
HAL Id: hal-01121767
https://hal.science/hal-01121767

Submitted on 2 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shortest path for aerial vehicles in heterogeneous
environment using RRT

Pawit Pharpatara, Bruno Hérissé, Romain Pepy, Yasmina Bestaoui

To cite this version:
Pawit Pharpatara, Bruno Hérissé, Romain Pepy, Yasmina Bestaoui. Shortest path for aerial vehicles in
heterogeneous environment using RRT. 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA 2015), May 2015, Seattle, United States. pp.6388-6393, �10.1109/ICRA.2015.7140096�.
�hal-01121767�

https://hal.science/hal-01121767
https://hal.archives-ouvertes.fr

Shortest path for aerial vehicles in heterogeneous environment using
RRT*

P. Pharpatara, B. Hérissé, R. Pepy, Y. Bestaoui

Abstract— This paper presents an algorithm for aerial vehicle
trajectory generation based on the optimal Rapidly-exploring
Random Tree (RRT*). The trajectory generation for the aerial
vehicle is a complex path planning problem since the vehicle
flies in a heterogeneous environment. The vehicle must also
avoid some obstacles or inaccessible zones such as buildings,
mountains and even radar detection zones depending on the
mission. The RRT* algorithm is used as a basis to find near-
optimal solutions for this problem. The shortest Dubins’ path
in heterogeneous environment is used to compute a distance
and a trajectory between two vehicle states. Simulated results
show the capability of the algorithm to find a feasible near-
optimal trajectory in terms of path length that anticipates
future flight conditions, such as the decrease in maneuverability
in high altitude. The results also show the advantages over the
numerical methods in avoiding obstacles.

I. INTRODUCTION

Recently, trajectory planning is a high-demand method
for the aerial vehicles such as missiles, drones, and fu-
ture Unmanned Combat Aerial Vehicles (UCAV). An effi-
cient/optimal trajectory known a priori before the mission
can increase the probability to complete the mission gradu-
ally. Moreover, if changes in mission occur, the vehicles can
use remaining time to find the alternative solutions.

The purpose of this paper is to develop an efficient
trajectory planning algorithm for an aerial vehicle traveling
in 2-dimensional vertical plane while avoiding obstacles.

Trajectory planning in the vertical plane is a challenging
problem with many constraints since the vehicle travels
in a heterogeneous environment where the air density de-
creases with altitude. Most aerial vehicles depend on the
aerodynamic forces to control their course in the air. As
a consequence, the maneuverability of the aerial vehicles
decreases with altitude. Moreover, trajectory planning while
avoiding obstacles makes the problem more complex and
difficult to solve by most existing methods.

One way to find a trajectory for an aerial vehicle is to use
classical closed-loop guidance laws to execute the trajectory
directly. For example, in missile guidance, many closed-loop
optimal guidance laws were proposed [2], [16], [3], [7],
[6], [14], [17]. Among these guidance laws, kappa guidance
[13] is certainly the most known. The kappa guidance uses
optimal control theory on a simplified system and obtains a
simple closed-form solution which is easy to implement in

P. Pharpatara, B. Hérissé and R. Pepy are with Onera
- The French Aerospace Lab, Palaiseau, France (email:
pawit.pharpatara@onera.fr, bruno.herisse@onera.fr),
romain.pepy@onera.fr.

Y. Bestaoui is with IBISC, Université d’Evry-Val-d’Essonne, Evry, France
(e-mail: Yasmina.Bestaoui@ufrst.univ-evry.fr).

the real time system. However, it relies on some restrictive
approximations. Moreover, control limitations (saturations)
are difficult to satisfy. For such complex systems and mis-
sions, the optimal problem needs to be considered globally.

Numerical methods such as pseudo-spectral optimization
[18] [15] with a good initialization can be used to find
globally optimal solutions. However, there is a trade-off
between the precision of the solution and the computational
effort. Moreover, obstacles induce state constraints that are
very difficult to consider with such methods.

