
HAL Id: hal-01121754
https://hal.science/hal-01121754

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dynamically Reconfigurable Multi-ASIP Architecture
for Multistandard and Multimode Turbo Decoding

Vianney Lapotre, Purushotham Murugappa Velayuthan, Guy Gogniat, Amer
Baghdadi, Michael Hübner, Jean-Philippe Diguet

To cite this version:
Vianney Lapotre, Purushotham Murugappa Velayuthan, Guy Gogniat, Amer Baghdadi, Michael Hüb-
ner, et al.. A Dynamically Reconfigurable Multi-ASIP Architecture for Multistandard and Multimode
Turbo Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24 (1),
pp.383 - 387. �10.1109/TVLSI.2015.2396941�. �hal-01121754�

https://hal.science/hal-01121754
https://hal.archives-ouvertes.fr

1

A dynamically reconfigurable multi-ASIP architecture
for multi-standard and multi-mode turbo decoding

Vianney Lapotre, Purushotham Murugappa, Guy Gogniat, Amer
Baghdadi, Michael Hübner and Jean-Philippe Diguet

Abstract—The multiplication of wireless communication standards
is introducing the need of flexible and reconfigurable multi-standard
baseband receivers. In this context, multiprocessor turbo decoders have
been recently developed in order to support the increasing flexibility
and throughput requirements of emerging applications. However these
solutions do not sufficiently address reconfiguration performance issues,
which can be a limiting factor in the future. This work presents the
design of a reconfigurable multiprocessor architecture for turbo decoding
achieving very fast reconfiguration without compromising the decoding
performances.

Keywords-Wireless communication, turbo codes, ASIP, Dynamic con-
figuration.

I. INTRODUCTION

A channel coding technique is typically associated to a variety
of parameters and configuration options (frame size, communication
channel, signal-to-noise ratio, etc). Among channel coding tech-
niques, turbo codes are frequently adopted in the recent wireless
standards to reach a very low bit error rate (BER). Furthermore,
the high throughput requirement of emerging services imposes the
efficient exploitation of different parallelism levels of the underlying
algorithms such as sub-block parallelism [1] or shuffled decoding [2]
techniques.

The introduction of contention-free interleavers in recent communi-
cation standards, such as WiMAX and LTE, enables high-throughput
implementations presented in [3]–[8]. These architectures propose
to use multiple Soft-Input Soft-Output (SISO) decoders to reach
the high throughput requirement of emerging and future standards.
These turbo decoders offer certain degrees of flexibility to adapt for
instance the number of SISO decoders, the turbo code mode, i.e.
Single Binary turbo Code (SBTC) or Double Binary turbo Code
(DBTC), or the frame size. However, these efforts do not present any
configuration infrastructures associated to these architectures in order
to support fast and efficient dynamic configuration switches. Recently,
Application Specific Instruction-set Processor (ASIP) solutions have
been investigated in order to offer architectures providing good trade-
offs in terms of flexibility, throughput and power dissipation. In [9],
a flexible and high performance ASIP model for turbo decoding was
proposed, which can be configured to support all single and double
binary turbo codes up to eight states. The architecture uses shuffled
decoding with frame sub-blocking. Afterwards, optimizations on the
proposed ASIP, called DecASIP, have been added in [10]. In [11], the
authors introduce the FlexiTreP ASIP in a multi-ASIP architecture
for turbo decoding to reach the 150 Mbps throughput requirement
of LTE. The FlexiTreP ASIP supports both SBTC and DBTC for
various standards and it is configured through an interleaver memory,
a program memory and the Dynamically Reconfigurable Channel
Code Control. In [12], the authors propose a reconfigurable mul-
tiprocessor approach in order to decode multiple data streams
in parallel. However, the configuration process of the platform is
not described. A mixed XML/SystemC simulation model of the
platform has been implemented to reach a maximum throughput

V. Lapotrre, G. Gogniat and J.-P. Diguet are with Univ. Bretagne Sud,
UMR6285, Lab-STICC, France. e-mail: firstname.lastname@univ-ubs.fr

P. Murugappa and A. Baghdadi are with Telecom Bretagne, UMR6285,
Lab-STICC, France. e-mail: firstname.lastname@telecom-bretagne.eu

M. Hübner is with Rurh-Universität, ESIT, Germany. e-mail:
michael.huebner@rub.de

Manuscript received MonthX XX, 2013; revised MonthX XX, 20XX.

