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Abstract

Given a set S of words, one associates to each word w in S an undi-
rected graph, called its extension graph, and which describes the possible
extensions of w in S on the left and on the right. We investigate the
family of sets of words defined by the property of the extension graph of
each word in the set to be acyclic or connected or a tree. We exhibit for
this family various connexions between word combinatorics, bifix codes,
group automata and free groups. We prove that in a uniformly recurrent
tree set, the sets of first return words are bases of the free group on the
alphabet. Concerning acyclic sets, we prove as a main result that a set
S is acyclic if and only if any bifix code included in S is a basis of the
subgroup that it generates.

Keywords combinatorics on words; combinatorial group theory; symbolic dy-
namics

AMS-Classification-Numbers 05A Enumerative Combinatorics, 37B Topo-
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1 Introduction

This paper studies properties of classes of sets which occur as the set of factors of
infinite words of linear factor complexity. It is part of a series of papers devoted
to this subject initiated in [3]. These classes of sets, called acyclic, connected
or tree sets, are defined by a limitation to the possible two-sided extensions of
a word of the set. We will see that Sturmian sets are tree sets (by Sturmian we
mean the sets of factors of strict episturmian words, also called Arnoux-Rauzy
words). Moreover, the sets obtained by coding a regular interval exchange set
are also tree sets (see [6]). Any word w in a tree set is neutral in the sense that
the number of pairs (a, b) of letters such that awb € S is equal to the number of
letters a such that aw € S plus the number of letters b such that wb € S minus
1. We express this property saying that it is a neutral set.

We study sets of first return words in a tree set .S. Our main result on return
words is that if S is a uniformly recurrent tree set containing the alphabet A,
the set of first return words to any word of S is a basis of the free group on
A (Theorem 4.5 referred to as the Return Theorem). For this, we use Rauzy
graphs, obtained by restricting de Bruijn graphs to the set of vertices formed
by the words of given length in a set S. We first show that if S is a recurrent
connected set containing the alphabet A, the group described by any Rauzy
graph of S with respect to some vertex is the free group on A (Theorem 4.1).
Next, we prove that in a uniformly recurrent connected set S containing A,
the set of first return words to any word in S generates the free group on A
(Theorem 4.7). The proof uses the fact that in a uniformly recurrent neutral
set S containing the alphabet A, the number of first return words to any word
of S is equal to Card(A), a result obtained in [1].

We also study bifix codes in acyclic sets. Our main result is that a set .S is
acyclic if and only if any bifix code contained in S is a basis of the subgroup
that it generates (Theorem 5.1 referred to as the Freeness Theorem). This is
related to the main result of [3], referred to as the Finite Index Basis Theorem,



proving that, in a Sturmian set S, a finite bifix code is S-maximal of S-degree
d if and only if it is a basis of a subgroup of index d. This result is generalized
in [6] to uniformly recurrent tree sets. The proof uses the results of this paper
and, in particular the Return Theorem (Theorem 4.5). In the case of an acyclic
set, the subgroup generated by a bifix code need not be of finite index, even if
the bifix code is S-maximal (and even if the set .S is uniformly recurrent, see
Example 5.4).

We also prove a more technical result. We say that a submonoid M of the
free monoid is saturated in a set S if the subgroup H of the free group generated
by M satisfies M NS = H N S. We prove that if S is acyclic, the submonoid
generated by a bifix code contained in S is saturated in S (Theorem 5.2 referred
to as the Saturation Theorem). This property plays an important role in the
proof of the Finite Index Basis Theorem.

Our paper is organized as follows.

In Section 2 we present the definitions and basic properties used in the paper.
We introduce strong, weak and neutral sets. We prove a result on the cardinality
of sets of first return words (Theorem 2.14) which is a generalization of a result
from [1].

In Section 3, we define the extension graph of a word with respect to a set
S. This notion appears already in [20] with a purpose similar to ours. We
define acyclic, connected and tree sets by the corresponding property of the
extension graph of each word in the set to be acyclic, connected or a tree. We
also introduce more general extension graphs where left (resp. right) extensions
are relative to a finite suffix (resp. prefix) code. We prove that in acyclic sets,
these more general extension graphs are also acyclic (Proposition 3.7).

In Section 4, we study sets of first return words in tree sets. We first show
that if S is a recurrent connected set containing the alphabet A, the group
described by any Rauzy graph of S, with respect to some vertex is the free group
on A (Theorem 4.1). Next, we prove that in a uniformly recurrent connected
set S containing A, the set of first return words to any word of S generates
the free group on A (Theorem 4.7). We use Theorem 2.14 to prove that if S
is additionally acyclic, then every set of first return words is a basis of the free
group on A (Theorem 4.5).

In Section 5 we state and prove our main results (Theorem 5.1 and Theo-
rem 5.2). The proof uses the notion of incidence graph of a bifix code (already
introduced in [3]).

Bifix codes and The finite Maximal bifix
Sturmian words [3 index basis property [6 decoding [7]
| / / \
Acyclic, connected Bifix codes and Natural coding
and tree sets interval exchanges [5] of linear involutions [§]

Some results used in this paper are proved in our first paper [3]. In turn, the



results of this paper are used in other papers in preparation on similar objects.
We include for clarity the logical dependency between these papers.
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2 Preliminaries

In this section, we first recall some definitions concerning words, codes and
automata (see [4] for a more complete presentation). We give the definition of
recurrent and uniformly recurrent sets of words. We also give the definitions
and basic properties of bifix codes (see [3] for a more detailed presentation).
We define basic notions concerning automata. We present the class of reversible
automata and its connection with the Stallings automaton of a subgroup of a
free group. We finally introduce strong, weak and neutral sets and state some
results concerning the factor complexity of these sets. We also introduce return
words and we recall a result from [1] on the cardinality of sets of first return
words (Theorem 2.14) we is used later.

2.1 Recurrent sets

Let A be a finite nonempty alphabet. All words considered below, unless stated
explicitly, are supposed to be on the alphabet A. We denote by A* the set of
all words on A. We denote by 1 or by & the empty word. We denote by ||
the length of a word x. A set of words is said to be factorial if it contains the
factors of its elements.

For a set X of words and a word u, we denote

u X ={ve A" |uw e X}.

the right residual of X with respect to u.
Let S be a set of words on the alphabet A. For w € S, we denote

Lw)={a€Alawe S}, Rw)={ac A|waecS}

E(w)={(a,b) e Ax A|awbe S}
and further ¢(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).
A word w is right-extendable if r(w) > 0, left-extendable if ¢(w) > 0 and
biextendable if e(w) > 0. A factorial set S is called right-extendable (resp.

left-extendable, resp. biextendable) if every word in S is right-extendable (resp.
left-extendable, resp. biextendable).



A word w is called right-special if r(w) > 2. It is called left-special if £(w) >
2. It is called bispecial if it is both right and left-special.

A set of words S # {1} is recurrent if it is factorial and if for every u,w € S
there is a v € S such that uvw € S. A recurrent set is biextendable.

A set of words S is said to be uniformly recurrent if it is right-extendable
and if, for any word u € S, there exists an integer n > 1 such that u is a factor
of every word of S of length n. A uniformly recurrent set is recurrent.

A morphism f: A* — B* is a monoid morphism from A* into B*. If a € A
is such that the word f(a) begins with a and if |f"™(a)| tends to infinity with
n, there is a unique infinite word denoted f“(a) which has all words f"(a) as
prefixes. It is called a fixpoint of the morphism f.

A morphism f : A* — A* is called primitive if there is an integer k such
that for all a,b € A, the letter b appears in f*(a). If f is a primitive morphism,
the set of factors of any fixpoint of f is uniformly recurrent (see [13] Proposition
1.2.3 for example).

An infinite word is episturmian if the set of its factors is closed under reversal
and contains for each n at most one word of length n which is right-special
(see [3] for more references). It is a strict episturmian word if it has exactly
one right-special word of each length and moreover each right-special factor u
is such that r(u) = Card(A).

A Sturmian set is a set of words which is the set of factors of a strict epis-
turmian word. Any Sturmian set is uniformly recurrent (see [3]).

Example 2.1 Let A = {a,b}. The Fibonacci morphism is the morphism f :
A* — A* defined by f(a) = ab and f(b) = a. The Fibonacci word

x = abaababaabaababaababa . . .

is the fixpoint * = f“(a) of the Fibonacci morphism. It is a Sturmian word
(see [17]). The set F(z) of factors of z is the Fibonacci set.

Example 2.2 Let A = {a,b, c}. The Tribonacci word
x = abacabaabacababacabaabacaba - - -

is the fixpoint = f“(a) of the morphism f : A* — A* defined by f(a) = ab,
f(b) = ac, f(c) = a. It is a strict episturmian word (see [14]). The set F(x) of
factors of = is the Tribonacci set.

