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REAL RATIONAL SURFACES

by

Frédéric Mangolte

1. Introduction

During the last decade(1), there were many progresses in the understanding
of the topology of real algebraic manifolds, above all in dimensions 2 and 3.
Results on real algebraic threefolds were addressed in the survey [Man14] with
a particular emphasis on Kollár’s results and conjectures concerning real unir-
uled and real rationally connected threefolds, see [Kol01], [HM05b, HM05a],
[CM08, CM09], [MW12]. In the present paper, we will focus on real ratio-
nal surfaces and especially on their birational geometry. Thus the three next
sections are devoted to real rational surfaces which are presented in a most el-
ementary way. We state Commessatti’s and Nash-Tognoli’s famous theorems
(Theorem 7 and Theorem 20). Among other things, we give a sketch of proof
of the statement: "Up to isomorphism, there is exactly one single real rational
model of each nonorientable surface" (Theorem 10); a sketch of proof of the
statement: "the groups of birational diffeomorphisms are infinitely transitive"
(Theorem 11); a sketch of proof of the statement: "the groups of birational
diffeomorphisms is dense in the group of diffeomorphisms" (Theorem 22).

We conclude the paper with Section 5 devoted to a new line of research: the
theory of regulous functions and the geometry we are able to define with them.

2000 Mathematics Subject Classification. — 14P25.
Key words and phrases. — rational real algebraic surface, topological surface, rational
model, birational diffeomorphism, automorphism group, regulous map, continuous rational
map.
(1)With the exception of some classical references, only references over the past years from
the preceding "RAAG conference in Rennes", which took place in 2001, are included.
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Besides the progresses in the theory of real rational surfaces, the classifica-
tion of other real algebraic surfaces has considerably advanced during the last
decade (see [Kha06] for a survey): topological types and deformation types of
real Enriques surfaces [DIK00], deformation types of geometrically(2) rational
surfaces [DK02], deformation types of real ruled surfaces [Wel03], topologi-
cal types and deformation types of real bielliptic surfaces [CF03], topological
types and deformation types of real elliptic surfaces [AM08, BM07, DIK08].

The present survey is an expansion of the preprint written by Johannes
Huisman [Hui11] from which we have borrowed several parts.

Convention. — In this paper, a real algebraic surface (resp. real algebraic
curve) is a projective complex algebraic manifold of complex dimension 2

(resp. 1) endowed with an anti-holomophic involution whose set of fixed points
is called the real locus and denoted by X(R). A real map is a complex map
commuting with the involutions. A topological surface is a real 2-dimensional
C∞-manifold. If nonempty, the real locus X(R) of a real algebraic surface(3)

gets a natural structure of a topological surface when endowed with the eu-
clidean topology. Furthermore X(R) is compact since X is projective.

Acknowledgments. — Thanks to Daniel Naie for sharing his picture of the
real locus of a blow-up, see Figure 1.

2. Real rational surfaces

A real algebraic surface X is rational if it contains a Zariski-dense subset
real isomorphic to the affine plane A2 or, equivalently, if its function field is
isomorphic to the field of rational functions R(x, y). In the sequel, a rational
real algebraic surface will be called a real rational surface for short and by our
general convention, always assumed to be projective and nonsingular.

Example 1. — 1. The real projective plane P2
x:y:z is rational. Indeed, each

of the coordinate open charts U0 = {x 6= 0}, U1 = {y 6= 0}, U2 = {z 6= 0}
is isomorphic to A2. The real locus P2(R) endowed with the euclidean
topology is the topological real projective plane.

2. The product surface P1
x:y × P1

u:v is rational. Indeed, the product open
subset {x 6= 0} × {u 6= 0} is isomorphic to A2. The set of real points

(2)See p. 11 before Theorem 12.
(3)nonsingular by our convention
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(P1 × P1)(R) = P1(R) × P1(R) is diffeomorphic to the 2-dimensional
torus S1 × S1 where S1 denotes the unit circle in R2.

3. The quadric Q3,1 in the projective space P3
w:x:y:z given by the affine equa-

tion x2 + y2 + z2 = 1 is rational. Indeed, for a real point P of Q3,1, let’s
denote by TPQ3,1 the real projective plane in P3 tangent to Q3,1 at P .
Then the stereographic projection Q3,1 \TPQ3,1 → A2 is an isomorphism
of real algebraic surfaces. For example in the case P is the North pole
N = (1 : 0 : 0 : 1), let πN : Q3,1 → P2

U :V :W be the rational map given by

πN : (w : x : y : z) 99K (x : y : w − z) .

Then πN restricts to the stereographic projection from Q3,1\TNQ3,1 onto
its image πN (Q3,1 \ TNQ3,1) = {w 6= 0} ' A2.

(The inverse rational map π−1N : P2 99K Q3,1 is given by

π−1N : (x : y : z) 99K (x2 + y2 + z2 : 2xz : 2yz : x2 + y2 − z2) .

The real locus Q3,1(R) is the unit sphere S2 in R3.

To produce more examples, we will recall the construction of the blow-up
which is especially simple in the context of rational surfaces.

The blow-up B(0,0)A
2 of A2 at (0, 0) is the quadric hypersurface defined in

A2 ×P1 by

B(0,0)A
2 = {((x, y), [u : v]) ∈ A2

x,y ×P1
u:v : uy = vx}.

The blow-up B(0:0:1)P
2 of P2 at P = (0 : 0 : 1) is the algebraic surface

B(0:0:1)P
2 = {([x : y : z], [u : v]) ∈ P2

x:y:z × P1
u:v : uy − vx = 0}.

