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Weighted weak formulation for a nonlinear degenerate parabolic equation arising in chemotaxis or porous media

This paper is devoted to the mathematical analysis of a degenerate nonlinear parabolic equation. This kind of equations stems either from the modeling of a compressible two phase flow in porous media or from the modeling of a chemotaxis-fluid process. In the degenerate equation, the strong nonlinearities are technically difficult to be controlled by the degenerate dissipative term because the equation itself presents degenerate terms of order 0 and of order 1. In the case of the sub-quadratic degeneracy of the dissipative term at one point, a weak and classical formulation is possible for the expected solutions. However, in the case of the degeneracy of the dissipative term at two points, we obtain solutions in a weaker sense compared to the one of the classical formulation. Therefore, a degenerate weighted formulation is introduced taking into account the degeneracy of the dissipative term.

Introduction and the nonlinear degenerate model

Let T > 0 be a fixed time and Ω be an open bounded subset of R d , d = 2, 3. We set Q T := Ω × (0, T ) and Σ T = ∂ Ω × (0, T ). We consider the following nonlinear degenerate parabolic equation

∂ t u -div (a (u)∇u -f (u) V) -g (u) div (V) + a (u)∇u • Ṽ = 0, in Q T . (1) 
The boundary condition is defined by

u (x,t) = 0, on Σ T . (2) 
The initial condition is given by u (x, 0) = u 0 (x), in Ω .

Models for chemotaxis lead to such kind of degenerate nonlinear parabolic equation [START_REF] Bendahmane | On a two-sidedly degenerate chemotaxis model with volume-filling effect[END_REF], where u represents the cell density and V represents the gradient of the chemical concentration (see e.g. [START_REF] Wrzosek | A chemotaxis model with threshold density and degenerate diffusion[END_REF][START_REF] Bendahmane | On a two-sidedly degenerate chemotaxis model with volume-filling effect[END_REF][START_REF] Duan | Global solutions to the coupled chemotaxis-fluid equations[END_REF][START_REF] Lorz | Coupled chemotaxis fluid model[END_REF][START_REF] Chamoun | A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion[END_REF][START_REF] Lorz | Coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay[END_REF]), and in the case of swimming bacteria, Ṽ represents the velocity of the fluid which transports the cell density and the chemical concentration; in [START_REF] Lorz | Coupled chemotaxis fluid model[END_REF][START_REF] Chamoun | A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion[END_REF][START_REF] Lorz | Coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay[END_REF] the authors consider Ṽ as the Navier-Stokes velocity. In the chemotaxis modeling, the functions a and f represent respectively the diffusivity of the cells and the chemosensitivity of the cells to the chemicals. In the specific model in [START_REF] Wrzosek | A chemotaxis model with threshold density and degenerate diffusion[END_REF], the authors consider the case where the function a degenerates at one side and consider also a relationship between the degeneracy of the functions a and f to establish the existence and uniqueness of weak solutions. Here, we treat the case of two-sidedly degenerate diffusion terms and consider a general model. Many physical models lead also to degenerate nonlinear parabolic problem. For instance, in [START_REF] Galusinski | On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media[END_REF] the authors analyzed a model of a degenerate nonlinear system arising from compressible two-phase flows in porous media. The described system coupled the saturation (denoted by u) and the global pressure (denoted by p). The global velocity (denoted by V) is taken to be proportional to the gradient of the global pressure. In addition, the functions a and f represent respectively the capillary term and the fractional flow and the velocity Ṽ is considered to be Ṽ = γV where γ is a nonnegative parameter representing the compressibility factor. Several papers are devoted to the mathematical analysis of nonlinear degenerate parabolic diffusionconvection equations arising in compressible, immiscible displacement models in proud media (see e.g. [START_REF] Khalil | Solutions to a model for compressible immiscible two phase flow in porous media[END_REF][START_REF] Saad | Slightly compressible and immiscible two-phase flow in porous media[END_REF]). Here, we consider a generalization of the saturation equation where we assume that the velocity field is given and fixed.

In the paper of Bresch and al. [START_REF] Bresch | Effect of density dependent viscosities on multiphasic incompressible fluid models[END_REF], the authors studied the existence of strong and weak solutions for multiphase incompressible fluids models; indeed, they consider the Kazhikhov-Smagulov system where the density equation contains a degenerate diffusion term and first order term.

In [START_REF] Karlsen | On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients[END_REF], the main interest is a nonlinear degenerate parabolic equation where the flux function depends explicitly on the spatial location for which they study the uniqueness and stability of entropy solutions; the studied equation do not contain first and O th order term. The type of equation [START_REF] Bendahmane | On a two-sidedly degenerate chemotaxis model with volume-filling effect[END_REF] arising also in sedimentationconsolidation processes [START_REF] Bürger | Model Equations for Gravitational Sedimentation-Consolidation Processes[END_REF][START_REF] Bustos | Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory[END_REF][START_REF] Bürger | On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes[END_REF] where the sought u is considered to be the local volume fraction of solids, many constitutive equations imply that there exists a critical number u c such that a(u) = 0 for u ≤ u c which corresponds to the sedimentation step and a(u) > 0 in the consolidation step (see eq. ( 42) in [START_REF] Bürger | Model Equations for Gravitational Sedimentation-Consolidation Processes[END_REF]). Consequently, partial differential equations of type (1) model a wide variety of phenomena, ranging from porous media flow, via chemotaxis model, to traffic flow [START_REF] Whitham | Linear and nonlinear waves[END_REF].

Our basic requirements on system (1)-(3) are:

(H1) a ∈ C 1 ([0, 1], R), a (u) > 0 for 0 < u < 1, a (0) = 0, a (1) = 0.

Furthermore, there exist r 1 > 0, r 2 > 0, m 1 , M 1 > 0, and 0 < u * < 1 such that m 1 r 1 u r 1 -1 ≤ a (u) ≤ M 1 r 1 u r 1 -1 , for all 0 ≤ u ≤ u * , -r 2 M 1 (1u) r 2 -1 ≤ a (u) ≤ -r 2 m 1 (1u) r 2 -1 , for all u * ≤ u ≤ 1. (H2) f is a differentiable function in [0, 1] and g ∈ C 1 ([0, 1]) verifying g (0) = f (0) = 0, f (1) = g (1) = 1, and g (u) ≥ C g > 0 ∀u ∈ [0, 1].

In addition, there exists

c 1 , c 2 > 0 such that | f (u) -g (u)| ≤ c 2 u for all 0 ≤ u ≤ u * and c 1 (1 -u) -1 ≤ ( f (u) -g (u)) -1 ≤ c 2 (1 -u) -1 for all u * ≤ u < 1.
(H3) The velocities V and Ṽ are two measurable functions lying into (L ∞ (Ω )) d . (H4) The initial condition u 0 satisfies: 0 ≤ u 0 (x) ≤ 1 for a.e. x ∈ Ω .

A major difficulty of system (1)-( 3) is the possible degeneracy of the diffusion term. In assumption (H1), we give the degeneracy assumption for the dissipation function a and we determine the behavior of this degeneracy around 0 and 1. In what follows, we introduce the existence result of weak solutions to system (1)-(3) (verifying a weighted weak formulation) under assumptions (H1)-(H4) and for a particular choice of the initial data. However, for the specific case where the dissipation function a vanishes at only one point (i.e. a(0) = 0 or a(1) = 0); we give the existence of weak solutions to system (1)-(3) in Remark 1.

In the sequel and for the simplicity, we assume that Ṽ = V (the same analysis is possible for the case where Ṽ = V). We give now the definition of weak solutions to system (1)-(3) when assumptions (H1)-(H4) are satisfied. Let θ , λ ≥ 0, we denote by j θ ,λ the continuous function defined by

j θ ,λ (u) = β θ (u) = u r-1+θ , if 0 ≤ u ≤ u * β θ (u * ) (1 -u * ) 1-r 2 -λ (1 -u) r 2 -1+λ , if u * ≤ u ≤ 1, (4) 
where, for the fixed two constants r 1 and r 2 , we have

r = r 1 + 2, if r 1 ≤ 1 r 1 , if r 1 > 1 and r ≥ max (2, r 2 ). (5) 
We denote by J θ ,λ the primitive of the function j θ ,λ , that is

J θ ,λ = u 0 j θ ,λ (y) dy. (6) 
Finally, we denote by β , j, and J,the functions defined by

β (u) = u r-1 , j(u) = u r-1 if 0 ≤ u ≤ u * c * (1 -u) r 2 -1 if u * ≤ u ≤ 1, J(u) = u 0 j(y) dy, (7) 
where

c * = u r-1 * (1 -u * ) 1-r 2 .
In addition, we consider the continuous functions µ and G, defined by