We fix our notation concerning free groups (see [18] for example).

We denote by F4 the free group on the alphabet A. It is identified with the
set of all words on the alphabet A U A~! which are reduced, in the sense that
they do not have any factor aa~' or a~'a for @ € A. Note that the exponent
—1 used in this context should not be confused with the one used to define the
residual of a set of words. We extend the bijection a — a~! to an involution on
AU A7 by defining (a71)"! = a.



For any word w on A U A~ there is a unique reduced word equivalent to
w modulo the relations aa™! = a7 'a =1 for a € A. If u is the reduced word
equivalent to w, we say that w reduces to v and we denote w = u. We also
denote v = p(w). The product of two elements u,v € Fy4 is the reduced word
w equivalent to uv, namely p(uv).

For a set X of reduced words, we denote X ! = {z7! |z € X}.

2.2 Bifix codes

A prefiz code is a set of nonempty words which does not contain any proper
prefix of its elements. A suffix code is defined symmetrically. A bifiz code is a
set which is both a prefix code and a suffix code.

We denote by X* the submonoid generated by a set X of words. The
submonoid M generated by a prefix code satisfies the following property: if
u,uv € M, then v € M. Such a submonoid is said to be right unitary. The
definition of a left unitary submonoid is symmetric and the submonoid generated
by a suffix code is left unitary. Conversely, any right unitary (resp. left unitary)
submonoid of A* is generated by a unique prefix code (resp. suffix code) (see [4]).

A coding morphism for a prefix code X C AT is a morphism f : B* — A*
which maps bijectively B onto X (note that in this paper we use C to denote
the inclusion allowing equality).

Let S be a set of words. A prefix code X C S is S-maximal if it is not
properly contained in any prefix code Y C S.

A set X C S is right S-complete if any word of S is a prefix of a word in X*.

For a factorial set S, a prefix code is S-maximal if and only if it is right
S-complete (Proposition 3.3.2 in [3]).

Similarly a bifix code X C S is S-maximal if it is not properly contained in
a bifix code Y C S. For a recurrent set S, a finite bifix code is S-maximal as a
bifix code if and only if it is an S-maximal prefix code (see [3], Theorem 4.2.2).
For a uniformly recurrent set .S, any finite bifix code X C S is contained in a
finite S-maximal bifix code (Theorem 4.4.3 in [3]).

A parse of a word w with respect to a bifix code X is a triple (v, z,u) such
that w = vzu where v has no suffix in X, v has no prefix in X and z € X*.
We denote by dx (w) the number of parses of w. By definition, the S-degree of
X, denoted dx(S), is the maximal number of parses of a word in S. It can be
finite or infinite.

Let X be a bifix code. The number of parses of a word w is also equal to
the number of suffixes of w which have no prefix in X and to the number of
prefixes of w which have no suffix in X (see Proposition 6.1.6 in [4]).

The set of internal factors of a set of words X, denoted I(X) is the set of
words w such that there exist nonempty words u, v with vwv € X.

Let S be a recurrent set and let X be a finite bifix code. By Theorem 4.2.8
in [3], X is S-maximal if and only if its S-degree d is finite. Moreover, in this
case, a word w € S is such that dx(w) < d if and only if it is an internal factor
of X, that is

I(X)={we S |dx(w) <d}.



In particular, any word of X of maximal length has d parses.

Example 2.3 Let S be a recurrent set. For any integer n > 1, the set SN A™
is an S-maximal bifix code of S-degree n.

2.3 Automata and groups

We denote A = (Q,4,T) a deterministic automaton with a set Q of states, i € Q
as initial state and T' C @ as set of terminal states. For p € Q and w € A*, we
denote p - w = ¢ if there is a path labeled w from p to the state ¢ and p-w =
otherwise. The automaton is finite when @ is finite.

The set recognized by the automaton is the set of words w € A* such that
1-wel.

All automata considered in this paper are deterministic and we simply call
them ‘automata’ to mean ‘deterministic automata’.

The automaton A is trim if for any ¢ € @, there is a path from i to ¢ and a
path from ¢ to some t € T'.

An automaton is called simple if it is trim and if it has a unique terminal
state which coincides with the initial state. The set recognized by a simple
automaton is a right unitary submonoid. Thus it is generated by a prefix code.

An automaton A = (Q,¢,T) is complete if for any state p € @ and any letter
a € A, one has p-a # 0.

For a nonempty set L C A*, we denote by A(L) the minimal automaton of
L. The states of A(L) are the nonempty residuals v~ L for u € A*. For u € A*
and a € A, one defines (u"'L)-a = (ua)~'L. The initial state is the set L itself
and the terminal states are the sets u='L for u € L.

Let X be a prefix code and let P be the set of proper prefixes of X. The
literal automaton of X* is the simple automaton A = (P, 1,1) with transitions
defined for p € P and a € A by

pa ifpae P,
pra=<1 ifpae X,

®  otherwise.

One verifies that this automaton recognizes X*. Thus for any prefix code X C
A*, there is a simple automaton A = (@, 1,1) which recognizes X*. Moreover,
the minimal automaton of X* is simple. Note that the literal automaton is not
minimal in general (see Example 2.4).

Example 2.4 Let X = {aa, ab, bba, bbb}. The literal and the minimal automata
of X* are represented in Figure 2.1 (the initial state is indicated by an incoming
arrow and the terminal states by an outgoing one).

A simple automaton A = (@, 1,1) is said to be reversible if for any a € A, the
partial map @ 4(a) : p — p-a is injective. This condition allows to construct the
reversal of the automaton as follows: whenever q-a = p in A, then p-a = ¢ in the



Figure 2.1: The literal and the minimal automata of X*.

reversal automaton. The state 1 is the initial and the unique terminal state of
this automaton. Any reversible automaton is minimal [21] (but not conversely).
The set recognized by a reversible automaton is a submonoid generated by a
bifix code.

A simple automaton A = (Q,1,1) is a group automaton if for any a € A
the map p4(a) : p— p-a is a permutation of Q. Thus in particular, a group
automaton is reversible. A finite reversible automaton which is complete is a
group automaton.

The following result is from [21] (see also Exercise 6.1.2 in [4]). We denote
by (X) the subgroup of the free group F4 generated by X.

Proposition 2.5 Let X C AT be a bifitr code. The following conditions are
equivalent.

(i) X*=(X)nA*;

(ii) the minimal automaton of X* is reversible.

Let A = (Q,i,T) be a deterministic automaton. A generalized path is a
sequence (Po, @1,P1,02,- -+, Pn_1,0n,Pn) With a; € AU A™! and p; € Q, such
that for 1 <i <n,onehasp;_1-a; =p;ifa; € A andpi~a;1 =p;_qifa; € A~L.
The label of the generalized path is the reduced word equivalent to aias - - a,.
It is an element of the free group F4. The set described by the automaton is
the set of labels of generalized paths from i to a state in T'. Since a path is a
particular case of a generalized path, the set recognized by an automaton A is
a subset of the set described by A.

The set described by a simple automaton is a subgroup of F4. It is called

the subgroup described by A.

Example 2.6 Let A = (Q,1,1) be the automaton represented in Figure 2.2.
The submonoid recognized by A is {a, ba}*. Since {a,ba} is a basis of the free

b
a
a

Figure 2.2: A simple automaton describing the free group on {a,b}.

group on A, the subgroup described by A is the free group on A.

The following result is Proposition 6.1.3 in [3].



Proposition 2.7 Let A be a simple automaton and let X be the prefiz code
generating the submonoid recognized by A. The subgroup described by A is
generated by X. If moreover A is reversible, then X* = (X) N A*.

For any subgroup H of Fj4, the submonoid H N A* is right and left unitary
and thus it is generated by a bifix code (see [4], Example 2.2.6). A subgroup
H of the free group on A is positively generated if there is a subset of A* which
generates H. In this case, the set H N A* generates the subgroup H. Let X be
the bifix code which generates the submonoid H N A*. Then X generates the
subgroup H. This shows that, for a positively generated subgroup H, there is
a bifix code which generates H.

It is well known that a subgroup of finite index of the free group is positively
generated (see e.g. Proposition 6.1.6 in [3]).

The following result is contained in Proposition 6.1.4 and 6.1.5 in [3].

Proposition 2.8 For any positively generated subgroup H of the free group
on A, there is a unique reversible automaton A such that H is the subgroup
described by A. The subgroup is of finite index if and only if this automaton is
a finite group automaton.

For an illustration, see Example 5.4 below.

The reversible automaton A such that H is the subgroup described by A is
called the Stallings automaton of the subgroup H. It can also be defined for a
subgroup which is not positively generated (see [2] or [15]).