Model Predictive Control (MPC), sometimes called Re-
ceding Horizon Predictive Control (RHPC), is one of the
numerical methods. The MPC is an alternative way to find a
trajectory of an aerial vehicle. It considers problems locally
within the calculation horizon. The advantage over global
optimization is that solutions can be obtained rapidly and is
possible to implement to the real time system. The MPC uses
a reference trajectory or waypoints as a reference to generate
the control sequence. The MPC uses a vehicle model to
predict the future behavior of the vehicle within the opti-
mization horizon. It takes the state errors and control effort
into account to minimize an objective function. Even though
the MPC considers the future conditions and environment,
they are only within the receding horizon. If the reference
trajectory is too far from the feasible trajectory, the MPC
might have difficulties in finding a feasible trajectory and
ends up in some obstacles. Thus, it is preferable that future
conditions and environment are considered globally.

Many studies in the robotic field, especially in path plan-
ning and control theory aim to find trajectories in complex
environments. The sampling-based path planning methods,
such as Rapidly-exploring Random Tree (RRT) [11] or
Probabilistic Roadmap Methods (PRM) [10], offer solutions
for trajectory shaping in complex environments. These are
usually used for path planning of a Dubins’ car in envi-
ronments cluttered by obstacles [12]. The main advantage
of these techniques is that even a complex system can be
considered without need of approximations [19]. Moreover,
the application of this method for the interceptor missile
trajectory planning is demonstrated in [20]. However, the
obtained solution is not optimal in terms of path length.

The optimal RRT (RRT*) [8], [9] was developed to
overcome the optimization problem of the RRT algorithm.
In this paper, the RRT* algorithm is studied to find an
efficient and near-optimal trajectory in terms of path length
for an aerial vehicle flying in heterogeneous environment.
A metric function based on Dubins’ paths in heterogeneous
environment [5] is used to compute a distance and a tra-

eb
1

eb
3

v

Cg

i

k

O

θ

Fig. 1: Vehicle model

jectory between two vehicle states. Terminal constraints are
defined with respect to the rendezvous point. The obtained
results demonstrate the potential of path planning algorithms
in finding a collision-free near-optimal solution for aerial
vehicle in heterogeneous environment while other methods
may fail to find a proper solution. The obtained trajectory
can be used as a reference trajectory to facilitate trajectory
tracking by the MPC.

This paper is divided into four parts. First, the envi-
ronment and system modeling are presented in section II.
Then, section III introduces the RRT* path planner along
with the shortest path in heterogeneous environment for the
aerial vehicle. Then, some simulated results are shown and
analyzed in section (section IV). Finally, some concluding
remarks are made in the last section.

II. PROBLEM STATEMENT

A. Environment modeling

The environment is considered heterogeneous in a 2-
dimensional vertical plane because of variation of air density
ρ, decreasing exponentially with altitude. The environment
model can be expressed as:

ρ = ρ0e
−z/zr (1)

where ρ0 = 1.225km/m3 is the air density at standard
atmosphere at the sea level and zr = 7.5km.

B. System modeling

In this paper, a simplified model of an aerial vehicle is
used. It is modeled as a rigid body maneuvering in a vertical
2-dimensional plane. Two frames (Fig. 1) are introduced to
describe the motion of the vehicle: an Earth-Centered Earth-
Fixed (ECEF) reference frame I centered at point O and
associated with the basis vectors (i,k) and a body-fixed
frame B attached to the vehicle at its center of mass Cg

with the vector basis (eb
1, e

b
3). v is the translational velocity

of the vehicle in I which is considered in the direction of eb
1.

Position and velocity defined in I are denoted ξ = (x, z)> ∈
R2 and v = (v, θ)> ∈ R2 where v > 0 is the magnitude of
the velocity and θ is the orientation of the velocity as known
as the flight path angle.

To eliminate all the external factor to the problem, a zero
wind assumption is applied and the axis of the propulsion of
the vehicle is fixed and is in the direction of eb

1. Then, the

translational velocity v is assumed to coincide with the ap-
parent velocity. Since the air density decreases with altitude
and the aerial vehicle depends on the aerodynamic forces
to perform a turn using the control surfaces, the maximal
curvature, or minimal turning radius, that the vehicle can
perform depends on the altitude of the vehicle.