µ (u) = β (u) , 0 ≤ u ≤ u * µ (u) = ( f (u) -g (u)) -1 g (u) µ (u) , u * ≤ u < 1. ( 8 
)
G is the primitive of µ, that is G (u) = u 0 µ (y) dy. Definition 1.1 For θ ≥ 7r 1 + 6 -r, λ ≥ 7r 2 + 6 -r 2 
, and under assumptions (H1)-(H4) and assuming that G(u 0 ) ∈ L 1 (Ω ), we say that u is a degenerate weak solution of system (1)-

(3) if 0 ≤ u (x,t) ≤ 1 for a.e. (x,t) ∈ Q T = Ω × (0, T ), J (u) ∈ L 2 0, T ; H 1 0 (Ω ) , a (u) µ (u)∇u ∈ L 2 (Q T ) d ,
and such that, the function F defined by

F (u, χ) = - Q T J θ ,λ (u) ∂ t χ dx dt - Ω J θ ,λ (u 0 (x)) χ (x, 0) dx + Q T a (u) ∇u • ∇ j θ ,λ (u) χ dx dt + Q T a (u) V • ∇u j θ ,λ (u) χ dx dt - Q T ( f (u) -g (u)) V • ∇ j θ ,λ (u) χ dx dt + Q T g (u) V • ∇u j θ ,λ (u) χ dx dt - Q T ( f (u) -g (u)) V • ∇χ j θ ,λ (u) dx dt, verifies F (u, χ) ≤ 0, ∀ χ ∈ C 1 [0, T ); H 1 0 (Ω ) with χ (•, T ) = 0 and χ ≥ 0, (9) 
and furthermore,

∀ε > 0, ∃ Q ε ⊂ Q T such that meas (Q ε ) < ε, and 
F (u, χ) = 0, ∀ χ ∈ C 1 [0, T ); H 1 0 (Ω ) , supp χ ⊂ ([0, T ) × Ω ) \Q ε (10) 
Theorem 1.1 Under assumptions (H1) -(H4), there exists at least one degenerate weak solution to system (1)-(3) in the sense of Definition 1.1.

Remark 1 (Classical weak solutions). Consider the specific case where a (u) ≈ (1u) r 2 , 0 < r 2 < 2. Then, a weak solution of system (1)-( 3) can be characterized by a classical weak solution verifying

0 ≤ u (x,t) ≤ 1 a.e. in Q T , u ∈ L 2 0, T ; H 1 0 (Ω ) ∂ t u ∈ L 2 0, T ; H -1 (Ω ) ,
and such that, for all ϕ ∈ L 2 0, T ;

H 1 0 (Ω ) T 0 ∂ t u, ϕ H -1 (Ω ),H 1 0 (Ω ) dt + Q T a (u) ∇u • ∇ϕ dx dt - Q T f (u) V • ∇ϕ dx dt + Q T g (u) V • ∇ϕ dx dt + Q T g (u) V • ∇uϕ dx dt + Q T a (u) V • ∇uϕ dx dt = 0.
Unless stated otherwise, C represents a "generic" nonnegative quantity which need not have the same value through the proofs. Furthermore, C α represents a nonnegative constant depending only on the subscript α.

In what follows, we give an essential compactness result for degenerate problems, then we introduce and give the existence of at least one solution for the nondegenerate problem associated with the degenerate system (1)- [START_REF] Brezis | Analyse fonctionnelle Théorie et applications, collection mathématiques appliquées pour la maitrise[END_REF]. Finally, we prove the existence of solutions for the degenerate problem, and show that they verify a weighted weak formulation.

Compactness result

Classical compactness results [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF][START_REF] Lions | Incompressible Models[END_REF][START_REF] Lions | Mathematical topics in fluid dynamics[END_REF] for nondegenerate problems cannot be applied in a straightforward way for degenerate problems and they should be adapted to the nature of the degeneracy. Here, we introduce a general preliminary compactness result on the gradient of a degenerate function.

Lemma 2.1 Consider the differentiable function a : [0, 1] → R + satisfying:

• a(0) = 0.

• there exist r 1 > 0, m 1 and M 1 > 0 such that:

m 1 r 1 u r 1 -1 ≤ a (u) ≤ M 1 r 1 u r 1 -1 , for all 0 ≤ u ≤ 1.
Let us denote by A, B, and b the continuous functions defined by

A (u) = u 0 a(τ) dτ, B (u) = A 2 (u) , b (u) = B (u) = 2A (u) a (u). ( 11 
)
We denote finally by A η,η = A(u η ) -A(u η ) and B η,η = B(u η ) -B(u η ), for all η, η ∈ N.

For every µ > 0, define the truncation function T µ by

T µ (u) = min(µ, max (-µ, u)), ∀u ∈ R. ( 12 
)
Consider a sequence (u η ) η satisfying

(A1) 0 ≤ u η ≤ 1 almost everywhere in Q T . (A2) (u η ) η is strongly convergent in L 2 (Q T ). (A3) (a(u η )∇u η ) η is bounded in (L 2 (Q T )) d . (A4) Q T ∇A η,η • ∇ b(u η )T µ (B η,η ) dx dt -→ 0, as µ, η, η → 0.
Then, the sequence u q η a (u η ) ∇u η η is a Cauchy sequence in measure where q = 3r 1 + 2.

Proof. We want to show that the sequence u q η a (u η ) ∇u η η is a Cauchy sequence in measure; this yields, up to extract a subsequence, that u q η a (u η ) ∇u η -→ u q a (u) ∇u for almost everywhere (x,t) in Ω × (0, T ). To do this, it suffices to prove that, for the two sequences (u η ) η and u η η we have

meas u q η ∇A (u η ) -u q η ∇A u η ≥ δ ≤ ε, ∀ε > 0. ( 13 
)
First, remark that the sequences

(∇A (u η )) η , (∇B (u η )) η , (∇b (u η )) η are uniformly bounded in L 2 (Q T ) d , (14) 
Indeed, we have the following estimates

∇A (u η ) 2 (L 2 (Q T )) d = a (u η ) ∇u η 2 (L 2 (Q T )) d ≤ C, ∇B (u η ) 2 (L 2 (Q T )) d = 2A (u η ) ∇A (u η ) 2 (L 2 (Q T )) d ≤ (2M 1 ) 2 ∇A (u η ) 2 (L 2 (Q T )) d .
We have, form the definition of b, that ∇b (u η ) = 2a (u η ) ∇A (u η ) + 2a (u η ) A (u η ) ∇u η . One can get the result using the following statement

a (u η ) A (u η ) ≤ M 2 1 r 1 r 1 + 1 u r 1 -1 η u r 1 +1 η ≤ M 2 1 u 2r 1 η ≤ M 2 1 m 1 u r 1 η a (u η ) ≤ M 2 1 m 1 a (u η ). (15) 
Now, let s be the continuous function defined by

s (u) = u 0 b (z) A (z) a (z) dz, ∀u ∈ R. ( 16 
)
Let us prove that the sequence (∇s(u η )) η is a Cauchy sequence in measure, that is

meas ∇s (u η ) -∇s u η ≥ δ ----→ η,η →0 0. Remark that ∇s (u η ) -∇s u η ≥ δ ⊂ A 1 ∩ A 2 ∩ A 3 ∩ A 4 ,
where

A 1 = ∇A (u η ) ≥ k , A 2 = ∇A u η ≥ k , A 3 = B η,η ≥ µ , A 4 = ∇s (u η ) -∇s u η ≥ δ ∩ ∇A (u η ) ≤ k ∩ ∇A u η ≤ k ∩ {|B η,η | ≤ µ}.
Thanks to statement [START_REF] Lions | Incompressible Models[END_REF], and to the continuous embedding of

L 2 (Q T ) into L 1 (Q T ), we have k meas (A 1 ) ≤ A 1 ∇A (u η ) dx dt ≤ C.
An analogous estimate hols for A 2 . Therefore, by choosing k large enough, one gets meas (A 1 ) + meas (A 2 ) is arbitrarily small. In the same manner, one gets

meas (A 3 ) ≤ 1 µ B η,η L 1 (Q T ) ,
which, for a fixed µ > 0, tends to zero as η, η → 0. It remains to show that meas(A 4 ) is small enough. Indeed, we have

∇s (u η ) -∇s u η 2 = b (u η ) A (u η ) ∇A (u η ) -b u η A u η ∇A u η 2 = b (u η ) A (u η ) ∇A η,η + b (u η ) A (u η ) -b u η A u η ∇A u η 2 ,
and therefore, one gets