The Stallings automaton of the subgroup H generated by a bifix code X C
A* can be obtained as follows. Start with the minimal automaton A = (Q,1,1)
of X*. Then, if there are distinct states p,q € @ and a € A such that p-a = q-a,
merge p, ¢ (such a merge is called a Stallings folding). Iterating this operation
leads to a reversible automaton which is the Stallings automaton of H (see [15]).

A subgroup H of the free group has finite index if and only if its Stallings
automaton is a finite group automaton (see Proposition 2.8). In this case, the
index of H is the number of states of the Stallings automaton.

Example 2.9 Let X = {aa,ab,ba}. The minimal automaton of X* is repre-
sented in Figure 2.3 on the left. It is not reversible because 2-a = 3-a. Merging
the states 2 and 3, we obtain the reversible automaton of Figure 2.3 on the
right. It is actually a group automaton, which is the Stallings automaton of
the subgroup H = (X). Since the automaton describes the group Z/27Z, we

S R -

Figure 2.3: A Stallings folding.

conclude that the subgroup generated by X is of index 2 in the free group on
A. Tt is actually formed of the reduced words of even length.



2.4 Strong, weak and neutral words

Let S be a factorial set. For a word w € S, let
m(w) = e(w) — l(w) —r(w) + 1.

We say that, with respect to S, w is strong if m(w) > 0, weak if m(w) < 0 and
neutral if m(w) = 0.

A biextendable word w is called ordinary if E(w) C a x AU A x b for some
(a,b) € E(w) (see [9], Chapter 4). If S is biextendable any ordinary word is
neutral. Indeed, one has E(w) = (a x (R(w) \ b)) U ((L(w) \ @) x b) U (a,b) and
thus e(w) = {(w) + r(w) — 1.

Example 2.10 In a Sturmian set, any word is ordinary. Indeed, for any bispe-
cial word w, there is a unique letter a such that aw is right-special and a unique
letter b such that wb is left-special. Then awb € S and E(w) =a x AU A x b.

We say that a set S is strong (resp. weak, resp. neutral) if it is factorial and
every word w € S is strong or neutral (resp. weak or neutral, resp. neutral).

The sequence (py,)n>0 With p, = Card(SNA™) is called the factor complexity
(or complexity) of S. Set k = Card(SN A) — 1.

Proposition 2.11 The factor complexity of a strong (resp. weak, resp. neutral)
set S is at least (resp. at most, resp. exactly) equal to kn + 1.

Given a factorial set S with complexity p,, we denote s,, = pn4+1 — pp, the
first difference of the sequence p,, and b,, = s,,+1 — Sy, its second difference. The
following is from [11] (it is also part of Theorem 4.5.4 in [9, Chapter 4]).

Lemma 2.12 We have, for alln >0,

by, = Z m(w) and s, = Z (r(w) —1).

weAPNS weATNS

Proposition 2.11 follows easily from the fact that if S is strong (resp. weak,
resp. neutral), then s, > k (resp. s, <k, resp. s, = k) for all n > 0.

We now give an example of a set of complexity 2n 4+ 1 on an alphabet with
three letters which is not neutral.

Example 2.13 Let A = {a,b,c}. The Chacon word on three letters is the
fixpoint = f*(a) of the morphism f from A* into itself defined by f(a) = aabe,
f(b) = bc and f(c) = abc. Thus & = aabcaabebeabe - --. The Chacon set is the
set S of factors of x. It is of complexity 2n + 1 (see [13] Section 5.5.2).

It contains strong, neutral and weak words. Indeed, SNA? = {aa, ab, bc, ca, cb}
and thus m(e) = 0 showing that the empty word is neutral. Next m(abc) =1
and m(bca) = —1, showing that abc is strong while bca is weak.

10



2.5 Return words

Let S be a set of words. For w € S, let
Is(w)={reS|wreSNATw} and Ts(w)={reS|zweSNwAT}

be respectively the set of right return words and of left return words to w. If S
is recurrent, the sets I's(w) and I'y(w) are nonempty. Let

Rs(w) =Tg(w) \Fs(w)AT and Ry(w) =Tg(w)\ ATTg(w)

be respectively the set of first right return words and the set of first left return
words to w. Note that wRg(w) = Rg(w)w.

Note that a recurrent set S is uniformly recurrent if and only if the set
Rs(w) is finite for any w € S. Indeed, if N is the maximal length of the words
in Rg(w) for a word w of length n, then two successive occurrences of w in a
word of S are separated by a word of length at most N —n. Thus any word in
S of length N 4+ n contains an occurrence of w. The converse is obvious.

The following result has been proved in [1], generalizing a property proved
for Sturmian words in [14] and for interval exchange in [22].

Theorem 2.14 Let S be a uniformly recurrent neutral set containing the al-
phabet A. Then for every w € S, the set Rg(w) has Card(A) elements.

One can actually prove more generally, for a uniformly recurrent set S, that if
S is strong (resp. weak, resp. neutral), then for every w € S, the set Rg(w)
has at least (resp. at most, resp. exactly) Card(A) elements.

The following example shows that in a set of complexity kn + 1 the number
of first right return words need not be equal to k + 1.

Example 2.15 Let S be the Chacon set (see Example 2.13). We have Rg(a) =
{a, bea, bebea} but Rg(ab) = {caab, cbcab}.

3 Acyclic, connected and tree sets

We introduce in this section the notion of extension graph of a word. We de-
fine acyclic (resp. connected, resp. tree) sets by the fact that all the extension
graphs of its elements are acyclic (resp. connected, resp. trees). We give ex-
amples showing that a uniformly recurrent acyclic set may not be a tree set
(Example 3.4) and that a uniformly recurrent neutral set may not be acyclic
(Example 3.5). We introduce a generalization of the extension graphs called
generalized extension graphs. We give conditions under which generalized ex-
tension graphs are acyclic (Proposition 3.7). This allows in particular to prove
the closure under bifix decoding of the family of acyclic sets, provided the result
is biextendable (Theorem 3.11).
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3.1 Extension graphs

Let S be a set of words. For a word w € S, we consider an undirected graph
Egs(w) called its extension graph in S and defined as follows. The set of vertices
is the disjoint union of L(w) and R(w) and its edges are the pairs (a,b) € E(w).
We also denote E(w) instead of Eg(w).

Example 3.1 Let S be the Tribonacci set (see Example 2.2). The graphs E(e)
and E(ab) are represented in Figure 3.1.

(WO=—) @

\/
b > ®) @
© © ©

Figure 3.1: The extension graphs E(e) and E(ab) in the Tribonacci set.

We say that S is an acyclic (resp. a connected, resp. a tree) set if it is
biextendable and if for every word w € S, the graph E(w) is acyclic (resp.
connected, resp. a tree). Obviously, a tree set is acyclic and connected.

Note that a biextendable set S is acyclic (resp. connected) if and only if the
graph E(w) is acyclic (resp. connected) for every bispecial word w. Indeed, if
w is not bispecial, then F(w) C a x A or E(w) C A X a, thus it is always acyclic
and connected.

If the extension graph E(w) of w is acyclic, then m(w) < 0. Thus w is weak
or neutral. More precisely, one has in this case, m(w) = —c¢ 4+ 1 where ¢ is the
number of connected components of the graph F(w).

Similarly, if E(w) is connected, then w is strong or neutral. Thus, if S is
an acyclic (resp. a connected, resp. a tree) set, then S is a weak (resp. strong,
resp. neutral) set.

Example 3.2 A Sturmian set S is a tree set. Indeed, any word w € S is
ordinary (Example 2.10), which implies that E(w) is a tree.

Since a tree set is neutral, we deduce from Proposition 2.11 the following
statement, where k = Card(S N A) — 1.

Proposition 3.3 The factor complexity of a tree set is kn + 1.

One may wonder whether the notion of a tree set is of a topological or of
a measure-theoretic nature for the associated symbolic dynamical system. In
particular, one may wonder if uniformly recurrent tree sets have the property
of unique ergodicity, which means that they have a unique invariant probability
measure (see [3] or [9] for the definition of these notions). An element of answer
is provided by interval exchange sets.

Regular interval exchange sets form a special case of uniformly recurrent tree
sets (see [6]). It is well-known since [16] that there exist regular interval exchange
sets that are not uniquely ergodic. This shows that the tree property does not
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imply unique ergodicity. However having complexity p, = kn + 1, which is a
priori of a topological nature, implies information on invariant measures. Indeed,
according to [10], a minimal symbolic dynamical system for which liminf p,, /n <
k is such that there exist at most k ergodic invariant measures. The bound can
even be refined to k—2 [19] by a careful inspection of the evolution of the Rauzy
graphs. For k < 2, that is for an alphabet of size at most 3 in our case, one
gets the following [10]: a minimal symbolic system such that lim sup p,,/n < 3
is uniquely ergodic. We thus conclude that any uniformly recurrent word whose
set of factors is a tree set on an alphabet of size at most 3 is uniquely ergodic.

