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ f_{2}}{f_{1} \equiv f_{2}}$
$\left(\mathrm{eq}_{3}\right) \frac{f_{1}, f_{2}: X \rightarrow \mathbb{1} \quad \text { lookup } \circ f_{1} \sim \text { lookup } \circ f_{2}}{f_{1} \equiv f_{2}}$

Figure 3: Logic for states (dual to Fig. 2)
4. For all pure terms $u^{(0)}: V \rightarrow Y, v^{(0)}: \mathbb{1} \rightarrow Y$, one has: $u \equiv v \circ\left\rangle_{V} \Longleftrightarrow\right.$ $u \circ$ lookup $\equiv v$.

Proof. 1. Clear.
2. By substitution in the axiom (ax) we get lookup o update \circ lookup \sim lookup; then by rule $\left(\mathrm{eq}_{3}\right)$ update \circ lookup $\equiv i d_{\mathbb{1}}$.
3. Implications from left to right are clear. Conversely, if $u_{1} \circ$ lookup o update $\equiv u_{2} \circ$ lookup \circ update, then using the axiom (ax) and the rule (repl $)_{\sim}$) we get $u_{1} \sim u_{2}$. Since u_{1} and u_{2} are pure this means that $u_{1} \equiv u_{2}$.
4. First, since $\left\rangle_{V} \circ\right.$ lookup : $\mathbb{1} \rightarrow \mathbb{1}$ is an accessor we have $\left\rangle_{V} \circ\right.$ lookup $\equiv i d_{\mathbb{1}}$. Now, if $u \equiv v \circ\left\rangle_{V}\right.$ then $u \circ$ lookup $\equiv v \circ\left\rangle_{V} \circ\right.$ lookup, so that $u \circ$ lookup \equiv v. Conversely, if $u \circ$ lookup $\equiv v$ then $u \circ$ lookup $\equiv v \circ\left\rangle_{V} \circ\right.$ lookup, and by Point (3) this means that $u \equiv v \circ\left\rangle_{V}\right.$.

Our main result is Theorem A. 6 about the relative Hilbert-Post completeness of the decorated theory of states under suitable assumptions.

Proposition A.2. 1. For each accessor $a^{(1)}: X \rightarrow Y$, either a is pure or there is a pure term $v^{(0)}: V \rightarrow Y$ such that $a^{(1)} \equiv v^{(0)} \circ$ lookup ${ }^{(1)} \circ\langle \rangle_{X}^{(0)}$. For each accessor $a^{(1)}: \mathbb{1} \rightarrow Y$ (either pure or not), there is a pure term $v^{(0)}: V \rightarrow Y$ such that $a^{(1)} \equiv v^{(0)} \circ$ lookup $^{(1)}$.
2. For each modifier $f^{(2)}: X \rightarrow Y$, either f is an accessor or there is an accessor $a^{(1)}: X \rightarrow V$ and a pure term $u^{(0)}: V \rightarrow Y$ such that $f^{(2)} \equiv$ $u^{(0)} \circ$ lookup ${ }^{(1)} \circ$ update $^{(2)} \circ a^{(1)}$.

Proof. 1. If the accessor $a^{(1)}: X \rightarrow Y$ is not pure then it contains at least one occurrence of lookup ${ }^{(1)}$. Thus, it can be written in a unique way as $a=v \circ$ lookup $\circ b$ for some pure term $v^{(0)}: V \rightarrow Y$ and some accessor $b^{(1)}: X \rightarrow \mathbb{1}$. Since $b^{(1)}: X \rightarrow \mathbb{1}$ we have $b^{(1)} \equiv\langle \rangle_{X}^{(0)}$, and the first result follows. When $X=\mathbb{1}$, it follows that $a^{(1)} \equiv v^{(0)} \circ$ lookup ${ }^{(1)}$. When $a: \mathbb{1} \rightarrow Y$ is pure, one has $a \equiv\left(a \circ\left\rangle_{V}\right)^{(0)} \circ\right.$ lookup $^{(1)}$.
2. The proof proceeds by structural induction. If f is pure the result is obvious, otherwise f can be written in a unique way as $f=u \circ \circ \mathrm{p} \circ g$ where u is pure, op is either lookup or update and g is the remaining part of f. By induction, either g is an accessor or $g \equiv v \circ$ lookup \circ update $\circ b$ for some pure term v and some accessor b. So, there are four cases to consider.