of 86Mbps, which does not satisfy the throughput requirement
of recent communication standards. Furthermore, the latency
aspect and the scalability of the configuration process for a higher
number of processing elements are not discussed. In fact, previous
works provide an efficient way to reach the high performance require-
ment of emerging standards. However, the dynamic reconfiguration
aspect of these platforms is superficially addressed. Among the few
works which consider this issue, we can cite the recent architecture
presented in [13], where solutions for the reconfiguration manage-
ment of the Network-on-Chip (NoC) based multiprocessor turbo/low-
density parity-check (LDPC) decoder architecture presented in [14]
were proposed. Up to 35 processing elements (PEs) and up to 8
configuration buses have been implemented. However, the proposed
solution does not guarantee that the configuration process can be
masked by the current decoding task. Then, stopping the current
processing to configure the new configuration is unavoidable and
leads to a decoding quality loss in terms of BER. To leverage these
issues, this paper presents a novel dynamically reconfigurable turbo
decoder providing an efficient and high speed configuration process.

The rest of this paper is organized as follows. Section II gives
more insights about the motivation of this work. Section III introduces
the considered multi-ASIP architecture implementing the RDecASIP
processor. Section IV presents the flexibility features added to the
initial architecture. Section V presents the implementation results.
Finally, section VI concludes the paper.

II. MOTIVATION

When a turbo decoder is designed to support several communi-
cation standards, the decoder behavior has to be adapted in order
to respect the application requirements and to take into account the
communication channel quality. In future systems, simultaneous ap-
plications dealing with multiple communication standards have to be
considered. In this scenario, the turbo decoder deals with input frames
that have to be decoded for multiple applications that use different
communication standards or modes. Each application is associated
with specific throughput and BER objectives. Moreover, considering
a mobile terminal, the configuration associated to an application has
to be adapted temporally depending on the communication channel
quality evolution. Consequently, each frame received by the turbo
decoder is associated to a specific configuration, which takes into
account the application requirements and the channel quality. In order
to avoid extra delays between two frames associated with different
configurations, the configuration process for a frame (i.e. computing
and loading the new configuration) can be performed during the
processing of the current frame. Thus, the Maximum Configuration
Latency (MCL) for a frame k ensuring a null extra delay between
two frames is evaluated using Equation (1).

MCL(k) = NPrevFrame(k).
F rameSize(k − 1).Rc(k − 1)

Throughput(k − 1)
(1)

where k is the kth received frame, NPrevFrame(k) is the number
of consecutive frames decoded with the same configuration that
precedes the frame k, FrameSize(k − 1) is the (k − 1)th frame
size in bits, Throughput(k − 1) is the throughput requirement
associated with the (k − 1)th data frame and Rc(k − 1) is the
code rate associated with (k−1)th data frame. MCL, FrameSize and
Throughput are expressed in seconds, bits and bits/s respectively.
The maximum configuration latency critically decreases with high
throughput targeted by emerging and future wireless communication
standards. It will reach latencies around few microseconds in LTE-
advanced standard that can provide a throughput higher than 1Gbps.
Thus, emerging and future high throughput multi-mode and multi-
standard architectures will have to deal with maximum configuration

2

latencies around few microseconds. That is why, in order to face this
challenge, this paper brings contributions providing an efficient and
high speed dynamic configuration of a multi-mode and multi-standard
turbo decoder.

III. UDEC ARCHITECTURE

The proposed dynamic reconfigurable UDec turbo decoder archi-
tecture is shown in Fig. 1. It consists of two rows of RDecASIPs
[15] interconnected via two butterfly topology NoCs. Each row
corresponds to a component decoder. In the example of Fig. 1, four
ASIPs are organized in 2 component decoders respectively built with
2 ASIPs. Within each component decoder the ASIPs are connected
by two 44-bit buses for boundary state metrics exchange (not shown
in Fig. 1). The RDecASIP implements the Max-Log MAP algorithm
[16]. It supports both single and double binary convolutional turbo
codes. Moreover, sliding window technique [17], [18] is used. Large
frames are processed by dividing the frame into N windows each
with a maximum size of 64 symbols. Each ASIP can manage a
maximum of 12 windows. Each ASIP can be configured through a
26x12 configuration memory. The configuration memory contains all
parameters required to perform the initialization of the ASIP. Since
the RDecASIP is designed to work in a multi-ASIP architecture
as described in [10], it requires several parameters to deal with
a subblock of the data frame and several parameters to configure
the ASIP mode. Concerning the subblock partitioning, each ASIP
is configured with the size and the number of windows it has to
decode. Furthermore, the last window size can be different so it
corresponds to an additional parameter. In a single binary turbo code
mode, the address of the tail bits in memory, the size and the number
of windows for the tail bits have to be configured. Parameters for the
ASIP mode correspond to the location of the ASIP in the architecture,
the number of ASIPs required, the parameter which defines if the
current ASIP is in charge of tail bits or not, the target standard
(3rd Generation Partnership Project - Long Term Evolution (3GPP-
LTE), WIMAX, or Digital Video Broadcasting - Return Channel via
Satellite (DVB-RCS)) and the scaling factor for extrinsic information.
Finally, some seed values are necessary for interleaving address
generation in order to exchange information over the NoC that
connects the ASIPs of each decoder component. All these parameters
are required for a configuration of an ASIP within the platform. The
entire configuration load represents 253 bits. Moreover, RDecASIP
is associated with 3 memory banks of size 24x256 used to store the
input channel Log-Likelihood Ratio (LLR) values. There are also 3
banks of size 30x256 used for extrinsic information storing. Each
ASIP is further equipped with two 88x32 memories, which hold 11-
bit state metric values and a 16x128 program memory that stores
a unified program for turbo decoding modes [15]. To increase the
use of parallelism degree, shuffled decoding is used by employing
multiple SISO decoders grouped into natural and interleaved domains.
Finally, the extrinsic information generated is sent to the other domain
through the Butterfly NoC interconnection.