3.2 Two examples

We present two examples, due to Julien Cassaigne [12]. The first one is a
uniformly recurrent acyclic set which is not a tree set.

Example 3.4 Let A = {a,b, ¢,d} and let o be the morphism from A* into itself
defined by
o(a) = ab, o(b) = cda, o(c) = cd, o(d) = abe.

Let S be the set of factors of the infinite word x = 0 (a). Since o is primitive,
S is uniformly recurrent. The graph E(e) is represented in Figure 3.2. It is

Figure 3.2: The graph E(g).

acyclic with two connected components (and thus m(e) = —1). We will show
that for any nonempty word w € S, the graph E(w) is a tree. This will prove
that S is acyclic. Actually, let 7 be the morphism from A* onto {a,b}* defined
by m(a) = 7(c) = a and w(c) = w(d) = b. The image of x by 7 is the Sturmian
word y which is the fixpoint of the morphism 7 : a — ab, b — aba. The word =
can be obtained back from y by changing one every other letter a into a ¢ and
any letter b after a c into a d. Thus every word of the set of factors G of y gives
rise to 2 words in S.

In this way every bispecial word w of G gives two bispecial words w’, w” of
S and their extension graphs in S are isomorphic to Eg(w). For example, the
word ababa is bispecial in G. It gives the bispecial words abcda and cdabc in S.
Their extension graphs are shown below.

Figure 3.3: The graphs Eg(ababa), Es(abeda) and Es(cdabc).

This proves that S is acyclic.
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The second example is a uniformly recurrent set which is neutral but is not
a tree set (it is actually not even acyclic).

Example 3.5 Let B = {1,2,3} and let 7 : A* — B* be defined by
7(a) =12, 7(b)=2, 7(c)=3, 7(d)=13.

Let G = 7(S) where S is the set of Example 3.4. Thus G is also the set of
factors of the infinite word 7(c%“(a)).

The set Y = 7(A) is a prefix code. It is not a suffix code but it is weakly
suffiz in the sense that if z,y,y’ € X and 2’ € X* are such that zy is a suffix
of 'y, then y = v/'.

Let g : {a,c}A* N A*{a, c} — B* be the map defined by

37(w)
37(w)l if w begins with a and ends with ¢
27(w)

(w)

27(w)1 if w begins with ¢ and ends with ¢

w if w begins and ends with a

g(w) = . N .
if w begins with ¢ and ends with a

It can be verified, using the fact that Y is a prefix and weakly suffix code, that
the set of nonempty bispecial words of G is the union of 2, 31 and of the set
9(S) where S is the set of nonempty bispecial words of S. One may verify that
the words of ¢g(S) are neutral. Since the words 2, 31 are also neutral, the set G
is neutral.

It is uniformly recurrent since .S is uniformly recurrent and 7 is a nontrivial
morphism. The set G is not a tree set since the graph F(e) is neither acyclic
nor connected (see Figure 3.4).

Figure 3.4: The graph E(¢) for the set G.

3.3 Generalized extension graphs

Let S be aset. Forw e S, and U,V C S, let U(w) ={£ € U | fw € S} and let
V(w) ={r € V| wr € S}. The generalized extension graph of w relative to U,V
is the following undirected graph Ey v (w). The set of vertices is made of two
disjoint copies of U(w) and V(w). The edges are the pairs (¢,r) for £ € U(w)
and r € V(w) such that fwr € S. The extension graph E(w) defined previously
corresponds to the case where U,V = A.

Example 3.6 Let S be the Fibonacci set. Let w = a, U = {aa,ba,b} and let
V = {aa,ab,b}. The graph Ey v (w) is represented in Figure 3.5.
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Figure 3.5: The graph Ey v (w).

The following property shows that in an acyclic set, not only the extension
graphs but, under appropriate hypotheses, all generalized extension graphs are
acyclic.

Proposition 3.7 Let S be an acyclic set. For any w € S, any finite suffix
code U and any finite prefix code V', the generalized extension graph Ey v (w) is
acyclic.

The proof uses the following lemma.

Lemma 3.8 Let S be a biextendable set. Let w € S and let U,V,T C S. Let
e S\ U be such that fw € S. Set U' = (U\ T¥)UL. If the graphs Ey: v (w)
and Er v (fw) are acyclic then Ey v (w) is acyclic.

Proof. Assume that Ey v (w) contains a cycle C. If the cycle does not use a
vertex in U’, it defines a cycle in the graph Ep v (¢w) obtained by replacing each
vertex t¢ for t € T by a vertex ¢. Since Ep vy (fw) is acyclic, this is impossible.
If it uses a vertex of U’ it defines a cycle of the graph Fy v (w) obtained by
replacing each possible vertex t¢ by ¢ (and suppressing the possible identical
successive edges created by the identification). This is impossible since Ey v (w)
is acyclic. Thus Ey,y (w) is acyclic. "

Proof of Proposition 3.7. We show by induction on the sum of the lengths of
the words in U,V that for any w € S, the graph Ey v (w) is acyclic.

Let w € S. We may assume that U = U(w) and V = V(w) and also that
UV #0. If U,V C A, the property is true since S is acyclic.

Otherwise, assume for example that U contains words of length at least 2.
Let w € U be of maximal length. Set v =al witha € A. Let T ={be A| bl €
U}. Then U’ = (U \ T¢) U { is a suffix code and fw € S since U = U(w).

By induction hypothesis, the graphs Ey v (w) and Erp,y (fw) are acyclic. By
lemma 3.8, the graph Ey v (w) is acyclic. ]

We prove now a similar statement concerning tree sets.
Proposition 3.9 Let S be a tree set. For any w € S, any finite S-mazimal

suffix code U C S and any finite S-maximal prefix code V- C S, the generalized
extension graph Eyyv(w) is a tree.

The proof uses the following lemma, analogous to Lemma 3.8.
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Lemma 3.10 Let S be a biextendable set. Let w € S and let U,V C S. Let
£ e S\ U be such that bw € S and ALNS CU. Set U' = (U \ Al) U L. If the
graphs Eyr v (w) and Ea v (fw) are connected then Ey v (w) is connected.

Proof. Since S is left extendable, there is a letter a such that afw € S and thus
al € U(w). We proceed by steps.

Step 1. As a preliminary step, let us show that for each b € A such that
blw € S, and each v € V(fw), there is a path from b/ to v in Eyy(w). Indeed,
since the graph F 4 v (fw) is connected there is a path from b to v in this graph.
Thus, since bf € U(w), there is a path from b¢ to v in Eyy (w).

Step 2. As a second step, let us show that for any m € U’(w) \ £ and
v € V(w), there is a path from m to v in Ey v (w). Indeed there is a path from
m to v in Eys v (w). For each edge of this path of the form (¢, s), s is also in
V(fw) and thus, by Step 1, there is a path from af to s in the graph Eyy (w).
Thus there is a path from m to v in Ey v (w).

Step 3. For each b € A such that b € U(w), for each v € V(w), there is
a path from b¢ to v in Ey v (w). Indeed, since E4 v (¢w) is connected, there is
a path from b to a in E4 v (fw), thus a path from b¢ to af in Eyy(w). Then
there is a path from ¢ to v in Eys v (w) and, in the same way as in Step 2, there
is a path from af to v in Ey v (w).

Consider now m € U(w) and v € V(w). If m ¢ A, then m € U'(w) \ £ and
thus, by Step 2, there is a path from m to v in Eyy(w). Next, assume that
m = bl with b € A. By Step 3, there is a path from m to v in Ey v (w). This
shows that the graph Fy v (w) is connected. "

Proof of Proposition 3.9. The fact that Ey,y (w) is acyclic follows from Propo-
sition 3.7.

We show by induction on the sum of the lengths of the words in U,V that
for any w € S, the graph Ey v (w) is connected.

Assume first that U(w), V(w) C A. Since U is an S-maximal suffix code, we
have U(w) = L(w). Similarly, V(w) = R(w). Thus the property is true since S
is a tree set.

Otherwise, assume for example that U(w) contains words of length at least
2. Let u € U(w) be of maximal length. Set u = af with a € A. Then
U = (U\ A¢) U/ is an S-maximal suffix code and fw € S since al € U(w).
Moreover, we have A NS C U since U is an S-maximal suffix code. Thus ¢
satisfies the hypotheses of Lemma 3.10.

By induction hypothesis, the graphs Ey v (w) and E4 v (fw) are connected.
By Lemma 3.10, the graph Ey v (w) is connected. n

Let S be a factorial set and let f be a coding morphism for a finite bifix
code X C S. The set f=1(S) is called a bifix decoding of S. When X is an

S-maximal bifix code, it is called a mazimal bifix decoding of S.