- If op $=$ lookup and g is an accessor then f is an accessor.
- If op $=$ update and g is an accessor then by Point 1 there is a pure term w such that $u \equiv w \circ$ lookup, so that $f \equiv w^{(0)} \circ$ lookupoupdateo $g^{(1)}$.
- If op $=$ lookup and $g \equiv v^{(0)} \circ$ lookup \circ update $\circ b^{(1)}$ then $f \equiv$ $u \circ$ lookup $\circ v \circ$ lookup \circ update $\circ b$. Since $v: V \rightarrow \mathbb{1}$ is pure we have $v \circ$ lookup $\equiv i d_{\mathbb{1}}$, so that $f \equiv u^{(0)} \circ$ lookup \circ update $\circ b^{(1)}$.
- If op $=$ update and $g \equiv v^{(0)} \circ$ lookup \circ update $\circ b^{(1)}$ then $f \equiv$ $u^{(0)}$ ○updateo $v^{(0)} \circ$ lookupoupdateo $b^{(1)}$. Since v is pure, by (ax) and (repl l_{\sim}) we have $v \circ$ lookupoupdate $\sim v$. Besides, by (ax) and (subs~) we have lookup oupdate $\circ v \sim v$ and lookup oupdate $\circ v \circ$ lookup \circ update $\sim v \circ$ lookupoupdate. Since \sim is an equivalence relation these three weak equations imply lookup oupdate $\circ v \circ$ lookup \circ update \sim lookupoupdateov. By rule (eq_{3}) we get updateovolookupoupdate \equiv update $\circ v$, so that $f \equiv u^{(0)} \circ$ update $\circ(v \circ b)^{(1)}$.

Thanks to Proposition A.2, in order to study equations in the logic $L_{s t}$ we may restrict our study to pure terms, accessors of the form $v^{(0)} \circ$ lookup ${ }^{(1)} \circ\langle \rangle_{X}^{(0)}$ and modifiers of the form $u^{(0)} \circ$ lookup ${ }^{(1)} \circ$ update $^{(2)} \circ a^{(1)}$.

Point 4 in Proposition A. 2 is not dual to Point 4 in Proposition 4.3

Proposition A.3. 1. For all $a_{1}^{(1)}, a_{2}^{(1)}: X \rightarrow V$ and $u_{1}^{(0)}, u_{2}^{(0)}: V \rightarrow Y$, let $f_{1}^{(2)}=u_{1} \circ$ lookupo update $\circ a_{1}: X \rightarrow Y$ and $f_{2}^{(2)}=u_{2} \circ$ lookupoupdate。 $a_{2}: X \rightarrow Y$. Then

$$
\left\{\begin{array}{l}
f_{1} \sim f_{2} \Longleftrightarrow u_{1} \circ a_{1} \equiv u_{2} \circ a_{2} \\
f_{1} \equiv f_{2} \Longleftrightarrow a_{1} \equiv a_{2} \text { and } u_{1} \circ a_{1} \equiv u_{2} \circ a_{2}
\end{array}\right.
$$

2. For all $a_{1}^{(1)}: X \rightarrow V, u_{1}^{(0)}: V \rightarrow Y$ and $a_{2}^{(1)}: X \rightarrow Y$, let $f_{1}^{(2)}=$ $u_{1} \circ$ lookup \circ update $\circ a_{1}: X \rightarrow Y$. Then

$$
\left\{\begin{array}{l}
f_{1} \sim a_{2} \Longleftrightarrow u_{1} \circ a_{1} \equiv a_{2} \\
f_{1} \equiv a_{2} \Longleftrightarrow u_{1} \circ a_{1} \equiv a_{2} \text { and } a_{1} \equiv \text { lookup } \circ\left\rangle_{X}\right.
\end{array}\right.
$$