The open subset V0 = {((x, y), [u : v]) ∈ B(0,0)A
2 : u 6= 0} is Zariski-

dense in B(0,0)A
2 and the map ϕ : V0 → A2, ((x, y), [u : v]) 7→ (x, vu) is an

isomorphism. Similarly, the open subset

Ũ2 = {([x : y : z], [u : v]) ∈ B(0:0:1)P
2 : z 6= 0, u 6= 0}

is Zariski-dense in B(0:0:1)P
2 and the map Ũ2 → U2 ' A2,

([x : y : z], [u : v]) 7→ [ux : v : uz]

is an isomorphism. Thus B(0:0:1)P
2 is rational. Now remark that the map

ϕ : V1 = {v 6= 0} → A2, ((x, y), [u : v]) 7→ (x, uv ) is also an isomorphism and
the surface B(0,0)A

2 is thus covered by two open subsets, both isomorphic
to A2. We deduce that the surface B(0:0:1)P

2 is covered by the three open
subsets U0, U1, Ũ2 = B(0:0:1)U2 ' B(0,0)A

2 hence covered by four open subsets,
both isomorphic to A2. Up to affine transformation, we can define BPP2 for
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any P ∈ P2 and it is now clear that the surface BPP2 is covered by a finite
number of open subsets, each isomorphic to A2. The same is clearly true for
P1×P1. It is also true for Q3,1. Indeed, choose 3 distinct real points P1, P2, P3

of Q3,1, and denote the open set Q3,1 \ TPiQ3,1 by Ui, for i = 1, 2, 3. Since the
common intersection of the three projective tangent planes is a single point,
that, moreover does not belong to Q3,1, the subsets U1, U2, U3 constitute an
open affine covering of Q3,1.

Let X be an algebraic surface and P a real point of X. Assume that P
admits a neighborhood U isomorphic to A2 which is dense in X(4), and define
the blow-up of X at P to be the real algebraic surface obtained from X \ {P}
and BPU by gluing them along their common open subset U \ {P}. Then
BPU ' BPU0 is dense in BPX and contains a dense open subset isomorphic
to U0 ' A2. We have to admit at this point that this construction does neither
depend of the choice of U , nor on the choice of the isomorphism between U

and A2. See e.g. [Sha94, §II.4.1] or [Man14, Appendice A] for a detailed
exposition.

We get:

Proposition 2. — Let

Xn
πn−→ Xn−1

πn−1−→ · · · π1−→ X0 = P2,P1 ×P1 or Q3,1

be a sequence of blows-up at real points. Then Xn is a real rational surface.

Proof. — Indeed, from Example 1 and comments above, any point P ∈ Xi

admits a neighborhood U isomorphic to A2 which is dense in Xi.

Let π : BPX → X be the blow-up of X at P . The curve EP = π−1{P} is
the exceptional curve of the blow-up. We say that BPX is the blow-up of X
at P and that X is obtained from BPX by the contraction of the curve EP .

Example 3. — Notice that if P is a real point of X, the resulting blown-up
surface gets an anti-holomorphic involution lifting the one of X. If P is not
real, we can obtain a real surface anyway by blowing-up both P and P : let
U be an open neighborhood of P complex isomorphic to A2(C) and define
BP,PX to be the result of the glueing of X \{P, P} with both BPU and BPU .

(4)As a corollary of Theorem 9 below we can see that if X is rational, any real point of X
has this property. Otherwise said: any (nonsingular) real rational surface is covered by a
finite number of open subsets, each isomorphic to A2.
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Remark 4. — In Example 1.3, the rational map πN decomposes into the
blow-up of Q3,1 at N , followed by the contraction of the strict transform of the
curve z = w (intersection of Q3,1 with the tangent plane TNQ3,1), which is the
union of two non-real conjugate lines. The rational map π−1N decomposes into
the blow-up of the two non-real points (1 : ±i : 0), followed by the contraction
of the strict transform of the line z = 0.

The exceptional curve is a real rational curve isomorphic to P1 whose real
locus EP (R) is diffeomorphic to the circle S1. Furthermore, the normal bundle
of the smooth curve EP (R) in the smooth surface BPX(R) is nonorientable,
thus EP (R) possesses a neighborhood diffeomorphic to the Möbius band in
BPX(R). Hence, topologically speaking, BPX(R) is obtained from X(R)

through the following surgery (see Figure 1): from X(R), remove a disk D

centered at P (the boundary ∂D is diffeomorphic to the circle S1) and paste a
Möbius band M (the boundary ∂M is also diffeomorphic to the circle S1) to
get BPX(R) which is then diffeomorphic to the connected sum:

(1) BPX(R) ≈ X(R)#P2(R) .

Figure 1. The real locus of the exceptional curve is depicted by the
vertical line.

In particular (BPP
2)(R) ≈ P2(R)#P2(R) is the Klein bottle. From the

classification of compact connected topological surfaces, we know that any
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nonorientable compact connected topological surface S is diffeomorphic to the
connected sum of g copies of the real projective plane P2(R):

S ≈ P2(R)#P2(R)# . . .#P2(R) .

The nonnegative integer g is uniquely determined by S and is called the
genus of S. Hence the genus of P2(R) is 1 and the genus of the Klein bottle
is 2.

Definition 5. — Let S be a compact connected topological surface. A real
rational surface X is a real rational model of S if the real locus is diffeomorphic
to S:

X(R) ≈ S .

The preceding observations and Examples 1.2 and 1.3 above lead to the
following consequence:

Corollary 6. — Let S be a compact connected topological surface. If S is
nonorientable, or orientable of genus 0 or 1, then S admits a real rational
model.

A deep result of Comessatti [Com14, p. 257] states that the other topolog-
ical surfaces do not have any real rational model:

Theorem 7 (Comessatti). — Let X be a nonsingular projective real rational
surface. Then, if orientable, the real locus X(R) is diffeomorphic to the sphere
S2 or to the torus S1 × S1.

Otherwise said: the real locus of a real rational surface is diffeomorphic to
a sphere, a torus, or a nonorientable compact connected topological surface.

A modern proof uses the Minimal Model Program for real algebraic surfaces
as developed by Kollár [Kol01, p. 206, Theorem. 30] (see also [Sil89, Prop. 4.3]
for an alternative proof). In fact that approach gives us an even more precise
statement.