Thus, the dynamics of an aerial vehicle can be written as

ẋ = v cos θ, (2)
ż = v sin θ, (3)

θ̇ = vc(z)u, |u| < 1 (4)

where u ∈ R is the control input (u ∈ [−1, 1]) and c(z) ∈
R+ is the maximum curvature that can be performed by
the vehicle at the altitude z. In this paper, we are interested
in the shortest path problem. Therefore, the optimal control
problem consists in minimizing the cost function

sf =

∫ tf

0

vdt (5)

where sf is the final path length and tf is the final time.
Since we are interested in the minimum length path, a

change of variables from time dt to curvilinear abscissa ds =
vdt is used. Thus, the dynamics can be rewritten as:

x′ =
dx

ds
= cos θ, (6)

z′ =
dz

ds
= sin θ, (7)

θ′ =
dθ

ds
= c(z)u, |u| < 1 (8)

Thus, the dynamics of the forward velocity does not need
to be specified in this studies.

C. Problem formulation

Let x(t) = (ξ, θ) ∈ X = R3 be the measurable state of
the system, u ∈ U = [−1, 1] be an admissible control input
and consider the differential system

x′ = f(x, u), (9)

where f is defined in section II-B equations (6), (7), and (8).
X = R3 is the state space. It is divided into two subsets.

Let Xfree be the set of admissible states. Xobs = X \ Xfree is
the obstacle region.

The initial state of the system is xinit ∈ Xfree.
The path planning algorithm is given a rendezvous point

xrdv = (ξrdv, θrdv). In order to achieve its mission, the vehicle
has to reach a goal set Xgoal ⊂ Xfree, shown in Fig. 2, defined
as

Xgoal = Pgoal × Vgoal,

Pgoal = {ξ ∈ R2 : ξ = ξrdv},
Vgoal = {θ ∈ R : θ ∈ C(ξ, θrdv, φf)},

(10)

where C(ξ, θrdv, φf) is the convex cone pointing toward the
flight path angle θrdv from the ground with apex ξ and apex
angle 2φf , and φf is a maximal orientation error which can
be tolerated by the mission objective.

vrdv
φf

φf

ξrdv

Cgoal

Fig. 2: Xgoal

The motion planning problem is to find a collision free
trajectory x(s) : [0, sf] → Xfree with x′ = f(x, u), that
starts at xinit and reaches the goal region, i.e. x(0) = xinit
and x(sf) ∈ Xgoal. Moreover, the obtained trajectory must
achieve near-optimality in terms of path length.

III. MOTION PLANNING FRAMEWORK

A. Optimal Rapidly-exploring Random Trees or RRT*

Optimal Rapidly-exploring Random Trees (RRT*) [8], [9]
is an incremental method designed to efficiently explore non-
convex high-dimensional spaces by growing the search tree
toward large Voronoi areas [21] with the asymptotic opti-
mality property, i.e. almost-sure convergence to an optimal
solution. The principle of the RRT* as a path planner is
described in Algorithm 1.

Let G be the exploration tree, V be the set of vertices
of the tree, E be the set of connecting edges of the tree,
cost(x) array be the total cost to arrive at x and c({(x1,x2)}),
calculated by a metric d in this paper, be the cost from x1
to x2.

First, the initial state xinit is added to the tree G. Then,
a state xrand ∈ Xfree is randomly chosen (see section III-
B). The nearest neighbor function searches the tree G
for the nearest vertex to xrand according to a metric d (see
section III-C). This state is called xnearest. In steer function,
a control input u is selected according to a specified criterion.
Equations (6), (7), and (8) are then integrated for a fixed
distance ∆s (or fixed time ∆t) (see section III-D). The newly
found state is called xnew along with the applied control
input u. Then, a collision test (collision free path
function) is performed: if xnew and the path between xnearest
and xnew lie in Xfree then xnew is added to V (see section
III-E).