3. Let us assume that $\left\rangle_{X}^{(0)}\right.$ is an epimorphism with respect to accessors. For all $v_{1}^{(0)}, v_{2}^{(0)}: V \rightarrow Y$ let $a_{1}^{(1)}=v_{1} \circ$ lookup $\circ\left\rangle_{X}: X \rightarrow Y\right.$ and $a_{2}^{(1)}=v_{2} \circ$ lookup $\circ\left\rangle_{X}: X \rightarrow Y\right.$. Then

$$
a_{1} \equiv a_{2} \Longleftrightarrow v_{1} \equiv v_{2}
$$

4. Let us assume that $\left\rangle_{V}^{(0)}\right.$ is an epimorphism with respect to accessors and that there exists a pure term $k_{X}^{(0)}: \mathbb{1} \rightarrow X$. For all $v_{1}^{(0)}: V \rightarrow Y$ and $v_{2}^{(0)}: X \rightarrow Y$, let $a_{1}^{(1)}=v_{1} \circ$ lookup $\circ\left\rangle_{X}: X \rightarrow Y\right.$. Then

$$
a_{1} \equiv v_{2} \Longleftrightarrow v_{1} \equiv v_{2} \circ k_{X} \circ\langle \rangle_{V} \text { and } v_{2} \equiv v_{2} \circ k_{X} \circ\langle \rangle_{X}
$$

Proof. 1. Rule (eq eq $_{2}$ implies that $f_{1} \equiv f_{2}$ if and only if $f_{1} \sim f 2$ and $\left\rangle_{Y} \circ f_{1} \equiv\right.$ $\left\rangle_{Y} \circ f_{2}\right.$. On the one hand, $f_{1} \sim f_{2}$ if and only if $u_{1} \circ a_{1} \equiv u_{1} \circ a_{2}$: indeed, for each $i \in\{1,2\}$, by (ax) and (repl $)_{\sim}$), since u_{i} is pure we have $f_{i} \sim u_{i} \circ a_{i}$. On the other hand, let us prove that $\left\rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ f_{2}\right.$ if and only if $a_{1} \equiv a_{2}$.

- For each $i \in\{1,2\}$, the accessor $\left\rangle_{Y} \circ u_{i} \circ\right.$ lookup : $\mathbb{1} \rightarrow \mathbb{1}$ satisfies $\left\rangle_{Y} \circ u_{i} \circ\right.$ lookup $\equiv i d_{\mathbb{1}}$, so that $\left\rangle_{Y} \circ f_{i} \equiv\right.$ update $\circ a_{i}$. Thus, $\left\rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ f_{2}\right.$ if and only if update $\circ a_{1} \equiv$ update $\circ a_{2}$.
- Clearly, if $a_{1} \equiv a_{2}$ then update $\circ a_{1} \equiv$ update $\circ a_{2}$. Conversely, if update $\circ a_{1} \equiv$ update $\circ a_{2}$ then lookup \circ update $\circ a_{1} \equiv$ lookup \circ update $\circ a_{2}$, so that by (ax) and (subs~) we get $a_{1} \sim a_{2}$, which means that $a_{1} \equiv a_{2}$ because a_{1} and a_{2} are accessors.

2. Rule (eq eq_{2}) implies that $f_{1} \equiv a_{2}$ if and only if $f_{1} \sim a_{2}$ and $\left\rangle_{Y} \circ f_{1} \equiv\right.$ $\left\rangle_{Y} \circ a_{2}\right.$. On the one hand, $f_{1} \sim a_{2}$ if and only if $u_{1} \circ a_{1} \equiv a_{2}$: indeed, by (ax) and (repl), since u_{1} is pure we have $f_{1} \sim u_{1} \circ a_{1}$. On the other hand, let us prove that $\left\rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ a_{2}\right.$ if and only if $a_{1} \equiv$ lookup $\circ\left\rangle_{X}\right.$, in two steps.