Theorem 3.11 Any biextendable set which is the bifix decoding of an acyclic
set is acyclic.
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Proof. Let S be an acyclic set and let f : B* — A* be a coding morphism for
a finite bifix code X C S such that f~1(S) is biextendable. Let u € f~1(S)
and let v = f(u). Since X is a finite bifix code, it is both a suffix code and
a prefix code. Thus the generalized extension graph Ex x(v) is acyclic by
Proposition 3.7. Since E(u) is isomorphic with Ex, x (v), it is also acyclic. Thus
F71(9) is acyclic. .

The previous statement is not satisfactory because of the assumption that
f71(9) is biextendable which is added to obtain the conclusion. The follow-
ing example shows that the condition is necessary.

Example 3.12 Let S be the Fibonacci set and let f be the coding morphism
for X = {aa,ab} defined by f(u) = aa, f(v) = ab. Then f~1(9) is the finite
set {u,v,vu,vv,vvu} and thus not biextendable. Note however that for any
w € f71(S), the graph E(w) is acyclic.

One may verify that a sufficient condition for f=!(S) to be biextendable is

that X is an S-maximal prefix code and an S-maximal suffix code (when S is

recurrent, this is equivalent to the fact that X is an S-maximal bifix code).
The following result is a consequence of Proposition 3.9.

Theorem 3.13 Any mazximal bifix decoding of a recurrent tree set is a tree set.

Proof. Let f : B — X be a coding morphism for a finite S-maximal bifix
code X. Since S is recurrent, it is biextendable. It implies that f~1(S) is also
biextendable. Indeed, let u € f~1(S) and let v = f(u). Let r, s be words of S
longer than all words of X such that rvs € S. Let r’ (resp. s’) be the suffix of r
(resp. the prefix of s) which is in X. Then f~(r")uf~1(s’) is in f~1(S). This
shows that f~1(S) is biextendable.

Let u € f~1(9) and let v = f(u). Since S is a tree set, it satisfies Propo-
sition 3.9. Since S is recurrent and X is a finite S-maximal bifix code, X is
both an S-maximal suffix code and an S-maximal prefix code. Thus the graph
Ex x(v) is a tree. Since E(u) is isomorphic with Ex x(v), it is also a tree.
Thus f~1(9) is a tree set. "

We have no example of a maximal bifix decoding of a recurrent tree set which
is not recurrent.

Example 3.14 Let S be the Fibonacci set and let X = 42N S = {aa, ab, ba}.
Let B = {u,v,w} and let f be the coding morphism for X defined by f(u) = aa,
f(v) = ab and f(w) = ba. Then the set f~1(S) is a recurrent tree set which is
actually a regular interval exchange set (see [6]).
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4 Return words in tree sets

We study sets of first return words in tree sets. We first show that if S is a
recurrent connected set, the group described by any Rauzy graph of S con-
taining the alphabet A, with respect to some vertex is the free group on A
(Theorem 4.1). Next, we prove that in a uniformly recurrent tree set containing
A, the set of first return words to any word of S is a basis of the free group on
A (Theorem 4.7).

4.1 Stallings foldings of Rauzy graphs

We first introduce the notion of a Rauzy graph (for a more detailed exposition,
see [9]). Let S be a factorial set. The Rauzy graph of S of order n > 0 is the
following labeled graph G, (S). Its vertices are the words in the set S N A™.
Its edges are the triples (z,a,y) for all x,y € SN A™ and a € A such that
xa € SN Ay.

Let u € SN A™. The following properties follow easily from the definition of
the Rauzy graph.

(i) For any word w such that uw € S, there is a path labeled w in G, (5)
from u to the suffix of length n of uw.
(ii) Conversely, the label of any path of length at most n+1 in G, () isin S.
When S is recurrent, all Rauzy graph G, (S) are strongly connected. Indeed,
let u,w € SN A™ Since S is recurrent, there is a v € S such that uwow € S.
Then there is a path in G,,(S) from u to w labeled vw by property (i) above.
The Rauzy graph G, (S) of a recurrent set S with a distinguished vertex
v can be considered as a simple automaton A = (Q,v,v) with set of states
Q = SN A™ (see Section 2.3).
Let G be a labeled graph on a set () of vertices. The group described by G
with respect to a vertex v is the subgroup described by the simple automaton
(Q,v,v). We will prove the following statement.

Theorem 4.1 Let S be a recurrent connected set containing the alphabet A.
The group described by a Rauzy graph of S with respect to any vertex is the free
group on A.

A morphism ¢ from a labeled graph G onto a labeled graph H is a map
from the set of vertices of G onto the set of vertices of H such that (u,a,v) is
an edge of H if and only if there is an edge (p, a, ¢) of G such that ¢(p) = u and
©(q) = v. An isomorphism of labeled graphs is a bijective morphism.

The quotient of a labeled graph G by an equivalence 6, denoted G/6, is the
graph with vertices the set of equivalence classes of # and an edge from the class
of u to the class of v labeled a if there is an edge labeled a from a vertex u’
equivalent to u to a vertex v’ equivalent to v. The map from a vertex of G to
its equivalence class is a morphism from G onto G/6.

We consider on a Rauzy graph G, (S) the equivalence 6,, formed by the pairs
(u,v) with u = az, v = bx, a,b € L(x) such that there is a path from a to b
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in the extension graph E(x) (and more precisely from the vertex corresponding
to a to the vertex corresponding to b in the copy corresponding to L(z) in the
bipartite graph E(x)).

Proposition 4.2 If S is connected, for each n > 1, the quotient of Gy (S) by
the equivalence 0, is isomorphic to Gp—1(S5).

Proof. The map ¢ : SN A™ — SN A" ! mapping a word of S of length n
to its suffix of length n — 1 is clearly a morphism from G, (S) onto G,,_1(S5).
If uyv € SN A™ are equivalent modulo 6,,, then ¢(u) = @(v). Thus there
is a morphism ¢ from G,(5)/60, onto G,—1(S). It is defined for any word
u € SNA™ by ¢(4) = ¢(u) where @ denotes the class of u modulo 6,,. But since
S is connected, the class modulo 6, of a word ax of length n has £(z) elements,
which is the same as the number of elements of ¢ ~!(z). This shows that ¢ is a
surjective map from a finite set onto a set of the same cardinality and thus that
it is one-to-one. Thus v is an isomorphism. L]

Let G be a strongly connected labeled graph. Recall from Section 2.3 that a
Stallings folding at vertex v relative to letter a of G consists in identifying the
edges coming into v labeled a and identifying their origins. A Stallings folding
does not modify the group described by the graph with respect to some vertex.

Indeed, if p = v, p 2 and g % v are three edges of G, then adding the edge

—1
q 2,  does not change the group described since the path ¢ = v —— p 2 1 has
the same label. Thus merging p and g does not add new labels of generalized
paths.

Proof of Theorem 4.1. The quotient G,,(S)/0,, can be obtained by a sequence of
Stallings foldings from the graph G,,(5). Indeed, a Stallings folding at vertex v
identifies vertices which are equivalent modulo 6,,. Conversely, consider u = ax
and v = bz, with u,v € SN A™ and a,b € A such that a and b (considered as
elements of L(z)), are connected by a path in F(x). Let ag,...a and by, --- by
with a = ap and b = ay, be such that (a;, b; 1) for 0 < i < k—1and (a;, b;) for 1 <
i < k are in E(z). The successive Stallings foldings at by, xbs, ..., xb; identify
the vertices u = agzx,a1z,...,axr = v. Indeed, since a;xb;11,a;412bir1 €
S, there are two edges labeled b; 1 going out of a;x and a;y;x which end at
xb;41. The Stallings folding identifies a;,z and a;+12. The conclusion follows by
induction.

Since the Stallings foldings do not modify the group described, we deduce
from Proposition 4.2 that the group described by the Rauzy graph G,,(S) is the
same as the group described by the Rauzy graph Go(S). Since Go(S) is the
graph with one vertex and with loops labeled by each of the letters, it describes
the free group on A. n

Example 4.3 Let S be the tree set obtained by decoding the Fibonacci set into
blocks of length 2 (see Example 3.14). Set w = aa, v = ab, w = ba. The graph
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Figure 4.1: The Rauzy graphs G2(S) and G1(S) for the decoding of the Fi-
bonacci set into blocks of length 2.

G2(9) is represented on the left of Figure 4.1. The classes of 6 are {wv,vv}
{vu} and {ww,uw}. The graph G;(S) is represented on the right.

The following example shows that Proposition 4.2 is false for sets which are not
connected.

Example 4.4 Consider again the Chacon set (see Example 2.13).