The near vertex parents function in line 16 will
search the tree G for the set Xnear of near vertices xnear of
xnew (see section III-F) in order to determine the parent of
xnew. The parent xmin and its connecting edge to xnew will
be determined by best edge function (see section III-G).

After the new vertex and its connecting edge is added to
the tree, the near vertex children function in line 18
will search the tree G for the set Xnear of near vertices xnear
of the state xnew (see section III-F) in order to determine if
xnew can be a better parent of any vertices in the tree (this
is optional depending on method used to determine the near
vertices). The suitability of the parent is decided by its cost

Algorithm 1 RRT* path planner
Function : build rrt*(in : K ∈ N, xinit ∈ Xfree, Xgoal ⊂
Xfree, ∆s ∈ R+, out : G)

1: G← xinit
2: cost(xinit)← 0
3: i = 0
4: repeat
5: xrand ← random state(Xfree)
6: xnew ← rrt* extend(G,xrand)
7: until i+ + > K or (xnew 6= null and xnew ∈ Xgoal)
8: return G

Function : rrt* extend(in : G, xrand, out : xnew)
9: V ← G.Node

10: E ← G.Edge
11: xnearest ← nearest neighbor(G,xrand)
12: (xnew, u)← steer(xnearest,xrand,∆s)
13: if collision free path(xnearest,xnew) then
14: V ← V ∪ {xnew}
15: cost(xnew)← cost(xnearest) + c({(xnearest,xnew)})
16: Xnear ← near vertex parents(G,xnew)
17: E ← best edge(E,Xnear,xnearest,xnew)
18: Xnear ← near vertex children(xnew, G) (optional)
19: E ← rewire(E,Xnear,xnearest,xnew)
20: end if
21: G = (V,E)
22: return xnew

Function : best edge(in : E, Xnear, xmin, xnew out : E)
23: for all xnear ∈ Xnear do
24: if collision free path(xnear,xnew) and cost(xnew) >

cost(xnear) + c({(xnear,xnew)} then
25: xmin ← xnear
26: cost(xnew)← cost(xnear) + c({(xnear,xnew)}
27: end if
28: end for
29: E ← E ∪ {(xmin,xnew)}
30: return E

Function : rewire(in : E, Xnear, xnearest, xnew out : E)
31: for all xnear ∈ Xnear \ {xnearest} do
32: if collision free path(xnew,xnear) and cost(xnear) >

cost(xnew) + c({(xnew,xnear)}) then
33: xparent ← parent(xnear)
34: E ← E\{(xparent,xnear)}
35: E ← E ∪ {(xnew,xnear)}
36: updatecost(xnew)
37: end if
38: end for
39: return E

or objective function. Then, if there are better paths passing
by xnew to any vertices xnear ∈ Xnear in the tree, the algorithm
will disconnect the old paths and generate the new paths of

−30 −20 −10 0 10 20

5

10

15

20

25

30

35

40

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

C
x1

x2

S

C

Fig. 3: An example of a Dubins’ path of CSC type in
heterogeneous environment

the tree in rewire function (see section III-H).
These steps are repeated until the algorithm reaches K

iterations. With these, the RRT* algorithm will improve
the optimality of the solution over time even after the first
solution is found.

B. random state

The random state xrand is generated by the uniform dis-
tribution in such a way that xrand ∈ Xfree = X \ Xobs where
Xobs = Pobs × Vobs is defined by

Pobs = {ξ ∈ R2 : ξ is the position surrounded
by bounders of obstacles}

Vobs = {θ ∈ R}
(11)

In this function, a bias toward the goal can be introduced to
reduce the number of generated states in order to reach Xgoal.
This bias, called RRT-GoalBias [12], consists in choosing
xrand ∈ Xgoal with a probability p.