- Since $\left\rangle_{Y} \circ a_{2}: X \rightarrow \mathbb{1}\right.$ is an accessor, we have $\left\rangle_{Y} \circ a_{2} \equiv\langle \rangle_{X}\right.$. Since $\left\rangle_{Y} \circ f_{1}=\langle \rangle_{Y} \circ u_{1} \circ\right.$ lookup \circ update $\circ a_{1}$ with $\left\rangle_{Y} \circ u_{1} \circ\right.$ lookup: $\mathbb{1} \rightarrow \mathbb{1}$ an accessor, we have $\left\rangle_{Y} \circ u_{1} \circ\right.$ lookup $\equiv i d_{\mathbb{1}}$ and thus we get $\left\rangle_{Y} \circ f_{1} \equiv\right.$ update $\circ a_{1}$. Thus, $\left\rangle_{Y} \circ f_{1} \equiv\langle \rangle_{Y} \circ a_{2}\right.$ if and only if update $\circ a_{1} \equiv\langle \rangle_{X}$.
- If update $\circ a_{1} \equiv\langle \rangle_{X}$ then lookup \circ update $\circ a_{1} \equiv$ lookup $\circ\left\rangle_{X}\right.$, by (ax) and (subs \sim) this implies $a_{1} \sim$ lookup $\circ\left\rangle_{X}\right.$, which is a strong equality because both members are accessors. Conversely, if $a_{1} \equiv$ lookup $\circ\left\rangle_{X}\right.$ then update $\circ a_{1} \equiv$ update \circ lookup $\circ\left\rangle_{X}\right.$, by Point 2 in Lemma A. 1 this implies update $\circ a_{1} \equiv\langle \rangle_{X}$. Thus, update $\circ a_{1} \equiv\langle \rangle_{X}$ if and only if $a_{1} \equiv$ lookup $\circ\left\rangle_{X}\right.$.

3. Clearly, if $v_{1} \equiv v_{2}$ then $a_{1} \equiv a_{2}$. Conversely, if $a_{1} \equiv a_{2}$, i.e., if $v_{1} \circ$ lookupo $\left\rangle_{X} \equiv v_{2} \circ\right.$ lookup $\circ\left\rangle_{X}\right.$, since $\left\rangle_{X}\right.$ is an epimorphism with respect to accessors we get $v_{1} \circ$ lookup $\equiv v_{2} \circ$ lookup. By Point 3 in Lemma A.1, this means that $v_{1} \equiv v_{2}$.
4. Let $w_{2}^{(0)}=v_{2} \circ k_{X}: \mathbb{1} \rightarrow Y$. Let us assume that $v_{1} \equiv w_{2} \circ\langle \rangle_{V}$ and $v_{2} \equiv w_{2} \circ\langle \rangle_{X}$. Equation $v_{1} \equiv w_{2} \circ\langle \rangle_{V}$ implies $a_{1} \equiv w_{2} \circ\langle \rangle_{V} \circ$ lookupo $\left\rangle_{X}\right.$. Since $\left\rangle_{V} \circ\right.$ lookup $\equiv i d_{\mathbb{1}}$ we get $a_{1} \equiv w_{2} \circ\langle \rangle_{X}$. Then, equation $v_{2} \equiv$ $w_{2} \circ\langle \rangle_{X}$ implies $a_{1} \equiv v_{2}$. Conversely, let us assume that $a_{1} \equiv v_{2}$, which means that $v_{1} \circ$ lookup。 $\left\rangle_{X} \equiv v_{2}\right.$. Then $v_{1} \circ$ lookup $\circ\left\rangle_{X} \circ k_{X} \circ\langle \rangle_{V} \equiv\right.$ $v_{2} \circ k_{X} \circ\langle \rangle_{V}$, which reduces to $v_{1} \circ$ lookupo $\left\rangle_{V} \equiv w_{2} \circ\langle \rangle_{V}\right.$. Since $\left\rangle_{V}\right.$ is an epimorphism with respect to accessors we get $v_{1} \circ$ lookup $\equiv w_{2}$, which means that $v_{1} \equiv w_{2} \circ\langle \rangle_{V}$ by Point 4 in Lemma A.1. Now let us come back to equation $v_{1} \circ$ lookup $\circ\left\rangle_{X} \equiv v_{2}\right.$; since $v_{1} \equiv w_{2} \circ\langle \rangle_{V}$, it yields $w_{2} \circ\langle \rangle_{V} \circ$ lookup $\circ\left\rangle_{X} \equiv v_{2}\right.$, so that $w_{2} \circ\langle \rangle_{X} \equiv v_{2}$.