Let X and Y be two real rational models of a given topological surface S.
We will say that X and Y are isomorphic as real rational models if their real
loci X(R) and Y (R) have isomorphic Zariski open neighborhoods in X and
Y , respectively. Equivalently, the surfaces X(R) and Y (R) are birationally
diffeomorphic, that is: there is a diffeomorphism f : X(R) → Y (R) whose
coordinate functions are rational functions on X(R) without poles on X(R),
and f−1 has also coordinate rational functions on Y (R) without poles on Y (R).
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Example 8. — Let P be a real point of the sphere S2 = Q3,1(R). Then the
blow-up BPQ3,1 at P is a real rational model of the topological real projective
plane P2(R). The projective plane P2 is also a real rational model of P2(R)

as well. Although the real algebraic surfaces BPQ3,1 and P2 are not isomor-
phic, the stereographic projection induces a birational diffeomorphism from
BPQ3,1(R) onto P2(R) sending the exceptional curve to the line at infinity.
The real rational surfaces BPQ3,1 and P2 are therefore isomorphic real rational
models of the topological surface P2(R).

Collecting preceding observations: P1 × P1 is a real rational model of the
torus S1 × S1, Q3,1 is a real rational model of the sphere S2 and if S is a
nonorientable topological surface of genus g, the blow-up BP1,...,PgQ3,1, where
P1, . . . , Pg are g distinct real points, is a real rational model of S:

BP1,...,PgQ3,1(R) ≈ BP1,...,PgS
2 ≈ P2(R)# . . .#P2(R) (g terms).

Using Kollár’s Minimal Model Program [Kol01, loc. cit.], one can prove the
following statement (compare [BH07, Thm. 3.1]):

Theorem 9. — Let S be a compact connected topological surface and X be a
real rational model of S.

1. If S is nonorientable then X is isomorphic to a real rational model of S
obtained from Q3,1 by successively blowing up at reals points only.

2. If S is orientable then X is isomorphic to Q3,1 or P1 × P1 as a real
rational model.

This clearly implies Comessatti’s Theorem above, but it also highlight the
importance of classifying real rational models of a given topological surface
(compare [Man06, Theorem 1.3 and comments following it]). Surprisingly
enough, all real rational models of a given topological surface turn out to
be isomorphic as real rational models. This has been proved by Biswas and
Huisman [BH07, Thm. 1.2]:

Theorem 10. — Let S be a compact connected topological surface. Then any
two real rational models of S are isomorphic.

Proof of Theorem 9. — Apply the Minimal Model Program to X in order to
obtain a sequence of blows-up

Xn
πn−→ Xn−1

πn−1−→ · · · π1−→ X0
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analogous to the one of Proposition 2 except that we allow also blows-up at
pairs of nonreal points as in Example 3 and that X0 is now one of the following
(see [Kol01, p. 206, Theorem. 30]):

1. a surface with nef canonical bundle;
2. a conic bundle X0 → B over a nonsingular real algebraic curve with an

even number of real singular fibers, each of them being real isomorphic
to x2 + y2 = 0;

3. a "del Pezzo" surface: P2, Q3,1 or a del Pezzo surface with non connected
real locus;

Since X is rational, X0 is rational and we proceed trough a case by case
analysis:

1. The only thing we need to know about the condition "nef canonical
bundle" is that a rational surface cannot satisfies such a condition.

2. Since X0 is rational, the base curve B of the conic bundle is rational,
that is B is isomorphic to P1. Since X0(R) is connected and nonempty, the
number of real singular fibers of the conic bundle is 0 or 2. If it is 2, X0(R) is
then diffeomorphic to S2. In fact X0 is isomorphic to Q3,1 blown-up at a pair
of nonreal points (see [BM14, Example 2.13(3)] for details). This reduces to
the case when X0 is isomorphic to Q3,1. If there is no real singular fibers, X0 is
isomorphic to a P1-bundle over P1. By [Man06, Theorem 1.3], X0(R) is then
birationally diffeomorphic to the Klein bottle (BPP

2)(R), see (1), or to the
torus (P1 × P1)(R). If S is orientable we are done, since X(R) is orientable
too, and X is obtained from X0 by blowing-up at nonreal points only. If S is
nonorientable, then X(R) is nonorientable either, and X is obtained from X0

by blowing-up, at least, one real point. Since X0 = P1 ×P1, a blow-up of X0

at one real point is isomorphic to a blow-up of P2 at two real points and then
is isomorphic as a real rational model to some blow-up of Q3,1.

3. The real locus of a real rational surface being connected, this rules out
del Pezzo surfaces with non connected real locus.

It remains to show that the statement of the theorem holds if X0 is iso-
morphic to P2 or to Q3,1. If X0 is isomorphic to P2, then by Example 8,
the stereographic projection reduces to the case X0 is isomorphic to Q3,1 as a
real rational model. Now if S is orientable, then X(R) is orientable too, and
like in the torus case, X is obtained from X0 by blowing-up at nonreal points
only. It follows that X is isomorphic to Q3,1 as a real rational model. If S is
nonorientable, then X(R) is nonorientable either, and it is obtained from Q3,1

by blowing-up at real points.
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Proof of Theorem 10. — The proof which is given below is quite different from
the one in [BH07]; it is built on the fact that the group of self-birational
diffeomorphisms of the sphere is infinitely transitive, see Theorem 11 in next
section, this is the approach followed in [HM09].

A crucial ingredient of the proof of Theorem 10 is the following. Let S be
a nonorientable surface, According to Theorem 9, any real rational model X
of S is isomorphic to a real rational model Y of S obtained from the sphere
S2 = Q3,1(R) by successively blowing up real points. This means that there is
a sequence of blow-ups at real points

Y = Yn
πn−→ · · · −→ Y2

π2−→ Y1
π1−→ Y0 = Q3,1 .

If, for example, Y2 = BP (BQQ3,1) is the blow-up of Y1 = BQQ3,1 at a real
point P of the exceptional curve EQ ⊂ Y1 of π1, it is not a priori clear that we
can reduce to the case where Y2 is the blow-up of Q3,1 at two distinct points
of Q3,1(R) = S2. One gets rid of this difficulty by using Example 8. For
simplicity, we explain this in the case n = 2.