The platform is dynamically configured through a dedicated bus-
based communication infrastructure shown in Fig. 1 that consists
in a pipeline unidirectional bus implementing incremental burst,
multicast and broadcast mechanisms. It can be split in three functional
blocks: Master Interface (MI), Slave Interface (SI), and Selector.
Each configuration memory is connected to the bus through a SI.
The configuration manager deals with the configuration generation
which is based on internal decisions and external information and
commands. The MI provides an interface allowing the connection of
the configuration manager to the bus. The SI provides an interface
between the bus and the configuration memory. The Selector provides
a simple and efficient solution to select, at run-time, RDecASIPs that

Butterfly
NoCs

N
o

C
 in

te
rface

N
o

C
 in

te
rface N

o
C

 in
te

rf
ac

e
N

o
C

 in
te

rf
ac

e

RDecASIP
 0

RDecASIP
2

Extrinsic
Memory

Program
Memory

Config
Memory

Input
Memory

Cross metric
Memory

RDecASIP
 1

Extrinsic
Memory

Program
Memory

Config
Memory

Input
Memory

Cross metric
Memory

Extrinsic
Memory

Program
Memory

Config
Memory

Input
Memory

Cross metric
Memory

RDecASIP
3

Extrinsic
Memory

Program
Memory

Config
Memory

Input
Memory

Cross metric
Memory

Input interface

Noisy symbols
from demapper

Platform controller

To ASIPs To NoC

Config
Memory

Control flow Data flow Configuration flow

Mem.@

Data

T_enable

Dest. @

Selector
Slave Interface

(SI_1)
Slave Interface

(SI_3)
Slave Interface

(SI_4)
Slave Interface

(SI_0)
Slave Interface

(SI_2)

Master Interface
(MI)

T_init

D_enable

Data

Base. @

Dest. @ Configuration
Manager

26

8

8

26

8

8

Fig. 1. Reconfigurable UDec system architecture example with 4 ASIPs

are targeted by the next configuration data. This solution allows the
transfer of a data into the configuration memory with a latency of 5
clock cycles. Moreover, thanks to the pipeline nature of the transfers,
the configuration infrastructure is able to provide one data per clock
cycle to the destination. The rest of the paper focuses on the
reconfiguration process of the proposed multi-ASIP architecture
through methods which bring more flexibility and more efficiency
to the UDec platform. A throughput analysis of the UDec
platform considering a stopping-free dynamic reconfiguration can
be found in [19].

IV. FLEXIBLE UDEC ARCHITECTURE

This section presents techniques that we propose in order to
increase the dynamic configuration ability of the UDec Architecture.
In a multi-mode and multi-standard context, the requirements in terms
of throughput and BER evolve dynamically. Thus, depending on these
requirements, the number of active ASIPs have to be adapted at
run-time. Moreover, in order to deal with hot spot and potentially
faulty cores management for the UDec architecture, the location of
the activated ASIPs has to be dynamically defined. In the initial UDec
architecture, the number of ASIPs used for a given configuration is
fixed at design time and is equal to the total number of implemented
cores. Sections IV-A and IV-B present solutions in order to bring this
new flexibility.