δ meas (A 4 ) ≤ A 4 ∇s (u η ) -∇s u η 2 dx dt ≤ 2 A 4 b (u η ) A (u η ) ∇A η,η 2 dx dt + 2 A 4 b (u η ) A (u η ) -b u η A u η 2 ∇A u η 2 dx dt ≤ 4M 3 1 A 4 b (u η ) A (u η ) + A u η ∇A η,η • ∇A η,η dx dt + 2k 2 Q T b (u η ) A (u η ) -b u η A u η 2 dx dt.
The parameter k is chosen to be fixed and large enough; then the last term that we denote W k (η, η ) goes to zero as η, η → 0. Consequently,

δ meas (A 4 ) ≤ W k η, η + 4M 3 1 Q T b (u η ) A (u η ) + A u η ∇A η,η • ∇A η,η 1 {|B η,η |≤µ} dx dt. ( 17 
)
We want to show that the second term on the right-hand side of inequality ( 17) is small enough. For that, we compute

∇A η,η • ∇ b(u η )T µ (B η,η ) = b (u η ) ∇A η,η • ∇T µ B η,η + ∇A η,η • ∇b u η T µ B η,η =b (u η ) A (u η ) + A u η ∇A η,η • ∇A η,η 1 {|B η,η |≤µ} (18) 
+ b (u η ) A η,η ∇ A (u η ) + A u η 1 {|B η,η |≤µ} + ∇b u η T µ B η,η • ∇A η,η .
Using the fact that |T µ (•)| ≤ µ, and thanks to estimate [START_REF] Lions | Incompressible Models[END_REF] and to the Cauchy-Schwarz inequality, we get the following estimate

∇b u η T µ B η,η • ∇A η,η (L 1 (Q T )) d ≤ Cµ,
and since A η,η ≤ Cµ, where B η,η ≤ µ, one deduces that b (u η ) ∇A η,η • ∇ A (u η ) + A u η A η,η 1 {|B η,η |≤µ} (L 1 (Q T )) d ≤ Cµ,
where C is a generic constant independent of η and η . Consequently, from equation ( 18), one has

Q T b (u η ) A (u η ) + A u η ∇A η,η • ∇A η,η 1 {|B η,η |≤µ} dx dt ≤ Q T ∇A η,η • ∇ b(u η )T µ (B η,η ) +Cµ,
and thanks to assumption (A4), then inequality [START_REF] Lorz | Coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay[END_REF] gives

δ meas (A 4 ) ≤ W k η, η + W µ η, η + Cµ.
Using the above results, one can deduce that for all ε > 0, for all δ > 0, there exists η 0 > 0 such that for all η, η ≤ η 0 , we have meas ∇s

(u η ) -∇s u η ≥ δ ≤ ε. (19) 
Now, we can prove statement [START_REF] Wrzosek | A chemotaxis model with threshold density and degenerate diffusion[END_REF] with the help of inequality [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]. Indeed, we have

u q η ∇A (u η ) -u q η ∇A u η = u q η ∇A η,η + u q η -u q η ∇A u η . Since q = 3r 1 + 2, then u q η = u 3r 1 +2 η ≤ C r 1 ,m 1 b (u η ) A (u η ) where C r 1 ,m 1 = (r 1 + 1) 2 2m 3 1 .
We write

u q η ∇A η,η ≤ C r 1 ,m 1 b (u η ) A (u η ) ∇A η,η ≤ C r 1 ,m 1 ∇s (u η ) -∇s u η +C r 1 ,m 1 b (u η ) A (u η ) -b u η A u η ∇A u η .
Consequently,

u q η ∇A (u η ) -u q η ∇A u η ≤ u q η -u q η ∇A u η +C r 1 ,m 1 ∇s (u η ) -∇s u η +C r 1 ,m 1 b (u η ) A (u η ) -b u η A u η ∇A u η ,
which converges to zero as η, η → 0. The result is due either to the convergence in L 1 (Q T ) for the first and the last terms on the right-hand side, or either by the help of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]. This ends the proof of lemma 2.1.

The rest of the paper is devoted to the proof of the main theorem. In the next section, we introduce a nondegenerate problem by adding an artificial diffusion operator.

Existence for the nondegenerate case

In this section, we prove the existence of solutions to the nondegenerate problem. To avoid the degeneracy of the dissipation function a, we introduce the modified problem where the dissipation a is replaced by a η (u) = a (u) + η in equation ( 1), with 0 < η 1 is a small parameter strictly positive. Therefore, we consider the nondegenerate system

∂ t u η -div (a η (u η ) ∇u η -f (u η )V) -g (u η ) div (V) + a η (u η ) ∇u η • V = 0, in Q T , ( 20 
) u η (x,t) = 0, on Σ T , (21) u η (x, 0) = u 0 (x), in Ω . ( 22 
)
We will show (using the Schauder fixed-point theorem ) that the nondegenerate problem ( 20)-( 22) has at least one solution.

Weak nondegenerate solutions

For the existence of a solution to the nondegenerate system, we have the following theorem Theorem 3.1 (nondegenerate system) For any fixed η > 0 and under the assumptions (H1)-(H4), there exists at least one weak solution u η to system (20)-( 22) satisfying

0 ≤ u η (x,t) ≤ 1 for a.e. (x, t) ∈ Q T , (23) 
u η ∈ L 2 0, T ; H 1 0 (Ω ) , ∂ t u η ∈ L 2 0, T ; H -1 (Ω ) ,
and such that for all ϕ ∈ L 2 0, T ;

H 1 0 (Ω ) T 0 ∂ t u η , ϕ H -1 (Ω ),H 1 0 (Ω ) dτ + Q T a η (u η ) ∇u η • ∇ϕ dx dt - Q T f (u η ) V • ∇ϕ dx dt + Q T g (u η ) V • ∇u η ϕ dx dt + Q T g (u η ) V • ∇ϕ dx dt + Q T a η (u η ) V • ∇u η ϕ dx dt = 0. ( 24 
)
Proof. The solutions to system (20)-( 22) depend on the parameter η. To simplify the notations and for simplicity, we omit the dependence of solutions on the parameter η and we use u instead of u η in this section. We will apply the Schauder fixed-point theorem to prove the existence of weak solutions to system (20)-( 22). It is necessary to use the continuous extension for the functions depending on u. For instance, we take f (u) = g (u) = 1 for all u ≥ 1 and f (u) = g (u) = 0 for all u ≤ 0. Furthermore, we extend the dissipation a outside [0, 1] by taking a (u) = 0, for u ≤ 0, and a (u) = a (1), for u ≥ 0.

For technical reason, we have that the velocity V to be more regular. However, we can regularize

V by V ε such that div V ε ∈ L 2 (Q T ) and V ε → V in L 2 (Q T ).
Here, we omit this step and consider V ∈ L ∞ (Q T ) and div V ∈ L 2 (Q T ).

Fixed-point method

Let us introduce the closed subset K of L 2 (Q T ) given by

K = u ∈ L 2 (Q T ); u 2 L ∞ (0,T;L 2 (Ω )) + η u 2 L 2 (0,T;H 1 0 (Ω )) ≤ A, ∂ t u L 2 (0,T ;H -1 (Ω )) ≤ B ,
The constants A and B will be fixed later. The set K is a compact convex of L 2 0, T ; L 2 (Ω ) (The compactness is due to the Aubin-Simon theorem [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]).

Let T be a map from L 2 0, T ; L 2 (Ω ) to L 2 0, T ; L 2 (Ω ) defined by T (u) = u, where u is the unique solution to the following linear parabolic equation

∂ t u -div (a η (u) ∇u -f (u)V) -g (u) div (V) + a η (u) ∇u • V = 0, (25) 
with the associate initial and boundary conditions. The existence of a unique solution to problem (25) is obtained using the Galerkin method [START_REF] Lions | Incompressible Models[END_REF][START_REF] Evans | Partial differential equations: Graduate studies in Mathematics[END_REF]. Indeed, there exists a unique solution u to problem (25) verifying:

u ∈ L 2 0, T ; H 1 0 (Ω ) , ∂ t u ∈ L 2 0, T ; H -1 (Ω )
such that, we have the following weak formulation:

∀ϕ ∈ L 2 0, T ; H 1 0 (Ω ) , T 0 ∂ t u, ϕ H -1 (Ω ),H 1 0 (Ω ) dt + Q T a η (u) ∇u • ∇ϕ dx dt - Q T f (u) V • ∇ϕ dx dt + Q T g (u) div Vϕ dx dt + Q T a η (u) ∇u • Vϕ dx dt = 0. ( 26 
) Lemma 3.2 T is an application from K to K . Proof. Since u ∈ L 2 0, T ; H 1 0 (Ω )
, one takes the solution u as a test function in the weak formulation (26), and gets, for all t ∈ (0, T ), that

E 1 + E 2 = E 3 + E 4 + E 5 , (27) 
where

E 1 = 1 2 u (t) 2 L 2 (Ω ) - 1 2 u 0 2 L 2 (Ω ) , E 2 = t 0 Ω a η (u) ∇u • ∇u dx dτ, E 5 = Q T g (u) div Vϕ dx dt, E 3 = t 0 Ω ( f (u) -g (u)) ∇u • Vdx dτ, E 4 = - t 0 Ω a η (u) ∇u • Vu dx dτ.
We rely on the continuous extension of the functions f and g, the Cauchy-Schwarz, and the weighted Young inequality, one gets

|E 3 | ≤ t 0 Ω | f (u)| |∇u • V| dx dτ ≤ δ ∇u 2 (L 2 (Q t )) d + C f ,g,Q t 4δ V 2 (L ∞ (Q t )) d , ( 28 
)
where δ is a constant to be specified later.