The assumption for Theorem A. 6 comes form the fact that the existence of a pure term $k_{X}^{(0)}: \mathbb{1} \rightarrow X$, which is used in Point 4 of Proposition A.3, is incompatible with the intended model of states if X is interpreted as the empty set. The assumption for Theorem A. 6 is not dual to the assumption for Theorem 4.5.

Definition A.4. A type X is inhabited if there exists a pure term $k_{X}^{(0)}: \mathbb{1} \rightarrow X$. A type \mathbb{O} is empty if for each type Y there is a pure term []$_{Y}^{(0)}: \mathbb{O} \rightarrow Y$, and every term $f: \mathbb{O} \rightarrow Y$ is such that $f \equiv[]_{Y}$.

Remark A.5. When X is inhabited then for any $k_{X}^{(0)}: \mathbb{1} \rightarrow X$ we have $\left\rangle_{X} \circ k_{X} \equiv\right.$ $i d_{\mathbb{I}}$, so that $\left\rangle_{X}\right.$ is a split epimorphism; it follows that $\left\rangle_{X}\right.$ is an epimorphism with respect to all terms, and especially with respect to accessors.

Theorem A.6. If every non-empty type is inhabited and if V is non-empty, the theory of states $T_{\text {st }}$ is relatively Hilbert-Post complete with respect to the pure sublogic $L_{s t}^{(0)}$ of $L_{s t}$.

Proof. The proof relies upon Propositions A.2, A. 3 and 2.7; it follows the same lines as the proofs of Theorems 3.5 and 4.5. The theory $T_{s t}$ is consistent: it cannot be proved that update ${ }^{(2)} \equiv\langle \rangle_{V}^{(0)}$ because the logic $L_{s t}$ is sound with respect to its intended model and the interpretation of this equation in the intended model is false as sson as V has at least two elements: indeed, for each state s and each $x \in V$, lookup oupdate $(x, s)=x$ because of (ax) while lookup $\circ\left\rangle_{V}(x, s)=\operatorname{lookup}(s)\right.$ does not depend on x. Let us consider an equation (strong or weak) between terms with domain X in $L_{s t}$; we distinguish two cases, whether X is empty or not. When X is empty, then all terms from X to Y are strongly equivalent to [$]_{Y}$, so that the given equation is $T_{s t}$-equivalent to the empty set of equations between pure terms. When X is non-empty then it is inhabited, thus by Remark A.5 $\left\rangle_{X}\right.$ is an epimorphism with respect to accessors. Thus, Propositions A. 2 and A. 3 prove that the given equation is $T_{s t^{-}}$ equivalent to a finite set of equations between pure terms. Thus, in both cases, the result follows from Proposition 2.7.

Remark A.7. This can be generalized to an arbitrary number of locations. The $\operatorname{logic} L_{s t}$ and the theory $T_{s t}$ have to be generalized as in [2], then Proposition A. 2 has to be adapted using the basic properties of lookup and update, as stated in [12]; these properties can be deduced from the decorated theory for states, as proved in [6]. The rest of the proof generalizes accordingly, as in [11].

[^0]: *Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques, umr CNRS 5224, bp 53X, F38041 Grenoble, France, \{Jean-Guillaume.Dumas,Dominique.Duval,Burak.Ekici\}@imag.fr.
 ${ }^{\dagger}$ Plume team, CNRS, ENS Lyon, Université de Lyon, INRIA, UMR 5668, France, Damien.Pous@ens-lyon.fr.
 ${ }^{\ddagger}$ Reynaud Consulting (RC), Jean-Claude.Reynaud@imag.fr.