The algebraic surface Y1 is a real rational model of P2(R) isomorphic to
P2, i.e. there is a birational diffeomorphism fQ : Y1(R) → P2(R). Up to
projectivities, we get moreover that for any real projective line D of P2, there
is a birational diffeomorphism that maps the set of real points EQ(R) of the
exceptional curve EQ to the real locus D(R). Choose a real projective line
D(R) of P2(R) that does not contain the real point fQ(P ) of P2.

There is a blow-up Y ′1 = BQ′Q3,1 of the sphere at a real point, and a bira-
tional diffeomorphism fQ : Y ′1(R) → P2(R) mapping the real locus of the ex-
ceptional curve EQ′ onto D(R). Let f = fQ′

−1 ◦fQ and P ′ be the real point of
Y ′1 corresponding to P via the birational diffeomorphism f : Y1(R) → Y ′1(R).
Then the point P ′ is not a point of the exceptional curve of the blow-up
π′ : Y ′1 = BQ′Q3,1 → Q3,1; which means that π′ maps isomorphically some
affine neighborhood of P ′ to an affine neighborhood of π′(P ′).

Since there is a birational diffeomorphism from Y1(R) into Y ′1(R) that maps
P to P ′, there is also a birational diffeomorphism from Y2(R) into Y ′2(R), the
real locus of the blow-up Y ′2 of Y ′1 at P ′. Now, Y ′2 = Bπ′(P ′),Q′Q3,1 is the
blow-up of Q3,1 at 2 distinct real points, and is isomorphic as a real rational
model to Y2 = BP (BQQ3,1).

By an induction argument, one shows more generally that any real rational
model X of a nonorientable compact connected topological surface of genus g
is isomorphic to the blow-up BP1,...,PgQ3,1 where P1, . . . , Pg are g distinct real
points of the sphere.
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The second main ingredient of the proof is the fact that for any two g-tuples
(P1, . . . , Pg) and (Q1, . . . , Qg) of distinct elements of S2, there is a a birational
diffeomorphism f : S2 → S2 such that f(Pi) = Qi for all i (see Theorem 11
below). Hence the blow-up BP1,...,PgQ3,1 is birationally diffeomorphic to the
blow-up BQ1,...,QgQ3,1.

3. Automorphism groups of real loci

The group of automorphisms of a complex algebraic variety is small: indeed,
it is finite in general. Moreover, the group of automorphisms is 3-transitive
only if the variety is P1(C). On the other hand, the group Aut

(
X(R)

)
of

birational self-diffeomorphisms (also called automorphisms of X(R)) of a real
rational surface X is quite big as the next result shows.

Recall that a group G, acting on a setM , acts n-transitively onM if for any
two n-tuples (P1, . . . , Pn) and (Q1, . . . , Qn) of distinct elements of M , there is
an element g of G such that g · Pi = Qi for all i. The group G acts infinitely
transitively (5) on M if for every positive integer n, its action is n-transitive
on M . The next result is proved in [HM09, Thm.1.4].

Theorem 11. — Let X be a a nonsingular projective real rational surface.
Then the group of birational diffeomorphisms Aut

(
X(R)

)
acts infinitely tran-

sitively on X(R).

Proof. — In order to give an idea of the proof of the above theorem, let us
show how one can construct many birational diffeomorphisms of the sphere
Q3,1(R) ≈ S2. Let I be the interval [−1, 1] in R. Choose any smooth rational
map f : I → S1. This simply means that the two coordinate functions of f are
rational functions in one variable without poles in I. Define φf : S2 → S2 (φf
is called the twisting map associated to f) by

φf (x, y, z) = (f(z) · (x, y), z)

where · denotes complex multiplication in R2 = C. Then φf is a birational
self-diffeomorphism of S2. Indeed, its inverse is φg where g : I → S1 maps z
to the multiplicative inverse (f(z))−1 of f(z). Now let x1, . . . , xn be n distinct
points of I and ρ1, . . . , ρn be elements of S1. Then from Lagrange polynomial
interpolation, there is a smooth rational map f : I → S1 such that f(xj) = ρj
for j = 1, . . . , n. The isomorphism S1 ' SO(2,R) makes multiplication by ρi

(5)In the literature, an infinitely transitive group action is sometimes called a very transitive
action.
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a rotation, hence there exists a twisting map φf which moves n given distinct
points P1, . . . , Pn on the sphere to n another given points R1, . . . , Rn provided
that each pair Pi, Ri (same i) belong to a vertical plane (z = cst). To get
a birational self-diffeomorphism mapping each Pi to each Qi from the origi-
nal n-tuples, it suffices to consider two transversal families of parallel planes
in order to get n intersection points Ri, then up to linear changes of coor-
dinates, apply twice the preceding construction to get 2 twisting maps, see
Figure 2. The composition of these twisting maps gives the desired birational
self-diffeomorphism. (6)

Q1

P2

R2

R1

R3

Q2

P1

P3

Q3

Figure 2. The sphere S2 with two sets of parallels.

Theorem 11 deals with real algebraic surfaces which are rational. More gen-
erally, a real algebraic surface is geometrically rational if the complex surface
(that is the real surface without the anti-holomorphic involution) contains a
dense open subset complex isomorphic to A2(C). Clearly, a real rational sur-
face is geometrically rational but the converse is not true. In the paper [BM11,

(6)By induction on the dimension, we can prove with this construction that in fact the group
Aut

(
Sn

)
acts infinitely transitively on Sn for n > 1.
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Thm. 1], the question of infinite transitivity of the automorphism group is set-
tled for geometrically rational surfaces and in fact for all real algebraic surfaces.
Below is one result of ibid.

Theorem 12. — Let X be a real algebraic surface(7). The group Aut
(
X(R)

)
is then infinitely transitive on each connected component if and only if X is
geometrically rational and #X(R) ≤ 3.