In the same manner, we have the following estimate

|E 4 | ≤ t 0 Ω a η (u) |∇u • Vu| dx dτ ≤ δ ∇u 2 (L 2 (Q t )) d + C f ,g,V 4δ u 2 (L 2 (Q t )) d . (29) 
Now, we give an estimation for the last term on the right-hand side of equation ( 27). Indeed, we have

|E 5 | ≤ Q T |g (u) div Vϕ| dx dt ≤ C.
Choosing the constant δ = η 4 and plugging estimate (29) into equation ( 27) one can conclude that

u (t) 2 L 2 (Ω ) + η ∇u 2 (L 2 (Q t )) d ≤ C 1 +C 2 t 0 u (τ) 2 L 2 (Ω ) dt, (30) 
where

C 1 = C + u 0 2 L 2 (Ω ) + 2C f ,g,Q t η V 2 (L ∞ (Q t )) d and C 2 = C f ,g,V
η . From estimate (30), and thanks to Grönwall's lemma, one can deduce that there exists a constant

C 3 = C 1 exp (C 2 T ) > 0 such that u 2 L 2 (Q t ) ≤ C 3 , ∀t ∈ (0, T ) . (31) 
Plugging estimate (31) into estimate (30), one has

u (t) 2 L 2 (Ω ) + η ∇u 2 (L 2 (Q t )) d ≤ A, ∀t ∈ (0, T ) , where A = C 1 +C 2 C 3 . Consequently, one deduces that u 2 L ∞ (0,T;L 2 (Ω )) + η u 2 L 2 (0,T;H 1 0 (Ω )) ≤ A.
It remains to show the estimate on ∂ t u. To do this, we take ϕ ∈ L 2 0, T ; H 1 0 (Ω ) as a test function into the weak formulation (26), one gets

T 0 ∂ t u, ϕ dt ≤ Q T | f (u)| |V • ∇ϕ| dx dt + Q T a η (u) |∇u • (∇ϕ + Vϕ)| dx dt + Q T |g (u) div Vϕ| dx dt ≤ C f ,g V (L 2 (Q T )) d ∇ϕ (L 2 (Q T )) d +C a,η ∇u (L 2 (Q T )) d ∇ϕ (L 2 (Q T )) d +C g,v ϕ L 2 (Q T ) +C a,η,V ∇u (L 2 (Q T )) d ϕ L 2 (Q T ) .
Note that the Poincaré inequality implies the existence of a constant C 4 > 0 (depending only on the domain

Ω ) such that ϕ L 2 (Q T ) ≤ C 4 ∇ϕ (L 2 (Q T )) d .
Therefore, one can deduce that

t 0 ∂ t u, ϕ dt ≤ B ∇ϕ (L 2 (Q T )) d .
This ends the proof of the lemma.

Lemma 3.3 T is a continuous application.

Proof. Let (u n ) n be a sequence of K and u ∈ K such that u n -→ u converges strongly in L 2 0, T ; L 2 (Ω ) .

In order to prove the lemma, it suffices to show that

T (u n ) = u n -→ T (u) = u converges strongly in L 2 0, T ; L 2 (Ω ) .
For all ϕ ∈ L 2 0, T ; H 1 0 (Ω ) , the sequence

(u n ) n satisfies T 0 ∂ t u n , ϕ dt + Q T a η (u n ) ∇u n • ∇ϕ dx dt - Q T f (u n ) V • ∇ϕ dx dt + Q T g (u) div Vϕ dx dt + Q T a η (u n ) V • ∇u n ϕ dx dt = 0. (32) 
Let us denote v n by v n = u nu. Then, we substrat equation (26) from equation (32), and take ϕ = v n as a test function, and a parameter δ > 0 that will be defined later, we get the following equation

∑ 1≤i≤7 H i = 0, (33) 
where

H 1 = t 0 ∂ t v n , v n dτ = 1 2 v n (t) 2 L 2 (Ω ) , H 2 = Q t a η (u n ) ∇v n • ∇v n dτdx ≥ η ∇v n 2 (L 2 (Q t )) d , H 3 = Q t (a η (u n ) -a η (u)) ∇u • ∇v n dτdx ≤ δ ∇v n 2 (L 2 (Q t )) d + 1 4δ (a η (u n ) -a η (u)) ∇u 2 (L 2 (Q t )) d , H 4 = Q t ( f (u n ) -f (u)) ∇v n • V dτdx ≤ δ ∇v n 2 (L 2 (Q t )) d + 1 4δ ( f (u n ) -f (u)) V 2 (L 2 (Q t )) d , H 5 = Q t (g (u n ) -g (u)) div Vv n dτdx ≤ δ ∇v n 2 (L 2 (Q t )) d + 1 4δ (g (u n ) -g (u)) div V 2 (L 2 (Q t )) d , H 6 = Q t a η (u n ) ∇v n • Vv n dτdx ≤ δ ∇v n 2 (L 2 (Q t )) d + C a,η 4δ v n 2 L 2 (Q t ) , H 7 = Q t (a η (u n ) -a η (u)) ∇u • Vv n dτdx ≤ δ ∇v n 2 (L 2 (Q t )) d +C a,η,V (a η (u n ) -a η (u)) ∇u 2 (L 2 (Q t )) d .
Plugging these estimates into equation (33) and choosing δ = η 12 , one can deduce that

v n (t) 2 L 2 (Ω ) ≤ C n exp 6C a,η t η ,
where C n tends to zero as n → ∞, which implies that

u n -→ u strongly in L 2 0, T ; L 2 (Ω ) .
This ends the proof of this lemma.

Using previous results and the Schauder's fixed-point theorem, one can deduce that there exists at least one solution to the nondegenerate problem ( 20)-( 22) in the sense of theorem 3.1. It remains to show that the solution verifies the maximum principle.

Maximum principle on the saturation

In this section, we aim to prove that the solution of the nondegenerate problem (20)-( 22) is stable in the sense of verifying the maximum principle. Specifically, we have the following lemma.

Lemma 3.4 Let u be a solution to the nondegenerate system (20)-( 22) under the assumptions (H1)-(H4). Then, the solution u satisfies 0 ≤ u (x,t) ≤ 1, for a.e. (x, t) ∈ Q T .

Proof. Let u -be the function defined by

u -= max (-u, 0) = |u|-u 2 ≥ 0. Stampacchia's Theorem ensures that u -∈ L 2 0, T ; H 1 0 (Ω ) since u ∈ L 2 0, T ; H 1 0 (Ω )
. Therefore, one can consider -u -as a test function into the weak formulation (26), and gets

1 2 u -(t) 2 L 2 (Ω ) + Q t a η (u) ∇u -• ∇u -dx dt + Q t f (u) V • ∇u -dx dt + Q t g (u) div (V) u -dx dt + Q t a η (u) ∇u -• Vu -dx dt = 0. ( 34 
)
We use the definition of the function a η and the degeneracy of the dissipation a to conclude that

Q t a η (u) ∇u -• ∇u -dx dt ≥ η Q t ∇u -• ∇u -dx dt = η ∇u -2 (L 2 (Q t )) d . (35) 
Furthermore, we rely on the continuous extension by zero of the functions f (u) and g (u) for u ≤ 0, to deduce that the third and the fourth terms in equation ( 34) are equal to zero.