The Rauzy graph G1(S) corresponding to the Chacon set is represented in
Figure 4.2 on the left. The graph G1(S)/6; is represented on the right. It is
not isomorphic to Go(.S) since it has two vertices instead of one.

a b
. .@mﬁ . ’,.Q
&

Figure 4.2: The graphs G1(S) and G1(S5)/0;.

4.2 The Return Theorem

We will prove the following result (referred to as the Return Theorem).

Theorem 4.5 Let S be a uniformly recurrent tree set containing the alphabet
A. Then for any w € S, the set Rg(w) is a basis of the free group on A.

We first show an example of a neutral set which is not a tree set and for which
Theorem 4.5 does not hold.

Example 4.6 Consider the set S of Example 3.5. Then Rg(1) = {2231, 31, 231}.
This set has 3 elements, in agreement with Theorem 2.14 but it is not a basis
of the free group on {1,2,3} since it generates the same group as {2,31}.

The proof of Theorem 4.5 uses Theorem 2.14 and the following result.

Theorem 4.7 Let S be a uniformly recurrent connected set containing the al-
phabet A. For any w € S, the set Rgs(w) generates the free group on A.
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Proof. Since S is uniformly recurrent, the set Rg(w) is finite. Let n be the
maximal length of the words in wRg(w). In this way, any word in S N A"
beginning with w has a prefix in wRg(w). Moreover, recall from Property (ii)
of Rauzy graphs, that the label of any path of length n + 1 in the Rauzy graph
Gn(S) isin S.

Let x € S be a word of length n ending with w. Let A be the simple
automaton defined by G, (S) with initial and terminal state z. Let X be the
prefix code generating the submonoid recognized by A. Since the automaton A
is simple, by Proposition 2.7, the set X generates the group described by A.

We show that X C Rg(w)*. Indeed, let y € X. Since y is the label of a
path starting at z and ending in x, the word zy ends with x and thus the word
wy ends with w. Let I' = {2z € AT | wz € A*w} and let R =T \TA*. Then R
is a prefix code and I' U1 = R*, as one may verify easily. Since y € I', we can
write y = ujus - - - Uy, where each word u; is in R. Since S is recurrent and since
x € 5, there is v € SN A" such that vz € S and thus there is a path labeled
x ending at the vertex x by property (i) of Rauzy graphs. Thus there is a path
labeled zy in G, (S). This implies that for 1 < ¢ < m, there is a path in G,,(5)
labeled wu;.

Assume that some w; is such that |wu;| > n. Then the prefix p of length n
of wu; is the label of a path in G,,(S). This implies, by Property (ii) of Rauzy
graphs, that p is in S and thus that p has a prefix in wRg(w). But then wu;
has a proper prefix in wRg(w), a contradiction. Thus we have |wu;| < n for all
i=1,2,...,m. But then the wu; are in S by property (i) again and thus the
u; are in Rg(w). This shows that y € Rg(w)*.

Thus the group generated by Rg(w) contains the group generated by X.
But, by Theorem 4.1, the group described by A is the free group on A. Thus
Rs(w) generates the free group on A. "

We illustrate the proof in the following example.

Example 4.8 Let S be the Fibonacci set. We have Rg(aa) = {baa, babaa}.
The Rauzy graph G7(.5) is represented in Figure 4.3. The set recognized by the
automaton obtained using x = aababaa as initial and terminal state is X* with
X = {babaa,baababaa}. In agreement with the proof of Theorem 4.7, we have

X C Rg(aa)*.

Figure 4.3: The Rauzy graph G7(S)
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Proof of Theorem 4.5. When S is a tree set, we have Card(Rg(w)) = Card(A)
by Theorem 2.14, which implies the conclusion since any set with Card(A)
elements generating F4 is a basis of Fjy. u

5 Bifix codes in acyclic sets

We prove in this section our main results. Bifix codes in acyclic sets are bases
of the subgroup that they generate (Theorem 5.1, referred to as the Freeness
Theorem). Moreover, the submonoid generated by a finite bifix code X included
in an acyclic set S is such that X* NS = (X) NS (Theorem 5.2, referred to
as the Saturation Theorem). As a preliminary to the proof, we first define the
incidence graph of a finite bifix code (already used in [3]). We prove a result
concerning this graph, implying in particular that it is acyclic (Proposition 5.6).
We then define the coset automaton whose states are connected components of
the incidence graph. We prove that this automaton is the Stallings automaton
of the subgroup (X) (Proposition 5.10). Finally, we prove the Freeness and the
Saturation Theorems.

5.1 Freeness and Saturation Theorems

Let X be a subset of the free group. We say that X is free if it is a basis of the
subgroup (X) generated by X. This means that if z1,22,...,7, € XUX ! are
such that xyxs - - -z, is equivalent to 1, then x;z;41 is equivalent to 1 for some
1<t <n.

We will prove the following result (Freeness Theorem).

Theorem 5.1 A set S is acyclic if and only if any bifix code X C S is a free
subset of the free group Fa.

Let M be a submonoid of A* and let H be the subgroup of F4 generated
by M. Given a set of words .S, the submonoid M is said to be saturated in S if
MnNS=HnNS. If M is generated by X, then M is saturated in .S if and only
it X*NS=(X)nS§.

Thus, for example, the submonoid recognized by a reversible automaton is
saturated in A* (Proposition 2.7).

We will prove the following result (Saturation Theorem).

Theorem 5.2 Let S be an acyclic set. The submonoid generated by a bifiz code
included in S is saturated in S.

We note the following corollary, which shows that bifix codes in acyclic sets
satisfy a property which is stronger than being bifix (or more precisely that the
submonoid X* satisfies a property stronger than being right and left unitary).

Corollary 5.3 Let S be an acyclic set, let X C S be a bifix code and let H =
(X). For any u,v € S,
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(i) if u,uv € HNS, then v € X*,
(ii) if v,uv € HN S, then u € X*.

Proof. Assume that u,uv € HNS. Since v = u~*(uv), we have v € H. But
v € HN S implies v € X* by Theorem 5.2. This proves (i). The proof of (ii) is
symmetric. (]

We can express Corollary 5.3 in a different way. Let S be an acyclic set and let
X C S be a bifix code. Then no nonempty word of (X) can be a proper prefix
(or suffix) of a word of X. Indeed, assume that v € (X) is a prefix of a word
of X. Then w is in (X) NS and thus in X* since X* is saturated in S. This
impliesu =1or u € X.

We illustrate Theorem 5.1 in the following example.

Example 5.4 Let S be as in Example 3.4 (recall that S is not a tree set) and
let X = SN A% We have

X = {ab,ac,bc, ca, cd, da}.

The set X is an S-maximal bifix code. It is a basis of a subgroup of infinite
index. Indeed, the minimal automaton of X* is represented in Figure 5.1 on
the left. The Stallings automaton of the subgroup H generated by X is ob-
tained by merging 3 with 4 and 2 with 5. It is represented in Figure 5.1 on
the right. Since it is not a group automaton, the subgroup has infinite index
(see Proposition 2.8). The set X is a basis of H by Theorem 5.1. This can

a,d a,b

c,d b, c

Figure 5.1: The minimal automaton of X* and the Stallings automaton of (X).

also be seen by performing Nielsen transformations on the set X (see [18] for
example). Indeed, replacing bc and da by be(ac)~™! and da(ca)™!, we obtain
X' = {ab,ac,ba™ ", ca,cd,dc™1} which is Nielsen reduced. Thus X' is a basis of
H and thus also X.

Note that, in agreement with Theorem 5.2, the two words of length 2 which
are in H but not in X*, namely bb and dd, are not in S.

Theorem 5.1 is false if X is prefix but not bifix, as shown in the following
example.
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Example 5.5 Let S be the Fibonacci set and let X C S be the prefix code
X = {aa,ab,b}. Then a = (ab)b™! is in (X) and thus X generates the free
group on A. Thus X is not a basis and X* N S is strictly included in (X) N S
(for example a ¢ X*).

5.2 Incidence graph

Let X be a set, let P be the set of its proper prefixes and S be the set of its
proper suffixes. Set P’ = P\ {1} and S’ = S\ {1}. Recall from [3] that the
incidence graph of X is the undirected graph G defined as follows. The set of
vertices is the disjoint union of P’ and S’. The edges of G are the pairs (p, s) for
p € P’ and s € S’ such that ps € X. As in any undirected graph, a connected
component of G is a maximal set of vertices connected by paths.

The following result is proved in [3] in the case of a Sturmian set (Lemma
6.3.3). We give here a proof in the more general case of an acyclic set. We call
a path reduced if it does not use equal consecutive edges.

Proposition 5.6 Let S be an acyclic set, let X C S be a bifix code and let G
be the incidence graph of X. Then the following assertions hold.
(i) The graph G is acyclic.
(ii) The intersection of P’ (resp. S’) with each connected component of G is
a suffix (resp. prefiz) code.