In the statement above, the action of Aut
(
X(R)

)
on X(R) is said to be

infinitely transitive on each connected component if for any pair of n-tuples
of distinct points (P1, . . . , Pn) and (Q1, . . . , Qn) of X(R) such that for each i,
Pi and Qi belong to the same connected component of X(R), there exists a
birational diffeomorphism f : X(R)→ X(R) such that f(Pi) = Qi for all i.

Remark 13. — The infinite transitivity of the automorphism groups of real
algebraic varieties has been proved also for rational surfaces with mild singu-
larities in [HM10]; and the question of infinite transitivity in the context of
affine varieties is studied in [KM12].

A closely related line of research studies generators of Aut
(
X(R)

)
for various

real rational surfaces X. The classical Noether-Castelnuovo Theorem [Cas01]
(see also [AC02, Chapter 8] for a modern exposition of the proof) gives gen-
erators of the group BirC(P2) of birational transformations of the complex
projective plane. The group is generated by the biregular automorphisms,
which form the group AutC(P2) = PGL(3,C) of projectivities, and by the
standard quadratic transformation

σ0 : (x : y : z) 99K (yz : xz : xy).

This result does not work over the real numbers. Indeed, recall that a
base point of a birational transformation is a (possibly infinitely near) point of
indeterminacy; and note that two of the base points of the quadratic involution

σ1 : (x : y : z) 99K (y2 + z2 : xy : xz)

are not real. Thus σ1 cannot be generated by projectivities and σ0. More
generally, we cannot generate this way maps having nonreal base-points. Hence
the group BirR(P2) of birational transformations of the real projective plane
is not generated by AutR(P2) = PGL(3,R) and σ0.

(7)As always, smooth and projective
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The main result of [BM14, Thm. 1.1] is that BirR(P2) is generated by
AutR(P2), σ0, σ1, and a family of birational maps of degree 5 having only
nonreal base-points:

Example 14. — Let p1, p̄1, p2, p̄2, p3, p̄3 ∈ P2 be three pairs of non-real points
of P2, not lying on the same conic. Denote by π : X → P2 the blow-up of
the six points, which induces a birational diffeomorphism X(R) → P2(R).
Note that X is isomorphic to a smooth cubic surface in P3. The set of strict
transforms of the conics passing through five of the six points corresponds to
three pairs of non-real lines on the cubic, and the six lines are disjoint. The
contraction of the six lines gives a birational morphism η : X → P2, inducing
an isomorphism X(R) → P2(R), which contracts the curves onto three pairs
of non-real points q1, q̄1, q2, q̄2, q3, q̄3 ∈ P2; we choose the order so that qi is the
image of the conic not passing through pi. The map ψ = ηπ−1 is a birational
map P2 99K P2 inducing a birational diffeomorphism P2(R)→ P2(R).

Theorem 15. — The group BirR(P2) is generated by AutR(P2), σ0, σ1, and
by the quintic transformations of P2 defined in Example 14.

The proof is based on a extensive study of Sarkisov links. As a consequence,
[BM14] recover the set of generators given in [RV05, Teorema II]:

Theorem 16. — The group Aut(P2(R)) is generated by

AutR(P2) = PGL(3,R)

and by the quintic transformations of P2 defined in Example 14.

And also the set of generators given in [KM09, Thm. 1]:

Theorem 17. — The group Aut(Q3,1(R)) is generated by

AutR(Q3,1) = PO(3, 1)

and by the cubic transformations defined in [BM14, Example 5.1].

As remarked in [BM14, Proposition 5.6], the twisting maps defined in the
proof of Theorem 11 are compositions of twisting maps of degree 1 and 3. And
in the latter case the twisting maps belong to the set of cubic transformations
used in the above theorem.

A new set of generators, completing the list for "minimal" real rational
surfaces is also given [BM14, Thm. 1.4]:
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Theorem 18. — The group Aut((P1 ×P1)(R)) is generated by

AutR(P1 ×P1) ∼= PGL(2,R)2 o Z/2Z

and by the involution

τ0 : ((x0 : x1), (y0 : y1)) 99K ((x0 : x1), (x0y0 + x1y1 : x1y0 − x0y1)).

Remark 19. — For the interested reader, we put the stress on recent "real"
results on Cremona groups: a rather complete classification of real structures
on del Pezzo surfaces [Rus02]; the study of the structure of some real sub-
groups of the Cremona group [Rob14] and [Zim14].

4. Approximation of differentiable maps by algebraic maps

We have defined real rational models of topological surfaces in Section 2.
More generally, let M be a compact C∞-manifold without boundary; a real
algebraic manifold X is a real algebraic model of M if the real locus is diffeo-
morphic to M :

X(R) ≈M .

Clearly, a topological surface admitting a real rational model admits also a
real algebraic model but the converse is not true by Comessatti’s Theorem 7
and the fact that one of the two real algebraic surfaces given by the affine
equations z2 = ±f(x, y), where f is the product of equations of 3 well chosen
circles, is a real algebraic model(8) of a genus 2 orientable surface. A striking
theorem of Nash [Nas52] improved by Tognoli [Tog73] is the following:

Theorem 20 (Nash 1952, Tognoli 1973). — Let M be compact C∞-
manifold without boundary, then there exists a nonsingular projective real
algebraic variety X whose real locus is diffeomorphic to M :

M ≈ X(R).

One of the most famous application of the Nash Theorem is the Theorem of
Artin-Mazur [AM65] below. For any self-map f : M → M , denote by Nν(f)

the number of isolated periodic points of f , of period ν (i.e., the number of
isolated fixed points of fν).

(8)In fact, such a surface is not a manifold since it has nonreal singular points; but it is easy
to get a manifold by "resolution" of these singular points or by a small deformation of the
plane curve f(x, y) = 0.
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Theorem 21. — Let M be a compact C∞-manifold(9) without boundary, and
let F (M) be the space of C∞-self maps of M endowed with the C∞-topology.
There is a dense subset of E ⊂ F (M) such that if f ∈ E, then Nν(f) grows at
most exponentially (as ν varies through the positive integers).