Let us now focus on the last term of equation (34). Indeed, by the Cauchy-Schwarz inequality as well as the weighted Young inequality, one has

Q t a η (u) ∇u -• Vu -dx dt ≤ η 2 ∇u -2 (L 2 (Q t )) d + C a,η,V 2 t 0 u -(τ) 2 L 2 (Ω ) dτ. ( 36 
)
Substituting estimates (35)-(36) into equation (34), this yields

u -(t) 2 L 2 (Ω ) + η ∇u -2 (L 2 (Q t )) d ≤ C a,η,V t 0 u -(τ) 2 L 2 (Ω ) dτ,
applying, the Grönwall lemma, one can deduce that u -(x,t) = 0, for a.e. (x,t) ∈ Q T , i.e. u (x,t) ≥ 0, for almost everywhere (x,t) ∈ Q T . It remains to show that u (x,t) ≤ 1, for a.e. (x,t) ∈ Q T . To do this, it suffices to prove that (u -1) + = 0. Thus, we multiply the saturation equation ( 20) by the regular function (u -1) + ∈ L 2 0, T ; H 1 0 (Ω ) and integrate the resulting equation over Ω × (0,t), this yields

1 2 (u -1) + (t) 2 L 2 (Ω ) + Q t a η (u) ∇ (u -1) + • ∇ (u -1) + dx dt - Q t f (u) V • ∇ (u -1) + dx dt - Q t g (u) div (V) (u -1) + dx dt + Q t a η (u) ∇u • V (u -1) + dx dt = 0. (37) 
Now, we proceed as before and get the estimates for each term of equation (37).

For the third and the fourth term of equation (37), by using the fact that f (u) = g (u) = 1 for all u ≥ 1, one has

- Q t f (u) V • ∇ (u -1) + dx dt - Q t g (u) div (V) (u -1) + dx dt = - Σ T (u -1) + V • n dσ dt = 0.
For the last term of equation (37), we use again the extension by a (1) of the dissipation function a for u > 1, the Cauchy-Schwarz inequality and the weighted Young inequality, and get the following estimate

Q t a η (u) ∇u • V (u -1) + dx dt = Q t a η (u) ∇ (u -1) • V (u -1) + dx dt ≤ η 2 ∇ (u -1) + 2 (L 2 (Q t )) 2 + C a,η,V 2 t 0 (u -1) + (τ) 2 L 2 (Ω ) dτ.
Plugging the previous estimates into equation (37), one has

(u -1) + (t) 2 L 2 (Ω ) + η ∇ (u -1) + 2 (L 2 (Q t )) d ≤ C a,η,V t 0 (u -1) + (τ) 2 L 2 (Ω ) dτ.
One can conclude, using the Grönwall lemma, that u (x,t) ≤ 1, for a.e. (x,t) ∈ Q T . This ends the proof of lemma 3.4. The proof of theorem 3.1 is now completed.

4 Proof of theorem 1.1

In the previous section, we have shown that the nondegenerate system (20)-( 22) admits at least one weak solution. Here, we are going to prove theorem 1.1, the proof is based on the establishment of estimates on the solutions independent of the parameter η, and next on the passage to the limit as η goes to zero.

From the definition (8) of the continuous function µ, we have

µ (u η ) = µ (u * ) exp u η u * (f (τ) -g (τ)) -1 g (τ) dτ, for all u η ≥ u * .
As a consequence of assumption (H2), there exist two nonnegative constants c 3 and c 4 depending only on f , g, µ, and u * such that

c 3 (1 -u η ) -1 ≤ µ (u η ) ≤ c 4 (1 -u η ) -1 , ∀u * ≤ u η < 1. (38) 
Indeed, we have

µ(u * )exp c 1 C g u η u * 1 1 -τ dτ ≤ µ(u η ) ≤ µ(u * )exp c 2 g ∞ u η u * 1 1 -τ dτ .
That is

c 1 C g µ(u * )(1 -u * ) 1 -u η ≤ µ(u η ) ≤ c 2 g ∞ µ(u * )(1 -u * ) 1 -u η .
Denoting by

c 3 = c 1 C g µ(u * )(1 -u * ) and c 4 = c 2 ||g || ∞ µ(u * )(1 -u * )
, then one obtains the confinement (38). Now, using the confinement (38) of the function µ and denoting by c 5 = c 1 c 3 C g and c 6 = c 2 c 4 g ∞ , one can easily obtain that

c 5 (1 -u η ) 2 ≤ µ (u η ) ≤ c 6 (1 -u η ) 2 . ( 39 
)
Lemma 4.1 Under the assumptions (H1) -(H4), assume that G (u 0 ) = u 0 0 µ(y) dy belongs to L 1 (Ω ). Then the solutions of the saturation equation [START_REF] Whitham | Linear and nonlinear waves[END_REF] 

verify (i) 0 ≤ u η (x,t) ≤ 1, for almost everywhere (x,t) ∈ Q T . (ii) The sequences µ (u η ) a (u η )∇u η η and (a (u η ) ∇u η ) η are uniformly bounded in L 2 (Q T ) d .
(iii) The sequences η µ (u η )∇u η η and (∇J (u η )) η are uniformly bounded in L 2 (Q T ) d .

(iv) The sequence (G (u η )) η is uniformly bounded in L ∞ 0, T ; L 1 (Ω ) .

(v) The sequence (∂ t J (u η )) η is uniformly bounded in L 1 0, T ;W -1,q (Ω ) .

(vi) The sequences (J (u η )) η and (u η ) η are relatively compact in L 2 0, T ; L 2 (Ω ) .

Proof. The first part, (i), is obtained in section 3.2. Now, we multiply the saturation equation ( 20) by µ (u η ) and integrate it over Ω , one gets

d dt Ω G (u η ) dx + Ω a (u η ) µ (u η ) ∇u η 2 dx + η Ω µ (u η ) ∇u η 2 dx = Ω ( f (u η ) -g (u η )) µ (u η ) ∇u η • Vdx - Ω g (u η ) µ (u η ) ∇u η • Vdx - Ω a (u η ) µ (u η ) ∇u η • Vdx -η Ω µ (u η ) ∇u η • Vdx. ( 40 
)
We denote Ω 1 = Ω ∩ u η < u * and Ω 2 = Ω ∩ u η ≥ u * ; then we can split the whole integral appearing in equation (40) into two parts, so we write

Ω = Ω ∩{u η <u * } + Ω ∩{u η ≥u * }
.

• Into region Ω 1 , recall that µ = u r-1 where r is defined in (5), and using assumption (H1), we obtain the following estimates

Ω 1 ( f (u η ) -g (u η ))µ (u η ) ∇u η • Vdx - Ω 1 g (u η ) µ (u η ) ∇u η • Vdx ≤ 1 4 µ (u η ) a (u η )∇u η 2 (L 2 (Ω 1 )) d + 8 g 4 ∞ + c 2 (r -1) 2 2 (m 1 (r -1)) 2 V 2 (L 2 (Ω 1 )) d ,
and

Ω 1 a (u η ) µ (u η ) ∇u η • Vdx ≤ 1 4 µ (u η ) a (u η )∇u η 2 (L 2 (Ω 1 )) d + 4 a 2 ∞ (m 1 (r -1)) 2 V 2 (L 2 (Ω 1 )) d , η Ω 1 µ (u η ) ∇u η • Vdx ≤ 1 2 η µ (u η )∇u η 2 (L 2 (Ω 1 )) d + 1 2 (r -1) 2 V 2 (L 2 (Ω 1 )) d .
• Into region Ω 2 , and from the definition (8) of the function µ, we have

Ω 2 ( f (u η ) -g (u η )) µ (u η ) -g (u η ) µ (u η ) ∇u η • Vdx = 0.
Furthermore, thanks to estimate (39), we have the following estimates

Ω 2 a (u η ) µ (u η ) ∇u η • Vdx ≤ 1 2 µ (u η ) a (u η )∇u η 2 (L 2 (Ω 2 )) d +C V 2 (L 2 (Ω 2 )) d , and 
η Ω 2 µ (u η ) ∇u η • Vdx ≤ 1 2 η µ (u η )∇u η 2 (L 2 (Ω 2 )) d +C V 2 (L 2 (Ω 2 )) d .
Plugging the previous estimates into equation ( 40), one has

2 d dt Ω G (u η ) dx + µ (u η ) a (u η )∇u η 2 (L 2 (Ω )) d + η µ (u η )∇u η 2 (L 2 (Ω )) d ≤ C. (41) 
Now, we integrate inequality (41) with respect to the time over (0,t) ,t ∈ (0, T ), one deduces that the sequences µ (u η ) a (u η )∇u η η and η µ (u η ) ∇u η η are uniformly bounded in L 2 (Q T ) d , and that

(G (u η )) η is uniformly bounded in L ∞ 0, T ; L 1 (Ω ) .
Let us prove that (a (u η ) ∇u η ) η and (∇J (u η )) η are uniformly bounded in L 2 (Q T ) d . Indeed, since r ≥ r 1 then for all 0 ≤ u η ≤ u * < 1, we have

a (u η ) µ (u η ) ≥ m 1 (r -1) u r 1 η u r-2 η ≥ m 1 (r -1) u r η u r-2 η ≥ m 1 (r -1) u 2r-2 η ≥ m 1 (r -1) j 2 (u η ),
where j is the function defined by ( 7) and for all u η ≥ u * , we have

a (u η ) µ (u η ) ≥ m 1 (1 -u η ) r 2 µ (u η ) g (u η ) ( f (u η ) -g (u η )) -1 ≥ c 5 m 1 (1 -u η ) r 2 -2 ≥ c 5 m 1 (1 -u * ) 2-r (1 -u * ) 1-r 2 2 (1 -u η ) r 2 -1 2 ≥ C j 2 (u η ). Therefore, ∇J (u η ) 2 (L 2 (Q T )) d ≤ C µ (u η ) a (u η )∇u η 2 (L 2 (Q T )) d ≤ C. For the sequence (a (u η ) ∇u η ) η , it is easy to see that a (u η ) ≤ M 1 u r 1 η ≤ M 1 u r-2 η ≤ M 1 r -1 µ (u η ) , if 0 ≤ u η ≤ u * , a (u η ) ≤ M 1 (1 -u η ) r 2 ≤ M 1 (1 -u η ) -2 ≤ M 1 c 5 µ (u η ), if u * ≤ u η ≤ 1.
As a consequence, the sequence (a (u η ) ∇u η ) η is uniformly bounded in L 2 (Q T ) d .