(i) For every reduced path (vi,ui,...,Un,Vnt1) in G with uy,...,u, € P’
and v1,...,v,41 0 S’, the longest common prefix of v1,vn11 1S a proper
prefiz of all v1, ..., Uy, Vpt1-

(iv) Symmetrically, for every reduced path (u1,v1, ..., Vn,Uns1) in G withuq, . ..
Upt1 € P and vy, ... v, € 5, the longest common suffix of u1,uny1 s a
proper suffix of ui,ug, ..., Upt1.

Proof. Assertions (iii) and (iv) imply Assertions (i) and (ii). Indeed, assume that
(iii) holds. Consider a reduced path (v1, u1, ..., Un, Upt1) in G with uq, ..., u, €
P’ and vy,...,vp41 in S’. If v1 = v,41, then the longest common prefix of
¥1,VUp41 18 NOt a proper prefix of them. Thus G is acyclic and (i) holds. Next,
if v1, vp4+1 are comparable for the prefix order, their longest common prefix is
one of them, a contradiction with (iii) again. The assertion on P’ is proved in
an analogous way using assertion (iv).

We prove (iii) and (iv) by induction on n > 1.

The assertions holds for n = 1. Indeed, if ujvy,uive € X and if v; €
S’ is a prefix of v, € S’, then wjv; is a prefix of ujve, a contradiction with
the hypothesis that X is a prefix code. The same holds symmetrically for
u1v1,u2v1 € X since X is a suffix code.

Let n > 2 and assume that the assertions hold for any path of length at most
2n — 2. We treat the case of a path (v1,u1,...,Upn, Upt1) in G with ug, ..., u, €
P’ and vy,...,v,41 in S’. The other case is symmetric.

Let p be the longest common prefix of v; and v,41. We may assume that p
is nonempty since otherwise the statement is obviously true. Any two elements
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of the set U = {u1,...,u,} are connected by a path of length at most 2n — 2
(using elements of {va,...v,}). Thus, by induction hypothesis, U is a suffix
code. Similarly, any two elements of the set V' = {vy,...,v,} are connected by
a path of length at most 2n — 2 (using elements of {uy,...u,—1}). Thus V is a
prefix code. We cannot have v; = p since otherwise, using the fact that u,p is a
prefix of u,v,41 and thus in S, the generalized extension graph Ey v () would
have the cycle (p,u1,vs,...,un,p), a contradiction since Ey v () is acyclic by
Proposition 3.7. Similarly, we cannot have v,411 = p.

Set W =p~ 'V and V' = (V' \pW)Up. Since V is a prefix code and since p is
a proper prefix of V, the set V' is a prefix code. Suppose that p is not a proper
prefix of all vo, ..., v,. Then there exist ¢, j with 1 <4 < 5 < n+1 such that pis
a proper prefix of v;, v; but not of any viy1,...,vj—1. Then viyq,...,v;1 €V’
and there is the cycle (p, w;, vig1, Wit1, ..., vj—1, uj—1,p) in the graph Ey v ().
This is in contradiction with Proposition 3.7 because, V' being a prefix code,
Ey,v(g) is acyclic. Thus p is a proper prefix of all va, ..., v,. "

Let X be a bifix code and let P be the set of proper prefixes of X. Consider
the equivalence 8x on P which is the transitive closure of the relation formed
by the pairs p,q € P such that ps,qs € X for some s € AT. Such a pair
corresponds, when p,q # 1, to a path p — s — ¢ in the incidence graph of X.
Thus a class of fx is either reduced to the empty word or it is the intersection
of P\ 1 with a connected component of the incidence graph of X.

The following property relates the equivalence x with the right cosets of
H = (X). Tt is Proposition 6.3.5 in [3].

Proposition 5.7 Let X be a bifix code, let P be the set of proper prefizes of
X and let H be the subgroup generated by X. For any p,q € P, p = g mod 0x
implies Hp = Hgq.

Let A = (P,1,1) be the literal automaton of X*. We show that the equiva-
lence x is compatible with the transitions of the automaton A in the following
sense.

The following is proved in [3] (Lemma 6.3.6 and Lemma 6.4.2) in the case
of a Sturmian set S.

Proposition 5.8 Let S be an acyclic set. Let X C S be a bifix code and let
P be the set of proper prefizes of X. Let p,q € P and a € A be such that
pa,qa € PUX. Then in the literal automaton of X*, one has p = ¢ mod Ox if
and only if p-a =q-amod Ox.

Proof. Assume first that p = ¢ mod 0x. We may assume that p, g are nonempty.
Let (ug, v1,u1,- .., Vn, uy) be a reduced path in the incidence graph G of X with
p = ug, Uy, = q. The corresponding words in X are ugvy, u1v1, U1v2, . . ., UpUy.
We may assume that the words wu; are pairwise distinct, and that the v; are
pairwise distinct. Moreover, since pa,qa € P U X there exist words v, w such
that pav,qaw € X. Set vo = av and v,+1 = aw.
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By Proposition 5.6, a is a proper prefix of vg, v1,...,Vnt1. Set v; = av} for
0<i<n+1.

If pa,qa € P, then (ugpa,vy,u1a,...,v,, usa) is a path from pa to ga in G.
This shows that pa = ga mod 0.

Next, suppose that pa € X and thus that vyp = a. By Proposition 5.6, we
have w = ¢ since otherwise vg = a is a proper prefix of v,+1. Thus ga € X and
p-a=q-a.

Conversely, if p-a = ¢ - amod 0x, assume first that pa,qa € P. Then
pa = ga mod Ox and thus there is a reduced path (ug,v1,..., v, u,) in G with
ug = pa and u, = qa. By Proposition 5.6, a is a proper suffix of w1, ..., u,. Set
u; = uia. Thus (p,avy,ul,...,q) is a path in G, showing that p = ¢ mod 0x.

Finally, if pa, ga € X, then (p,a,q) is a path in G and thus p = ¢ mod 6x.

|

5.3 Coset automaton

Let S be an acyclic set and let X C S be a bifix code. We introduce a new
automaton denoted By and called the coset automaton of X. Let R be the set
of classes of 0x with the class of 1 still denoted 1. The coset automaton of X
is the automaton Bx = (R,1,1) with set of states R and transitions induced
by the transitions of the literal automaton A = (P,1,1) of X*. Formally, for
r,s € Rand a € A, one has r - a = s in the automaton Bx if there exist p in
the class r and ¢ in the class s such that p-a = ¢ in the automaton A.

Observe first that the definition is consistent since, by Proposition 5.8, if p-a
and p’ - a are nonempty and p, p’ are in the same class r, then p-a and p’ - a are
in the same class.

Observe next that if there is a path from p to p’ in the automaton A labeled
w, then there is a path from the class r of p to the class 7’ of p’ labeled w in
Bx.

b a
Figure 5.2: The automaton Bx.

Example 5.9 Let S be the Fibonacci set and let
X = {a, baab, babaabab, babaabaabab}.

The set X is an S-maximal bifix code of S-degree 3 (see [3], Example 6.3.1). The
automaton Bx has three states. It is a group automaton. State 2 is the class
containing b, and state 3 is the class containing ba. The bifix code generating
the submonoid recognized by this automaton is Z = a U b(ab*a)*b.

The following result shows that the coset automaton of X is the Stallings
automaton of the subgroup generated by X.

26



Proposition 5.10 Let S be an acyclic set, and let X C S be a bifix code. The
coset automaton Bx is reversible and describes the subgroup generated by X.
Moreover X C Z, where Z is the bifix code generating the submonoid recognized
by Bx.

Proof. Let A= (P,1,1) be the literal automaton of X* and set Bx = (R, 1,1).
By Proposition 5.8, the automaton Bx is reversible.

Let Z be the bifix code generating the submonoid recognized by Bx. To
show the inclusion X C Z, consider a word x € X. There is a path from 1 to 1
labeled x in A, hence also in Bx. Since the path in A does not pass by 1 except
at its ends and since the class of 1 modulo 0x is reduced to 1, the path in Bx
does not pass by 1 except at its ends. Thus zx is in Z.