The question has been raised whether the group Aut
(
X(R)

)
is dense in the

group Diff
(
X(R)

)
of all self-diffeomorphisms of X(R), for a real rational sur-

face X. This turns out to be true and has been proved in [KM09, Theorem 4],
see Theorem 22 below. Before stating the whole result, we want to stress here
a big gap between the Nash diffeomorphisms used to prove Artin-Mazur’s The-
orem and the birational diffeomorphisms. A diffeomorphism which is also a
rational map without poles on the real locus is a Nash diffeomorphism but
not necessarily a birational diffeomorphism. Indeed, the converse diffeomor-
phism is not always rational. For instance the map x 7→ x + x3 is a Nash
self-diffeomorphism of R but it is not birational since the converse map has
radicals. This is a consequence of the fact that Implicit function Theorem
holds in analytic setting but does not hold in the algebraic setting.

Theorem 22. — [KM09, Theorem 4]
Let S be a compact connected topological surface and Diff(S) its group of

self-diffeomorphisms. Then

1. If S is nonorientable or of genus g(S) ≤ 1, then there exists a real alge-
braic model X of S such that Aut

(
X(R)

)
= Diff

(
X(R)

)
;

2. If S is orientable of genus g(S) ≥ 2, then for any real algebraic model X
of S, we have Aut

(
X(R)

)
6= Diff

(
X(R)

)
.

Sketch of proof. — We start by proving the second part of the theorem. Let
X be a real algebraic surface with orientable real locus. Then following up the
classification of surfaces (see e.g. [BHPVdV04, Sil89]): if X is geometrically
rational or ruled, then X(R) ≈ S2 or X(R) ≈ S1 × S1; if X is K3 or abelian,
then Aut(X(R)) preserves a volume form, hence density does not hold; if X
is Enriques or bi-elliptic, it admits a finite cover by one surface in the former
case, hence density does not hold; if X is properly elliptic, then Aut(X(R))

preserves a fibration, hence density does not hold; if X is of general type, then
Aut(X(R)) is finite, hence density does not hold. Summing up, if g(S) > 1,
then for any real algebraic model, density does not hold.

(9)In fact, the following results are valid for any Ck-regularity, k = 1, . . . ,∞.
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Proof of part 1. Any such topological surface admits a real rational model
which is P1 × P1, Q3,1 or the blow-up BP1,...,PgQ3,1 where P1, . . . , Pg are g
distinct real points of the sphere. Leaving aside the torus case for simplicity,
we start with a theorem of Lukackĭı to the effect that the density holds for the
sphere. The paper [Luk77, Thm. 2] proves indeed that for any integer n > 1,
the topological group SO(n+1, 1) is a maximal closed subgroup of the neutral
component Diff0(S

n) of Diff(Sn), meaning that any topological subgroup of the
topological group Diff0(S

n) containing SO(n + 1, 1) is dense in Diff0(S
n). In

particular, the group O(n+ 1, 1) and anything else generate a dense subgroup
of Diff(Sn). Thanks to this argument, we prove that Aut

(
Sn
)

= Diff
(
Sn
)
for

X(R) ≈ Sn, n > 1. For the case we are concerned with, the group O(3, 1)

together with any nontrivial twisting map(10) of S2 generate a dense subgroup
of Diff(S2).

The remaining cases are the nonorientable surfaces BP1,...,PgQ3,1(R). Let
X = BP1,...,PgQ3,1. The proof is in three steps:

1. (Marked points). Let f be a self-diffeomorphism of S2. Let g be a
birational self-diffeomorphism of S2 close to f given by density. Then the
point Qi = g(Pi) is just as close to Pi for i = 1, . . . , g. By Theorem 11,
we get a birational self-diffeomorphism h such that Pi = h(Qi) for i =

1, . . . , g. Moreover, the construction of such a h shows that h is just as
close to identity. Thus, starting with a map g closer to f if needed, we
get that the group Aut(S2, P1, . . . , Pg) of birational self-diffeomorphisms
of S2 fixing each Pi is dense in the group Diff(S2, P1, . . . , Pg) of self-
diffeomorphisms of S2 fixing each Pi.

2. (Identity component). By a partition of unity argument (Fragmentation
Lemma), we deduce the density of the identity component Aut0(X(R))

in Diff0(X(R)), see [KM09, Proposition 20] for details.
3. (Mapping class group). The conclusion follows from the fact that the

modular group Mod(X(R)) = Diff(X(R))/Diff0(X(R)) (also called the
mapping class group) is generated by birational self-diffeomorphisms of
X(R), see Theorem 23 below.

Let X be a real algebraic model of a topological surface S, then for any
diffeomorphism g : S → X(R), the map Diff(S)→ Diff(X(R)), f 7→ g−1◦f ◦g
induces a group isomorphism Mod(S)→ Mod(X(R)).

(10)See p. 10
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Theorem 23. — [KM09, Theorem 27]
Let S be a nonorientable compact connected topological surface and Mod(S)

its modular group. Then there exists a real algebraic model X of S such that
the group homomorphism

π :

{
Aut(X(R)) −→ Mod(X(R))

f 7−→ [f ]

is surjective.

In the above statement, the model X is rational; it is straightforward to
see that this statement is also true for the sphere S2, whose modular group is
generated by the antipodal map, and the torus S1×S1, whose modular group
is SL(2,Z). Thus any surface S admitting a real rational model satisfies the
statement.

A byproduct of the proof of Theorem 22 is that Aut
(
X(R)

)
is dense in

Diff
(
X(R)

)
when X is a geometrically rational surface with #X(R) = 1 (or

equivalently when X is rational, see [Sil89, Corollary VI.6.5]). In [KM09],
it is said that #X(R) = 2 is probably the only other case where the density
holds. This case remains open nowadays. The following sums up the known
results in this direction.