Let us now focus on the fourth part (iv), we want to prove that

(∂ t J (u η )) η is uniformly bounded in L 2 0, T ; H 1 (Ω ) + L 1 (Q T ) .
We take a test function χ ∈ L 2 0, T ; H 1 0 (Ω ) ∩ L ∞ (Q T ) and multiply the saturation equation ( 20) by j (u η ) χ, this yields

∂ t J (u η ) , χ = - Q T a (u η ) ∇u η • ∇ ( j (u η ) χ) dx dt -η Q T ∇u η • ∇ ( j (u η ) χ) dx dt + Q T ( f (u η ) -g (u η )) V • ∇ ( j (u η ) χ) dx dt - Q T g (u η ) ∇u η • V j (u η ) χ dx dt - Q T a (u η ) ∇u η • V j (u η ) χ dx dt -η Q T ∇u η • V j (u η ) χ dx dt. ( 42 
)
We will give estimates on each integral on the right-hand side of equation ( 42). Into region Q T ∩ u η < u * , we have j(u η ) = µ(u η ), thus we give estimates on each integral of the form

Q T ∩{u η <u * }
on the right-hand side of equation ( 42) that we denote them I i , 1 ≤ i ≤ 6. To obtain the estimates, we use the Cauchy-Schwarz inequality. For the first term, we have

|I 1 | ≤ Q T a (u η ) ∇u η • (r -1) u r-2 η ∇u η χ + u r-1 η ∇χ dx dt ≤ C r,a Q T a (u η ) u r-2 η ∇u η • ∇u η χ dx dt + Q T u r-1 η ∇u η • ∇χ dx dt ≤ C r,a a (u η ) u r-2 η ∇u η 2 (L 2 (Q T )) d χ L ∞ (Q T ) + u r-1 η ∇u η (L 2 (Q T )) d ∇χ (L 2 (Q T )) d .
In the same manner, we have the estimate on the second term

|I 2 | ≤ Q T η∇u η • (r -1) u r-2 η ∇u η χ + u r-1 η ∇χ dx dt ≤ C r,a ηu r-2 η ∇u η (L 2 (Q T )) d χ L ∞ (Q T ) + u r-1 η ∇u η (L 2 (Q T )) d ∇χ (L 2 (Q T )) d .
The third term is estimated, with the help of assumption (H2) and the Poincaré inequality [START_REF] Brezis | Analyse fonctionnelle Théorie et applications, collection mathématiques appliquées pour la maitrise[END_REF], as follows

|I 3 | ≤ Q T ( f (u η ) -g (u η )) V • (r -1) u r-2 η ∇u η χ + u r-1 η ∇χ dx dt ≤ C r,Ω V 2 (L ∞ (Q T )) d u r-1 η ∇u η (L 2 (Q T )) d + 1 ∇χ (L 2 (Q T )) d .
Similarly, we have

|I 4 | ≤ Q T g (u η ) u r-1 η ∇u η • Vχ dx dt ≤ C g ,Ω u r-1 η ∇u η (L 2 (Q T )) d V 2 (L ∞ (Q T )) d ∇χ (L 2 (Q T )) d .
Finally, the last two terms are estimated as follow

|I 5 + I 6 | ≤ Q T a (u η ) u r-1 η ∇u η • Vχ dx dt + Q T ηu r-1 η ∇u η • Vχ dx dt ≤ C a,Ω u r-1 η ∇u η (L 2 (Q T )) d V 2 (L ∞ (Q T )) d ∇χ (L 2 (Q T )) d .
It remains to estimate the terms of the form

Q T ∩{u η ≥u * }
that we denote by {L i } 1≤i≤6 respectively.

For the first term L 1 , we have

|L 1 | ≤ Q T ∩{u η ≥u * } a (u η ) j (u η ) ∇u η • ∇u η χ + a (u η ) j (u η ) ∇u η • ∇χ dx dt ≤ j (u η ) a (u η )∇u η 2 (L 2 (Q T )) d χ L ∞ (Q T ) + a (u η ) ∇J (u η ) (L 2 (Q T )) d ∇χ (L 2 (Q T )) d .
On the other hand, using the definition of µ and j, we have, for all u * ≤ u η ≤ 1, that

j (u η ) = r 2 -1 β (u * ) (1 -u * ) 1-r 2 (1 -u η ) r 2 -2 ≤ C u * ,r (1 -u η ) -2 ≤ µ (u η ),
thus, thanks to parts (i)-(iii), one deduces that

|L 1 | ≤ C χ L ∞ (Q T ) + ∇χ (L 2 (Q T )) d .
In the same manner, we obtain the estimates on the remaining terms except the estimate on L 3 . Indeed, using assumption (H2) on f and g, one has

f (u η ) -g (u η ) ≤ 1 c 1 (1 -u η ), ∀u * ≤ u η ≤ 1,
and therefore, we obtain the following estimates

Q T ( f (u η ) -g (u η )) j (u η ) ∇u η • Vχ dx dt ≤ 1 c 1 Q T j (u η ) ∇u η • Vχ dx dt ≤ 1 c 1 ∇J (u η ) (L 2 (Q T )) d V (L 2 (Q T )) d χ L ∞ (Q T ) .
and

Q T ( f (u η ) -g (u η )) j (u η ) V • ∇χ dx dt ≤ C V (L 2 (Q T )) d χ (L 2 (Q T )) d .
Plugging the previous estimates into equation (42), one gets

∂ t J (u η ) , χ ≤ C χ L ∞ (Q T ) + χ L 2 (0,T;H 1 0 (Ω )) .
One can conclude the proof of part (iii), using the embedding of the Sobolev space W 1,q (Ω ) ⊂ H 1 0 (Ω ) ∩ L ∞ (Ω ) for q > d, and consequently, one has

L ∞ 0, T ;W 1,q (Ω ) ⊂ L 2 0, T ; H 1 (Ω ) ∩ L ∞ 0, T ; L 2 (Ω ) , ∀q > d.
To complete the proof of the lemma, we remark that the sequence (J (u η )) η is lying into the Sobolev space

W = J (u η ) ; J (u η ) ∈ L 2 0, T ; H 1 0 (Ω ) and ∂ t J (u η ) ∈ L 1 0, T ;W -1,q (Ω ) .
Thanks to the Aubin-Simon theorem, W is compactly embedded in L 2 (Q T ), and the sequence (J (u η )) η is relatively compact in L 2 0, T ; L 2 (Ω ) .

Since the differentiable function J is nondecreasing, then J -1 exists and it is continuous, then the sequence (u η ) η is relatively compact in L 2 0, T ; L 2 (Ω ) . The proof of lemma 4.1 is now accomplished. Lemma 4.2 Let q 1 = 3r 1 + 2 and q 2 = 3r 2 + 2, where r 1 and r 2 are given in assumption (H1). The sequences

1 {uη ≤u * } u q 1 η a (u η ) ∇u η η and 1 {uη ≥u * } (1 -u η ) q 2 a (u η ) ∇u η η
are two Cauchy sequences in measure.