C. nearest neighbor

xnear is defined as the nearest state to xrand according to
a specified metric d. In this paper, the shortest Dubins’ path
in heterogeneous environment [5] where the curvature of
the vehicle decreases exponentially with altitude is used to
determine the nearest neighbor. These Dubins’ paths have
the advantage over the original Dubins’ paths [4][1] because
they are more realistic for the aerial vehicle traveling in the
vertical plane. In [5], it was shown with the same system
model as equations (6), (7), and (8) that, analogously to
the original Dubins’ paths, shortest paths are combinations
of curves of maximum curvature C and straight lines S.
Therefore, for the problem considered in this paper, paths
of CSC type are considered (see an illustration of a CSC
path in Fig. 3).

However, when xrand is chosen in Xgoal by the biased
algorithm discussed in section III-B, it is more interesting
to consider the shortest path between any x ∈ G and Xgoal
than considering a single xrand ∈ Xgoal. Indeed,there can exist

the shortest path to another element of Xgoal than the shortest
path to xrand. To this manner, the degenerated form (CS) of
CSC path needs to be considered first. Indeed, if the shortest
path to the set Xgoal is a CS path, then it arrives with the
arrival orientation within the arrival cone, i.e. θf 6 φpip±φf ,
the shortest path is the CS path. If no CS path arrives in Xgoal,
the shortest path is necessarily a CSC path whose arrival
orientation is one of the extremities of the arrival cone, i.e.
θf ∈ {φpip + φf , φpip + φf}.

Thus, for each x ∈ G, the approach first consists in finding
the shortest CS path to the desired final position, i.e. xrand ∈
Xgoal. If the final orientation is in the arrival cone, it is the
expected solution. If not, the solution is the shortest CSC
path to one of the extremities of Xgoal.

To improve the performance of the RRT* algorithm, the
collision test is also applied in the nearest neighbor
function to verify the Dubins’ paths if they are collision
free. If they are not, the lengths of those Dubins’ paths are
considered infinity.

D. steer
The steer function is a node expansion used to move

the vehicle from one state to another. It can be randomly
generated or computed using a specific criterion. In this
paper, it uses the control input u corresponding to the metric
d mentioned in section III-C. The control input u = ±1 for
curves of maximum curvature C and u = 0 for straight line
S. The steer function applies the control input u with the
system model equations (6), (7), and (8) for distance interval
∆s. Then, a new state xnew is obtained.

In this paper, the RRT-connect [12] is applied to improve
the performance of the algorithm. Instead of integrating the
system for a single step ∆s, it keeps integrating the system
for ε steps if there is no collision along the path. Normally, it
is not suitable for non-holonomic problems because it places
more faith in the metric and the metric designing of non-
holonomic problems is difficult. However, since the metric d
mentioned in section III-C is well designed for this problem,
the RRT-connect can be applied.

E. collision test

The collision test function verifies that the path
between two states lies in Xfree. If it is collision-free, the
path between xnear and xnew is added to the tree G.

F. near vertex

In the original RRT* algorithm, the near vertex func-
tion uses an euclidean distance to find all the states in the
neighborhood of the state x. It is a circle of radius R centered
at x. The radius of this circle is fixed at the beginning and
will decrease in function of numbers of vertices in the tree.
However, this method is not suitable for our framework using
the Dubins’ paths in heterogeneous environment to determine
the distance between two states in the state space. Because if
R is too small, there will be very few feasible or reasonable
paths connecting two states due to the limited maximum
curvature of the vehicle. Moreover, if R is too large, the
computational effort will be expensive.

Thus, in this paper, the k-nearest neighbors algorithm is
used to determine near vertices of the state x in order to
choose suitable candidate vertices according to the metric
d used in nearest neighbor function. This algorithm
selects the first k-nearest vertices according to the metric d
and returns them to the set Xnear.

There are two near vertex functions in this pa-
per: near vertex parents function in line 16, and
near vertex children function in line 18. The
near vertex parents function searches for the first k-
nearest vertices to arrive at xnew while the latter searches
for the first k-nearest vertices from xnew to other vertices. In
case of using the euclidean distance, both functions are the
same and the latter is not required.