Theorem 24. — [KM09, BM11]
Let X be a smooth real projective surface.

– If X is not a geometrically rational surface, then

Aut
(
X(R)

)
6= Diff

(
X(R)

)
;

– If X is a geometrically rational surface, then
• If #X(R) ≥ 5, then Aut

(
X(R)

)
6= Diff

(
X(R)

)
;

• if #X(R) = 1, then Aut
(
X(R)

)
= Diff

(
X(R)

)
.

For i = 3, 4, there exists smooth real projective surfaces X with #X(R) = i

such that Aut
(
X(R)

)
6= Diff

(
X(R)

)
.

Note that the study of automorphism groups of other real algebraic surfaces
than the rational ones has been developed from the point of view of topological
entropy of automorphisms by several authors. In particular, Moncet [Mon12]
defines the concordance α(X) for a real algebraic surface X which is a number
between 0 and 1 with the property that AutR(X) 6= Diff

(
X(R)

)
as soon

as α(X) > 0. (Notice that AutR(X) is the subgroup of Aut
(
X(R)

)
of real

automorphisms of the real algebraic surface X.)
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An important application of the Density Theorem 22 is the following, see
[KM14]:

Theorem 25. — An embedded circle in a nonsingular real rational surface
admits a C∞-approximation by smooth rational curves if and only if is is not
diffeomorphic to a null-homotopic circle on a torus.

Corollary 26. — Let X be a nonsingular real rational variety, then an em-
bedded circle is approximated by smooth rational curves if and only if is is not
diffeomorphic to a null-homotopic circle on a 2-dimensional torus.

5. Regulous maps

In general the problem of approximation of differentiable maps by algebraic
maps is still open. For instance, the existence of algebraic representatives of
homotopy classes of continuous maps between spheres of different dimension
does not have a complete solution nowadays. In [Kuc09], Kucharz introduces
the notion of continuous rational maps generalizing algebraic maps between
real algebraic varieties. The particular case of continuous rational functions
has also been studied by Kollár very recently, see Kollár-Nowak [KN14]. Con-
tinuous rational maps between nonsingular(11) real algebraic varieties are now
often called regulous maps following [FHMM15].

Let X and Y be irreducible nonsingular real algebraic varieties whose sets
of real points are dense. A regulous map from X(R) to Y (R) is a rational
map f : X 99K Y with the following property. Let U ⊂ X be the domain of
the rational map f . The restriction of f to U(R) extends to a continuous
map from X(R) to Y (R) for the euclidean topology. Kucharz shows that all
homotopy classes can be represented by regulous maps [Kuc09, Thm. 1.1].

Theorem 27. — Let n and p be nonzero natural integers. Any continuous
map from Sn to Sp is homotopic to a regulous map.

In fact the statement is more precise: Let n, p and k be natural integers, n
and p being nonzero. Any continuous map from Sn to Sp is homotopic to a
k-regulous map. see below.

The paper [FHMM15] sets up foundations of a regulous geometry: algebra
of regulous functions and regulous topologies. Here is a short account. Recall
that a rational function f on Rn is called a regular function on Rn if f has no

(11)In the singular case, the two notions may differ, see [KN14].
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pole on Rn. For instance, the rational function f(x) = 1/(x2 + 1) is regular
on R. The set of regular functions on Rn is a subring of the field K(Rn) of
rational function on Rn. A regulous function on Rn is a real valued function
defined at any point of Rn, which is continuous for the euclidean topology and
whose restriction to a nonempty Zariski open set is regular. A typical example
is the function

f(x, y) =
x3

x2 + y2

which is regular on R2 \ {0} and regulous on the whole R2. Its graph is
the canopy of the famous Cartan umbrella, see Figure 3. The set of regulous

Figure 3. The Cartan umbrella: z(x2 + y2) = x3.

functions on Rn is a subring R0(Rn) of the field K(Rn). More generally, a
function defined on Rn is k-regulous, if it is at the same time, regular on a
nonempty Zariski open set, and of class Ck on Rn. Here, k ∈ N ∪ {∞}. For
instance, the function

f(x, y) =
x3+k

x2 + y2

is k-regulous onR2 for any natural integer k. We can prove that an∞-regulous
function onRn is in fact regular (the converse statement is straighforward) and
we get an infinite chain of subrings:

R∞(Rn) ⊆ · · · ⊆ R2(Rn) ⊆ R1(Rn) ⊆ R0(Rn) ⊆ K(Rn).

whereRk(Rn) denotes the subring of K(Rn) consisting of k-regulous functions.
The k-regulous topology is the topology whose closed sets are zero sets of

k-regulous functions. Figure 4 represents a "horned umbrella" which is an
algebraic subset of R3 irreducible for the ∞-regulous topology, but reducible
for the k-regulous topology for any natural integer k.
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Figure 4. A horned umbrella: x2 + y2
(
(y − z2)2 + yz3

)
= 0.

In the paper [FHMM15], several properties of the rings Rk(Rn) are estab-
lished. In particular, a strong Nullstellensatz is proved. The scheme theoretic
properties are studied and regulous versions of Theorems A and B of Car-
tan are proved. There is also a geometrical characterization of prime ideals of
Rk(Rn) in terms of the zero-locus of regulous functions and a relation between
k-regulous topology and the topology generated by euclidean closed Zariski-
constructible sets. Many papers are related to this new line of research and
among them see: [Kuc13, BKVV13, KK13, Kuc14a, Kuc14b, Now14]
[FMQ14].

References

[AC02] M. Alberich-Carramiñana – Geometry of the plane Cremona maps,
Lecture Notes in Mathematics, vol. 1769, Springer-Verlag, Berlin, 2002.

[AM65] M. Artin & B. Mazur – “On periodic points”, Ann. of Math. (2) 81
(1965), p. 82–99.

[AM08] M. Akriche & F. Mangolte – “Nombres de Betti des surfaces ellip-
tiques réelles”, Beiträge Algebra Geom. 49 (2008), no. 1, p. 153–164.