Proof. In order to prove Lemma 4.2, we rely on the compactness result given in Lemma 2.1. Indeed, thanks to Lemma 4.1, one deduces that the sequence (u η ) η verifies assumptions (A1)-(A3). Then, it suffices to show that

Q T ∇A η,η • ∇ b(u η )T µ (B η,η ) dx dt -→ 0, as µ, η, η → 0. ( 43 
)
Let us prove statement (43). For that, we consider the primitive Θ µ of the truncation function T µ , defined by

Θ µ (u) = u 0 T µ (τ) dτ, ∀u ∈ R, ∀µ > 0. ( 44 
)
We subtract the equations (24) satisfied by (u η ) η and u η η , then we multiply by

σ η = b (u η ) T µ B η,η et σ η = b u η T µ B η,η respectively, one gets Ω Θ µ B η,η (t, x) dx + Q t ∇A (u η ) • ∇σ η -∇A u η • ∇σ η dx dt = Q t ( f (u η ) -g (u η )) V • ∇σ η -f u η -g u η V • ∇σ η dx dt - Q t g (u η ) ∇u η • Vσ η -g u η ∇u η • Vσ η dx dt -η Q t ∇u η • ∇σ η dx dt + η Q t ∇u η • ∇σ η dx dt - Q t ∇A (u η ) • Vσ η -∇A u η • Vσ η dx dt -η Q t ∇u η • Vσ η dx dt + η Q t ∇u η • Vσ η dx dt. (45) 
We denote by I i , i = 1, 7, the integrals on the right-hand side of equation ( 45), and let (δ η ) η , δ η η , (V η ) η , and (V η ) η be the sequences defined by

δ η = ( f (u η ) -g (u η )) , δ η = f u η -g u η , V η = δ η V, V η = δ η V.
Using the dominated convergence Lebesgue theorem, we get

V η -V η (L 2 (Q T )) d = ( f (u η ) -g (u η )) V -f u η -g u η V (L 2 (Q T )) d ----→ η,η →0 0. ( 46 
)
Now, we give estimates on each term on the right-hand side of equation ( 45). For the first term, we have

V η • ∇σ η -V η • ∇σ η = (V η • ∇b (u η ) -V η • ∇b u η )T µ B η,η + (V η b (u η ) -V η b u η )∇T µ B η,η = V η • ∇b (u η ) -V η • ∇b u η T µ B η,η + V η -V η b (u η ) ∇T µ B η,η + (b (u η ) -b u η )V η • ∇T µ B η,η .
As a consequence,

|I 1 | ≤ V η • ∇b (u η ) -V η • ∇b u η T µ B η,η L 1 (Q T ) + b L ∞ (Q T ) V η -V η (L 2 (Q T )) d ∇T µ B η,η (L 2 (Q T )) d + b (u η ) -b u η V η • ∇T µ B η,η L 1 (Q T ) . (47) 
The first term on the right-hand side of inequality (47) is estimated as follows

(V η • ∇b (u η ) -V η • ∇b u η )T µ B η,η L 1 (Q T ) ≤C V (L ∞ (Q T )) d T µ B η,η (L 2 (Q T )) d ∇b (u η ) (L 2 (Q T )) d + ∇b u η (L 2 (Q T )) d .
Taking into account the uniform boundedness in L 2 (Q T ) d of the sequence (∇b (u η )) η , and the following overestimate T µ B η,η ≤ µ, one has

V η • ∇b (u η ) -V η • ∇b u η T µ B η,η L 1 (Q T ) ---→ µ→0 0, uniformly on η, η .
It is easy to see, using the convergence (46), that the second term on the right-hand side of inequality (47) tends to zero as η, η → 0. Using the boundedness of the function b, one has b

(u η ) -b u η V η (L 2 (Q T )) d
tends to zero as η, η → 0. One can conclude that the last term on the right-hand side of inequality (47) tends to zero as η, η → 0.

For the second term on the right-hand side of equation ( 45), we have using the definition of the function b that

g (u η ) ∇u η • Vb (u η ) T µ B η,η -g u η ∇u η • Vb u η T µ B η,η = g (u η ) V • ∇B (u η ) -g u η V • ∇B u η T µ B η,η ,
and consequently,

|I 2 | ≤ C g ,V T µ B η,η L 2 (Q T ) ∇B (u η ) (L 2 (Q T )) d + ∇B u η (L 2 (Q T )) d ---→ µ→0 0.
For the third term I 3 on the right-hand side of equation ( 45), we write

∇u η • ∇ b (u η ) T µ B η,η = 2∇A (u η ) • ∇A (u η ) T µ B η,η + 2A (u η ) • ∇A (u η ) ∇T µ B η,η + 2A (u η ) a (u η ) ∇u η • ∇u η T µ B η,η .
Using the uniform boundedness of the sequences (∇A(u η )) η , (∇B(u η )) η , and (∇b(u η )) η , one can deduce that |I 3 | ≤ Cη, for some constant C > 0 independent of η and η . Therefore, |I 3 | → 0 as η, η → 0. Similarly, we prove that |I 4 | ≤ Cη → 0 as η, η → 0. For the fifth term I 5 on the right-hand side of equation (45), we write

I 5 = Q t ∇A u η • Vb u η T µ B η,η -∇A (u η ) • Vb (u η ) T µ B η,η dx dt = Q t a u η V • ∇B u η -a (u η ) V • ∇B (u η ) T µ B η,η dx dt.
Obviously, we have

|I 5 | ≤ a (u η ) V • ∇B (u η ) -a u η V • ∇B u η T µ B η,η L 1 (Q T ) ≤ Cµ.
Finally, for the last two terms of equation (45), we have

Q t ∇u η • Vb (u η ) T µ B η,η dx dt = 2 Q t ∇A (u η ) • VA (u η ) T µ B η,η dx dt.
As a consequence,

|I 6 | ≤ η ∇A (u η ) (L 2 (Q T )) d V (L 2 (Q T )) d M 1 µ ≤ Cη ----→ η,η →0 0.
Similarly, we prove that |I 7 | ≤ Cη → 0 as η, η → 0 for some constant C > 0 independent of η and η . We denote by W µ (η, η ) the right-hand side of equation ( 45) and by V (µ) the firm term on the left-hand side of the same equation; from the estimations on the integrals I i , W µ (η, η ) goes to zero as η, η → 0, for all µ > 0. We also have |V (µ)| ≤ |Ω | µ, which goes to zero as µ → 0 and uniformly on η and η . Therefore, we have the following result stemming from equation (45) and the aforementioned definitions

Q T (∇A (u η ) • ∇ b (u η ) T µ B η,η -∇A u η • ∇ b u η T µ B η,η )dx dt= W µ η, η +V (µ). (48)
One can get the convergence result (43) using equation (48) and the following equation

Q t ∇A η,η • ∇ b (u η ) T µ B η,η dx dt = Q T ∇A (u η ) • ∇ b (u η ) T µ B η,η -∇A u η • ∇ b u η T µ B η,η dx dt - Q T ∇A u η • ∇ b (u η ) -b u η T µ B η,η dx dt - Q T b (u η ) -b u η ∇A u η • ∇A η,η 1 B η,η ≤µ dx dt that leads to Q t ∇A η,η • ∇ b (u η ) T µ B η,η dx dt ------→ µ,η,η →0 0 
Applying Lemma 2.1, one gets that that for all η, η ≤ η 0 , we have meas ∇s (u η ) -∇s u η ≥ δ ≤ ε, where ∇s(u η ) = b(u η )A(u η )∇A(u η ). Now we have,

1 {u η ≤u * } u q 1 η ∇A (u η ) -1 {u η ≤u * } u q 1 η ∇A u η = 1 {u η ≤u * } u q 1 η ∇A η,η + 1 {u η ≤u * } u q 1 η -1 {u η ≤u * } u q 1 η ∇A u η .
The last term of the previous equation goes to zero as η and η go to zero in L 1 (Q T ).

Since

q 1 = 3r 1 +2, then 1 {u η ≤u * } u q 1 η = 1 {u η ≤u * } u 3r 1 +2 η ≤ C r 1 ,m 1 1 {u η ≤u * } b (u η ) A (u η ) where C r 1 ,m 1 = (r 1 + 1) 2 2m 3 1 .
We write

1 {u η ≤u * } u q 1 η ∇A η,η ≤ C r 1 ,m 1 b (u η ) A (u η ) ∇A η,η ≤ C r 1 ,m 1 ∇s (u η ) -∇s u η +C r 1 ,m 1 b (u η ) A (u η ) -b u η A u η ∇A u η .
Consequently,

1 {u η ≤u * } u q 1 η ∇A (u η ) -1 {u η ≤u * } u q 1 η ∇A u η ≤ 1 {u η ≤u * } u q 1 η -1 {u η ≤u * } u q 1 η ∇A u η +C r 1 ,m 1 ∇s (u η ) -∇s u η +C r 1 ,m 1 b (u η ) A (u η ) -b u η A u η ∇A u η . (49) 
One can conclude that the right hand side of inequality (49) goes to zero as η and η go to zero. Therefore, the sequence 1 {uη ≤u * } u q 1 η a (u η ) ∇u η η is a Cauchy sequence in measure. In the same manner, one proves that

1 {uη ≥u * } 1 -u q 2 η a (u η ) ∇u η η since 1 {u η ≥u * } u q 2 η = 1 {u η ≥u * } u 3r 2 +2 η ≤ C r 2 ,m 1 1 {u η ≥u * } b (u η ) A (u η ) where C r 2 ,m 1 is a constant independent of η.