Let us finally show that the coset automaton describes the group H = (X).
By Proposition 2.7, the subgroup described by Bx is equal to (Z). Set K = (Z).
Since X C Z, we have H C K. To show the converse inclusion, let us show
by induction on the length of w € A* that if, for p,q € P, there is a path
from the class of p to the class of ¢ in Bx with label w then Hpw = Hgq. By
Proposition 5.7, this holds for w = 1. Next, assume that it is true for w and
consider wa with a € A. Assume that there are states p, ¢, € P such that there
is a path from the class of p to the class of g in Bx with label w, and an edge from
the class of ¢ to the class of r in Bx with the label a. By induction hypothesis,
we have Hpw = Hq. Next, by definition of Bx, there is an s = ¢ mod 0x such
that s-a = r mod 0x. If sa € P, then s-a = sa, and by Proposition 5.7, we
have Hs = Hq and Hsa = Hr. Otherwise, sa € X C H and s-a =1 =1
because the class of 1 is a singleton and thus Hga = Hsa = H = Hr. In both
cases, Hpwa = Hqa = Hsa = Hr. This property shows that if z € Z, then
Hz = H, that is z € H. Thus Z C H and finally H = K. m

5.4 Proof of the main results

We can now prove Theorem 5.1. The proof uses Proposition 5.6. We will also
use the elementary fact that if X is a bifix code, and x,y € X with x # y, then
x cannot cancel completely with y~!, which means that p(xy~!) cannot be a
prefix of x or a suffix of y~!. Indeed, if zy~! is equivalent to a prefix of z, then
y is a suffix of  and if xy~! is equivalent to a suffix of y~! then z is a suffix of
y. A symmetric argument holds for =1 and y.

Proof of Theorem 5.1. To prove the necessity of the condition, assume that for

some w € S the graph E(w) contains a cycle (a1,b1,. .., ap,bp, a1) with p > 2,
a; € L(w) and b; € R(w) for 1 < i <p. Consider the bifix code X = AwANS.
Then aywby, agwby, . .., apwby, a1wdb, € X. But

aywby (azwby) "t aswbsy - - - apwb, (aywb,) Tt = 1,

contradicting the fact that X is free.
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Let us now show the converse. Assume that S is acyclic and let X C S be

a bifix code. Set Y = X UX~!. Let y1,...,y» € Y. We intend to show that

provided y;y;41 Z 1 for 1 <i < n, we have y; - - -y, Z 1. We may assume n > 3.

We say that a sequence (u;, v;, w;)1<i<n Of elements of the free group on A

is admissible with respect to y1,...,y, if the following conditions are satisfied
(see Figure 5.3):

(i

) yi = wvw; for 1 <i <mn,
(ii) w1 = wy, =1 and vy, v, # 1,
)

)

(iii
Rk

v

w41 =1for 1 <i<n—1.
For1<i<j<n,ifv;,v;#landv, =1fori+1 <k <j—1, then vv;
is reduced.

Note that if the sequence (u;,v;, w;)1<i<n is admissible with respect to
Yls---5Yn, then y; - - -y, is equivalent to the word vy - - - v, which is a reduced
nonempty word. Thus, in particular y; - - -y, Z 1.

vy ﬂ m v; MWH/M Un\ Un
® O O @ O C L 4 O O @

_ Vi
o— o0 L o s Oro— I

Figure 5.3: The word y; - - - yp,.

Let us show by induction on n that for any y1,...,y, such that y;y;,11 Z 1
for 1 <7 < n—1, there exists an admissible sequence with respect to y1 ..., Yn.

The property is true for n = 1. Indeed, we take u; = w; = 1.

Assume that the property is true for n. Among the possible admissible
sequences with respect to the y1, .. ., y,, we choose one such that |v, | is maximal.

Set v, = v, w), and Yn41 = Un11Unt1 With |w),| = |un+1| maximal such that
whun+1 = 1. Note that v,41 # 1 since otherwise y,4+1 would cancel completely
with 5.

If v/, # 1, the sequence

(17 U1, wl)v SERE) (unfla Un—1, wnfl)v (un, ’U,;” w;z)v (unJrla Un+1; 1)
is admissible with respect to yi1,...,Yn+1-
Otherwise, let ¢ with 1 < ¢ < n be the largest integer such that v; # 1.
Observe that w;, wiy1,...,Wn—1,w, are nonempty. Indeed, if w; = 1 with

t <j<n-—1,then u;11 =1 and thus y;41 cancels completely with y,12. Next,
if v, = w], = 1, then y, cancels completely with y,_1.

Assume that y; € X (the other case is symmetric).

If y,+1 € X (and thus n — i is odd), then v;v,11 is reduced because they
are both in A* and v, 11 # 1 as we have already seen. Thus the sequence

(Lvlawl)a ey (un—lavn—lawn—l)a (una 1,’LU,/,L), (un-i-la Un+1, 1)

is admissible with respect to yi1,...,Yn+1-

Otherwise, let s be the longest common suffix of u;v; and v

n+1-
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Figure 5.4: The graph G(X).

There is a path in the incidence graph G(X) from w;v; to v, |, (see Fig-
ure 5.4). By Proposition 5.6, s is a proper suffix of uivi,w;kll, e ,wgil, vgil.
This implies that s~! is a proper prefix of w;y1,...,Wn_1,Vni1-

It is not possible that v; is a suffix of s. Indeed, this would imply that
vi_l is a proper prefix of w;t1,...,Wp—1,Vp+1. But then we could change
the n — i 4+ 1 last terms of the sequence (uj,v;,w;)i<j<n into (u;,1,v;w;),
(uit1v; 1, p(viwit1))s - -+, (p(unv; ), vivn, 1) resulting in an admissible se-
quence with a longer v,.

Thus s is a proper suffix of v;. Since s is a proper suffix of v; and v}

n+1
there are nonempty words p,q € A* such that v; = ps and vgil = ¢s. More-
over, the word pg~! is reduced since s is the longest common suffix of v; and
v;}rl. Thus we can change the last n — i + 2 terms of the sequence formed by

(uj, vj, wj)1<j<n—1 followed by (un,1,vn), (Un+1,Vn+1,1) into

(uiapa Swi)a (ui-l-lsila 1; p(swi-l-l))a sy (p(unsil)a 1; Svn)a (un-l-lsila qila 1)

1

(see Figure 5.5). Since the word pg~* is reduced, the new sequence is admissible.

Uj Vi i Ui i+1  UiPs Wit2 Uy n UpIN Unoil
@ O C @ @ @ O @ @ G @ O L

Figure 5.5: The word y; - - - Yn+1-

This shows that y1 - -y, # 1 for any sequence y1,...,y, € X U X! such
that y;y;41 # 1 for 1 <7 <n. Thus X is free. m

We now give a proof of Theorem 5.2. It uses Proposition 5.10.
Proof of Theorem 5.2. Let S be an acyclic set and let X C S be a bifix code.

We have to prove that X* NS = (X)NS. Since X* NS C (X)NS, we only
need to prove the reverse inclusion.
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Consider the bifix code Z generating the submonoid recognized by the coset
automaton Bx associated to X. Set Y = ZN.S. By Theorem 5.1, Y is a basis
of (Y).

By Proposition 5.10, we have X C Z and thus X C Y.

Since any reversible automaton is minimal and since the automaton Bx is
reversible by Proposition 5.10, it is equal to the minimal automaton of Z*. Let
K be the subgroup generated by Z. By Proposition 2.5, we have K N A* = Z*.

This shows that

(X)NSCKNS=KNA*NS=2"NS=Y"NScCY"

The first inclusion holds because X C Z implies (X) C K. The last equality
follows from the fact that if z; --- 2, € S with 21,...,2, € Z, then each z; is in
S (because S is factorial) and hence in ZNS =Y. Thus (X)NS C Y*. Consider
r€(X)NS. Then z = x1 -z, with z; € X UX 1. But since (X)NS C Y*,
we have also x = y1 -+ -y, with y; € Y. Since X C Y and since Y is free, this
forces n = m and x; = y;. Thus all z; are in X and x is in X*. This shows that
(X)N S C X* which was to be proved. "

The proof of Theorem 5.1 proves not only that bifix codes in acyclic sets are
free, but also that, in a sense made more precise below, the associated reductions
are of low complexity.

We first define the heigth of w on AUA™! equivalent to 1 as the least integer
h such that w is a concatenation of words of the form w = uvu~! where u is a
word on AU A™! and v is a word of heigth h — 1 equivalent to 1. The empty
word is the only word equivalent to 1 of heigth 0.

We then define the height of an arbitrary word w on AU A™! as the least
integer h such that w = zgv121 - - - V2, With 2z, ..., 2z, equivalent to 1 of height
at most h and vg - - - v, reduced.

In this way, any word on A U A~! has finite height. For example, the word
aa~"lcbb~! has heigth 1 and aaa='bb~'a~! has height 2. The words of height 0
are the reduced words.

Proposition 5.11 Let S be an acyclic set and let X C S be a bifix code. Any
word y = y1 -+ -yp with y; € X U X1 for 1 < i < n such that y;y;41 Z 1 for
1 <¢<n—1 has height at most 1.

Proof. The proof of Theorem 5.1 shows that y = zgv121 - - - Zp—1VUn 2, Where
(i) zo,...,2n have height at most 1,
(i) vy -+ - v, is reduced.
Thus y has height at most 1. m

Example 5.12 Let X be as in Example 5.4. The word bc(ac)™tab, which
reduces to bb, has height 1.
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