[BH07] I. Biswas & J. Huisman – “Rational real algebraic models of topolog-
ical surfaces”, Doc. Math. 12 (2007), p. 549–567.

[BHPVdV04] W. P. Barth, K. Hulek, C. A. M. Peters & A. Van de Ven –
Compact complex surfaces, second ed., Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 2004.

[BKVV13] M. Bilski, W. Kucharz, A. Valette & G. Valette – “Vector
bundles and regulous maps”, Math. Z. 275 (2013), no. 1-2, p. 403–418.

[BM07] F. Bihan & F. Mangolte – “Topological types and real regular Ja-
cobian elliptic surfaces”, Geom. Dedicata 127 (2007), p. 57–73.

[BM11] J. Blanc & F. Mangolte – “Geometrically rational real conic bundles
and very transitive actions”, Compos. Math. 147 (2011), no. 1, p. 161–
187.



REAL RATIONAL SURFACES 21

[BM14] , “Cremona groups of real surfaces”, in Automorphisms in Bi-
rational and Affine Geometry, Springer Proceedings in Mathematics &
Statistics, vol. 79, Springer, 2014, p. 35–58.

[Cas01] G. Castelnuovo – “Le trasformazioni generatrici del gruppo cremoni-
ano nel piano”, Atti della R. Accad. delle Scienze di Torino 36 (1901),
p. 861–874.

[CF03] F. Catanese & P. Frediani – “Real hyperelliptic surfaces and the
orbifold fundamental group”, J. Inst. Math. Jussieu 2 (2003), no. 2,
p. 163–233.

[CM08] F. Catanese & F. Mangolte – “Real singular del Pezzo surfaces and
3-folds fibred by rational curves. I”, Michigan Math. J. 56 (2008), no. 2,
p. 357–373.

[CM09] , “Real singular del Pezzo surfaces and 3-folds fibred by rational
curves. II”, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 4, p. 531–557.

[Com14] A. Comessatti – “Sulla connessione delle superfizie razionali reali”,
Annali di Math. 23 (1914), no. 3, p. 215–283.

[DIK00] A. Degtyarev, I. Itenberg & V. Kharlamov – Real Enriques
surfaces, Lecture Notes in Mathematics, vol. 1746, Springer-Verlag,
Berlin, 2000.

[DIK08] , “On deformation types of real elliptic surfaces”, Amer. J. Math.
130 (2008), no. 6, p. 1561–1627.

[DK02] A. Degtyarev & V. Kharlamov – “Real rational surfaces are quasi-
simple”, J. Reine Angew. Math. 551 (2002), p. 87–99.

[FHMM15] G. Fichou, J. Huisman, F. Mangolte & J.-P. Monnier – “Fonc-
tions régulues”, J. Reine Angew. Math. (2015), ISSN (Online) 1435-
5345, ISSN (Print) 0075-4102, DOI: 10.1515/crelle-2014-0034, January
2015.

[FMQ14] G. Fichou, J.-P. Monnier & R. Quarez – “Continuous functions
in the plane regular after one blowing-up”, Preprint, arXiv:1409.8223
[math.AG], 2014.

[HM05a] J. Huisman & F. Mangolte – “Every connected sum of lens spaces
is a real component of a uniruled algebraic variety”, Ann. Inst. Fourier
(Grenoble) 55 (2005), no. 7, p. 2475–2487.

[HM05b] , “Every orientable Seifert 3-manifold is a real component of a
uniruled algebraic variety”, Topology 44 (2005), no. 1, p. 63–71.

[HM09] , “The group of automorphisms of a real rational surface is n-
transitive”, Bull. Lond. Math. Soc. 41 (2009), no. 3, p. 563–568.

[HM10] , “Automorphisms of real rational surfaces and weighted blow-up
singularities”, Manuscripta Math. 132 (2010), no. 1-2, p. 1–17.

[Hui11] J. Huisman – “Topology of real algebraic varieties; some recent results
on rational surfaces”, in Real Algebraic Geometry, Rennes : France
(2011), Preprint, hal-00609687, 2011, p. 51–62.

[Kha06] V. Kharlamov – “Overview of topological properties of real algebraic
surfaces”, in Algebraic geometry and geometric modeling, Math. Vis.,
Springer, Berlin, 2006, p. 103–117.



22 FRÉDÉRIC MANGOLTE

[KK13] W. Kucharz & K. Kurdyka – “Stratified-algebraic vector bundles”,
Preprint, arXiv:1308.4376 [math.AG], 2013.

[KM09] J. Kollár & F. Mangolte – “Cremona transformations and diffeo-
morphisms of surfaces”, Adv. Math. 222 (2009), no. 1, p. 44–61.

[KM12] K. Kuyumzhiyan & F. Mangolte – “Infinitely transitive actions
on real affine suspensions”, J. Pure Appl. Algebra 216 (2012), no. 10,
p. 2106–2112.

[KM14] J. Kollár & F. Mangolte – “Approximating curves on real rational
surfaces”, J. Algebraic Geom. (2014), à paraître, 17 pages, 1 figure.

[KN14] J. Kollár & K. Nowak – “Continuous rational functions on real and
p-adic varieties”, Math Z. (2014), p. online.

[Kol01] J. Kollár – “The topology of real algebraic varieties”, in Current
developments in mathematics, 2000, Int. Press, Somerville, MA, 2001,
p. 197–231.

[Kuc09] W. Kucharz – “Rational maps in real algebraic geometry”, Adv.
Geom. 9 (2009), no. 4, p. 517–539.

[Kuc13] , “Regular versus continuous rational maps”, Topology Appl. 160
(2013), no. 12, p. 1375–1378.

[Kuc14a] , “Approximation by continuous rational maps into spheres”, J.
Eur. Math. Soc. (JEMS) 16 (2014), no. 8, p. 1555–1569.

[Kuc14b] , “Continuous rational maps into the unit 2-sphere”, Arch. Math.
(Basel) 102 (2014), no. 3, p. 257–261.
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