Convergence and identification as a weak solutiuon

To conclude the proof of theorem 1.1, we deduce from lemma 4.1 and lemma 4.2, that we can extract a subsequence such that we have the following convergences 0 ≤ u (x,t) ≤ 1 for almost everywhere (x,t) ∈ Q T ,

u η -→ u strongly in L 2 (Q T ) and a.e. in Q T , a(u η )∇u η -→ a(u)∇u weakly L 2 (Q T ) d , J (u η ) -→ J (u) strongly L 2 (Q T ), J (u η ) -→ J (u) weakly in L 2 0, T ; H 1 0 (Ω ) , a (u η ) µ (u η )∇u η -→ a (u) µ (u)∇u weakly in L 2 (Q T ) d , 1 {uη ≤u * } u q 1 η a (u η ) ∇u η -→ 1 {u≤u * } u q 1 a (u) ∇u a.e. in Q T , 1 {uη ≥u * } (1 -u η ) q 2 a (u η ) ∇u η -→ 1 {u≥u * } (1 -u) q 2 a (u) ∇u a.e. in Q T . (50) 
We consider the following weak formulation

- Q T J θ ,λ (u η ) ∂ t χ dx dt - Ω J θ ,λ (u 0 (x)) χ (x, 0) dx + Q T a (u η ) ∇u η • ∇ j θ ,λ (u η ) χ dx dt + Q T a (u η ) ∇u η • ∇χ j θ ,λ (u η ) dx dt +η Q T ∇u η • ∇ j θ ,λ (u η ) χ dx dt + η Q T ∇u η • ∇χ j θ ,λ (u η ) dx dt - Q T ( f (u η ) -g (u η )) V • ∇ j θ ,λ (u η ) χ dx dt + Q T g (u η ) V • ∇u η j θ ,λ (u η ) χ dx dt - Q T ( f (u η ) -g (u η )) V • ∇χ j θ ,λ (u η ) dx dt + Q T a (u η ) V • ∇u η j θ ,λ (u η ) χ dx dt +η Q T ∇u η • V j θ ,λ (u η ) χ dx dt = 0, ∀χ ∈ C 1 [0, T ]; H 1 0 (Ω ) with χ (T, •) = 0 (51) 
By splitting these integrals into two sub integrals, then we denote by L i , i = 1, ..., 11 the integral terms of the form

Q T ∩{u η ≤u * } in (51).
From the definition (4) of the function j θ ,λ , we have

Q T ∩{u η ≤u * } a (u η ) ∇u η • ∇χ j θ ,λ (u η ) dx dt = Q T ∩{u η ≤u * } u r-1 η ∇u η • u θ η a (u η ) ∇χ dx dt.
The sequence u r-1 η ∇u η η converges weakly towards u r-1 ∇u in L 2 (Q T ) d . Further, thanks to Lebesgue's theorem, the sequence u θ η a (u η ) ∇χ η converges strongly towards u θ a (u) ∇χ in L 2 (Q T ) d ; this gives the convergences of terms L 4 , and L 10 . In the same manner, we obtain the convergence of L 8 + L 9 towards

Q T ∩{u η ≤u * } g (u) V • ∇u j θ ,λ (u) χ dx dt - Q T ∩{u η ≤u * } ( f (u) -g (u)) V • ∇χ j θ ,λ (u) dx dt.
Let us focus on the seventh term L 7 of equation (51). Since θ > 1, then we define θ 0 = θ -1 > 0. Therefore, using the dominated convergence Lebesgue theorem and the weak convergence (50), one has

L 7 = -(r -1 + θ ) Q T ∩{u η ≤u * } u r-1 η ∇u η • Vu θ 0 η ( f (u η ) -g (u η ))χ dx dt ---→ η→0 Q T ∩{u η ≤u * } ( f (u) -g (u)) V • ∇ j θ ,λ (u) χ dx dt.
For the fifth term, we have ≤ Cη

θ 2r η µ (u η )∇u η (L 2 (Q T )) d +Cη 1 2 u r-1 η ∇u η (L 2 (Q T )) d χ L ∞ (Q T ) .
As a consequence, |L 5 | -→ 0, as η goes to zero. The convergence to zero for the sixth and the last terms, is similar to that of L 7 . Indeed, we have

|L 6 | = η Q T ∩{u η ≤u * } ∇u η • ∇χ j θ ,λ (u η ) dx dt = η Q T ∩{u η ≤u * } u r-1 η ∇u η • u θ η ∇χ dx dt ≤ Cη u r-1 η ∇u η (L 2 (Q T )) d ∇χ (L 2 (Q T )) d ---→ η→0 0.
Now, let us we show the convergence for the remaining terms of the form

Q T ∩{u η ≥u * } .
We have that the sequence (a (u η ) ∇u η ) η converges weakly in L 2 (Q T ) d towards a (u) ∇u and the sequence ∇χ j θ ,λ (u η ) η converges strongly in L 2 (Q T ) d towards ∇χ j θ ,λ (u), then {uη ≥u * } a (u η ) ∇u η • ∇χ j θ ,λ (u η ) dx dt---→ η→0 {u≥u * } a (u) ∇u • ∇χ j θ ,λ (u) dx dt.

Furthermore, we have

η {uη ≥u * } ∇u η • ∇ j θ ,λ (u η ) χ dx dt = Cη Q T (1 -u η ) r 2 -2+λ χ ∇u η • ∇u η dx dt ≤ Cη Q T (1 -u η ) 2r 2 χ ∇u η • ∇u η dx dt ≤ Cη a (u η ) ∇u η (L 2 (Q T )) d χ L ∞ (Q T ) .
As a consequence

η {uη ≥u * } ∇u η • ∇ j θ ,λ (u η ) χ dx dt ---→ η→0 0. ( 52 
)
In the same manner, we can prove the convergence of the remaining terms on the right-hand except for the third term. Indeed, this term exhibits a product of a sequence which converges weakly in L 2 (Q T ) and a sequence that we cannot prove its strong convergence. However, using the convergence almost everywhere of the sequences 1 {uη ≤u * } u q 1 η a (u η ) ∇u η and 1 {uη ≥u * } (1u η ) q 2 a (u η ) ∇u η , we can get a result on the convergence of the third term. To do this, we remark that a (u η ) ∇u η • ∇ j θ ,λ (u η )

η is a nonnegative sequence and into region Ω 1 , we have a (u η ) ∇u η • ∇ j θ ,λ (u η ) = (r -1 + θ ) u r-2+θ η a (u η ) ∇u η • ∇u η converges almost everywhere, up to a subsequence, to a (u) ∇u • ∇ j θ ,λ (u), since r -2 + θ -2qr 1 ≥ 0, i.e. θ ≥ 7r 1 + 6r. In the same manner and into region Ω 2 , we have a (u η ) ∇u η • ∇ j θ ,λ (u η ) = c (u * ) (1u η ) r 2 -2+λ a (u η ) ∇u η • ∇u η which converges almost everywhere, up to a subsequence, to a (u) ∇u•∇ j θ ,λ (u), since r 2 -2+λ -2q 2 -r 2 ≥ 0, i.e. λ ≥ 7r 2 + 6 -r 2 . Consider a nonnegative test function (χ ≥ 0); then the Fatou's lemma ensures that lim inf η→0 Q T a (u η ) ∇u η • ∇ j θ ,λ (u η ) χ dx dt ≥ Q T a (u) ∇u • ∇ j θ ,λ (u) χ dx dt, then the limit solution u verifies inequality (9) into definition 1.1. Finally, to obtain [START_REF] Galusinski | On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media[END_REF], we apply the Egorov theorem on the sequence a (u η ) ∇u η • ∇ j θ ,λ (u η ) η which converges almost everywhere. Indeed, we have

∀ε > 0, ∃ Q ε ⊂ Q T tel que mes (Q ε ) < ε, and 
a (u η ) ∇u η • ∇ j θ ,λ (u η ) ---→ η→0 a (u) ∇u • ∇ j θ ,λ (u) uniformly in Q T \Q ε .
Now, we take a nonnegative test function χ such that suppχ ⊂ ([0, T ) × Ω ) \Q ε , then

Q T \Q ε a (u η ) ∇u η • ∇ j θ ,λ (u η ) χ dx dt ---→ η→0 Q T \Q ε a (u) ∇u • ∇ j θ ,λ (u) χ dx dt.
This ends the proof of theorem 1.1.

|L 5 |

 5 = η Q T ∩{u η ≤u * } ∇u η • ∇ j θ ,λ (u η ) χ dx dt = Cη χ L ∞ (Q T )