G. best edge

The best edge function determines a parent of xnew
by calculating a total cost to arrive at xnew passing by
each xnear, i.e. cost(xnear)+c({(xnear,xnew)}). cost(xnear) is
the actual cost, in this paper, representing the total distance
of the trajectory from xinit to xnear and c({(xnear,xnew)})
is the shortest distance of Dubins’ path in heterogeneous
environment connecting xnear and xnew.

If the total cost is less than the total cost of xnew,
i.e. cost(xnew), then xnear becomes the new parent xmin of
xnew. After each xnear ∈ Xnear has been verified, the edge
connecting xnearest and xnew is added to E.

H. rewire

Opposing to the best edge function, the rewire func-
tion is used to determine if xnew can be a new parent of any
vertices of the tree. By using the same methodology as the
best edge function, if there are paths from xinit to each
xnear ∈ Xnear \xnearest passing by xnew with less cost than the
actual cost(xnear), the parent of xnear is changed to xnew. The
edge connecting xnear to its previous parent is disconnected
and replaced by the edge connecting xnew to xnear. In other
words, the tree is rewired. The cost of all state having xnew
as a new parent are also updated in updatecost function
in line 36.

IV. RESULTS AND ANALYSIS

Two scenarios are analyzed with the initial state xinit =
(0km, 0km, π/2),

Pgoal = {ξ ∈ R2 : ‖ξ − ξpip‖ < 500m},
Vgoal = {θ ∈ R : θ ∈ C(ξ, θpip, π/8)},

(12)

with ξpip = (30km, 5km) and vpip with the flight path angle
−π/12 to the ground for both scenarios.

In this paper, the bias p = 0.1 mentioned in section III-B,
the integration distance ∆s = 1km, ε = 3 steps mentioned
in section III-D and k = 10 in near vertex function.

In the following figures, Xgoal is represented as a point with
two dashed lines, Xobs is represented by space surrounded
by red dashed curves, the exploration tree is represented in
grey and thick solid curve is the solution found by the RRT*
algorithm.

In the first scenario, the obstacle is a 180◦ panning ground
radar centered at (10km,0km) with the 8km detection radius.
Fig. 4 shows one of the simulation results for scenario
1. They show the improvement of the solutions while the
number of iterations increases. Fig. 4(c) shows the shortest
length solution with 33.9km found within 300 iterations.
Results from 100 Monte-Carlo simulations show that the
first solution is acquired around 69th iteration and the
average shortest path is 34.2km long. As we can see from
the improvement of the obtained solutions over time, the
search continues after the first solution is found which is the
advantage of this algorithm.

Complexity of the problem increases in the second sce-
nario. Two obstacles are introduced to demonstrate the
capability of the RRT* algorithm. This time the obstacles
are fixed direction ground radars whose origins are (-8km,
0km) and (19km, 0km).

A simulation result for scenario 2 is shown in Fig. 5.
After 400 iterations, several solutions were found but just
two solutions are presented in Fig. 5(a). The first obtained
solution is represented in thick dotted curve and the last
obtained solution is represented in thick solid curve with
a length of 43.5km. As it is not clear that these trajectories
respect the final constraints in Fig. 5(a), Fig. 5(b) represents
the enlarged area around Xgoal which shows that the vehicle
makes a small turn at the end of the trajectory to arrive in
Xgoal while respecting the final constraints. According to the
100 Monte-Carlo simulations, the mean iteration where the
first solution is obtained is 152 and the mean path length
solution is 44.2km.

V. CONCLUSION AND PERSPECTIVES

The RRT* algorithm together with the Dubins’ paths in
heterogeneous environment is capable of finding a solution
for the trajectory planning of the aerial vehicle in vertical
plane while avoiding obstacles. The solutions keeps on
improving during the remaining time that results in finding
a near-optimal solution.

Even if the trajectory obtained from this framework is not
totally executable by the complete system because of the
simplified model. This trajectory can be used as a reference
trajectory to facilitate the control using, for example, the
MPC algorithm.

This algorithm shows promising results that the RRT*
is suitable for collision-free trajectory generation for aerial
vehicles. For an instance, the shortest Dubins’ path in het-
erogeneous environment was proven to be optimal only in
2-dimensional plane. Thus, to be able to solve this problem
using this framework, the suitable metric function in 3-
dimensional plane must be developed and can be a subject
of interest in the future work.

REFERENCES

[1] J. D. Boissonnat, A. Cérézo, and J. Leblond. Shortest paths of bounded
curvature in the plane. Technical report, Institut National de Recherche
en Informatique et en Automatique, 1991.

[2] V. H. L. Cheng and N. K. Gupta. Advanced midcourse guidance
for air-to-air missiles. Journal of Guidance, Control, and Dynamics,
9(2):135–142, 1986.

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

(a) 100 iterations

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

(b) 150 iterations

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

radar
detection
zone

horizontal distance (km)

a
lt
it
u
d
e
(k
m
)

(c) 300 iterations

Fig. 4: Exploration tree expansion and results for scenario 1

−10 −5 0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

radar
detection
zone

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(a) 400 iterations

29.2 29.4 29.6 29.8 30 30.2 30.4 30.6 30.8

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

(b) Enlarged image at Xgoal area

Fig. 5: Simulation result for scenario 2

[3] J. J. Dougherty and J. L. Speyer. Near-optimal guidance law for
ballistic missile interception. Journal of Guidance, Control, and
Dynamics, 20(2):355–362, 1997.

[4] L. E. Dubins. On curves of minimal length with a constraint on
average curvature and with presribed initial and terminal position and
tangents. American Journal of Mathematics, 79:497–516, 1957.

[5] B. Hérissé and R. Pepy. Shortestest paths for the dubins’ vehicle in
heterogeneous environments. In Proceedings of the IEEE Conference
on Decision and Control, pages 4504–4509, 2013.

[6] F. Imado and T. Kuroda. Optimal guidance system against a hypersonic
targets. In Proceedings of the AIAA Guidance, Navigation and Control
Conference, 1992.

[7] F. Imado, T. Kuroda, and S. Miwa. Optimal midcourse guidance for
medium-range air-to-air missiles. Journal of Guidance, Control, and
Dynamics, 13(4):603–608, 1990.

[8] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. IEEE Conference on
Decision and Control, pages 7681–7687, 2010.

[9] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. International Journal of Robotics Research, 30:846–
894, 2011.

[10] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[11] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[12] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378–400, 2001.

[13] C. F. Lin. Modern Navigation Guidance and Control Processing.
Prentice-Hall, Inc., 1991.

[14] C. F. Lin and L. L. Tsai. Analytical solution of optimal trajectory-

shaping guidance. Journal of Guidance, Control, and Dynamics,
10(1):61–66, 1987.

[15] J. A. Lukacs and O. A. Yakimenko. Trajectory-shape-varying missile
guidance for interception of ballistic missiles during the boost phase.
AIAA Guidance, Navigation and Control Conference and Exhibit,
2007.

[16] P. K. Menon and M. M. Briggs. Near-optimal midcourse guidance
for air-to-air missiles. Journal of Guidance, Control, and Dynamics,
13(4):596–602, 1990.

[17] B. Newman. Strategic intercept midcourse guidance using modified
zero effort miss steering. Journal of Guidance, Control, and Dynamics,
19(1):107–112, 1996.

[18] J.-W. Park, M.-J. Tank, and H.-G. Sung. Trajectory optimization for a
supersonic air-breathing missile system using pseudo-spectral method.
International Journal of Aeronautical and Space Sciences, 10:112–
121, 2009.

[19] R. Pepy, A. Lambert, and H. Mounier. Reducing navigation errors
by planning with realistic vehicle model. In Proceedings of the IEEE
Intelligent Vehicles Symposium, pages 300–307, 2006.

[20] P. Pharpatara, R. Pepy, B. Hérissé, and Y. Bestaoui. Missile trajectory
shaping using sampling-based path planning. In the IEEE/RCJ
International Conference on Intelligent Robots and Systems, pages
2533–2538, Tokyo, Japan, 2013.

[21] G. Voronoi. Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. Journal fur die Reine und Ange-
wandte Mathematik, 133:97–178, 1907.