A. Ring buses adaptation

The ring buses consist of direct connections between the ASIPs
allowing to exchange boundary state metrics. So, when the number

3

RDecASIP

0

RDecASIP

1

RDecASIP

2

RDecASIP

3

(a) 2 selected
ASIPs

RDecASIP

0

RDecASIP

1

RDecASIP

2

RDecASIP

3

(b) 3 selected
ASIPs

RDecASIP

0

RDecASIP

1

RDecASIP

2

RDecASIP

3

4

Selection Vector

Selection vector(0)

Selection vector(1)

Selection vector(2)

Selection vector(3)

(c) Flexible architecture illustrated for one
ring bus

Fig. 2. Ring buses dynamic adaptation examples and architecture

and the location of the selected ASIPs dynamically evolve, the loop
connections between the last and the first selected ASIPs have to be
adapted. Fig. 2 shows different examples of the ring buses adaptation
when 4 ASIPs are implemented in each component decoder. Fig. 2a
shows the case where two ASIPs are selected to perform the decoding
task. The location of the first ASIP has been shifted from RDecASIP
0 to RDecASIP 1. Fig. 2b shows the case where three ASIPs are
selected and the location of the first ASIP has been shifted from
RDecASIP 0 to RDecASIP 2. In this case, the last ASIP of the
component decoder is the RDecASIP 0 and the RDecASIP 1 has
to be bypassed.

The configuration of the ring buses is done using two parameters.
The number of selected ASIPs (NumASIPs) in each component
decoder reflecting the level of sub-block parallelism and the shift
value (ASIPShift) determining which ASIP is the first selected
ASIP. Considering the configuration example presented in Fig. 2a,
NumASIPs = 2 and ASIPShift = 1 while NumASIPs = 3
and ASIPShift = 2 for the example of Fig. 2b. Based on these two
parameters, a selection vector is computed. Each bit of this vector
corresponds to one RDecASIP of the component decoder. The same
selection vector is used for the two component decoders of the plat-
form creating a symmetry. The selection vector drives multiplexers
that determine the ring buses configuration as shown in Fig. 2c where
control signals are presented in dotted lines considering one ring bus
for clarity reasons.This proposed Ring buses adaptation requires
the implementation of few additional logic gates and multiplexers
as illustrated in Fig. 2c. Very limited area overhead is implied.
For the example of Fig. 2c with 4 RDecASIPs in each component
decoder, the area overhead related to the two corresponding
Ring buses is 0.00229mm2 in 65nm CMOS technology. This
overhead represents 0.3% of the core area of the 4 RDecASIPs
(4 x 0.187mm2 [15]).

B. Butterfly topology NoCs adaptation

The extrinsic information transfers through the NoC are also im-
pacted when the location of the selected ASIPs changes dynamically.
Indeed, the routing information for the transfer is computed by the
network interface associated with each ASIP depending on a global
address of the symbol generated by the ASIP. Fig. 3 illustrates the
routing principle for the considered Butterfly topology NoC. This
topology allows a unique path in the network between each pair of
nodes (source to destination). For each router, there are two inputs and
two outputs. A single bit is used in a router to select the appropriate
output: 0 for the first output, 1 for the second. In the proposed
architecture, the routing information has to be adapted depending
on the location of the ASIPs determined by the ASIPShift value

R00

R10

R20

R30

R01

R11

R21

R31

R02

R12

R22

R32

100

0

1

2

3

4 = 0b100

5

6

7

0

1

0

1

0

1

NI
TX

NI
TX

NI
TX

NI
TX

Extr.

mem

Extr.

mem

0

1

2

3

6

7

RDecASIP 4

RDecASIP 5

RDecASIP 6

RDecASIP 7

4= 0b100

5

Extr.

mem

Extr.

mem

NI
RX

NI
RX

NI
RX

NI
RX

RDecASIP 0

RDecASIP 1

RDecASIP 2

RDecASIP 3

Fig. 3. Butterfly topology routing principle

and the level of sub-block parallelism determined by the number of
selected RDecASIPs for the configuration in each component decoder
(NumASIPs).

The routing information is generated from a global address (G@)
generated by the ASIP. As an example, Table I shows the routing
information corresponding to the configurations for 2 selected ASIPs
for both SBTC and DBTC modes. In this example the ASIPShift
value is equal to 0. When two RDecASIPs are selected in each
component decoder, the frame which has to be decoded is split and
each RDecASIP is associated with half of the frame. Thus two cases
are met as shown in Table I. When the global address generated by the
ASIP is lower than the frame size (FS) divided by two, the extrinsic
information has to be sent to the first ASIP of the second component
decoder while it has to be sent to the second ASIP when G@ is
between FS/2 and FS. Considering an architecture configuration
implementing eight RDecASIPs, i.e. four in each component decoder,
three bits are necessary to route the information through three routers.
The last bit of the routing information depends on the turbo code
mode. In DBTC mode a message is split, so one half is sent with the
last stage route to 0 and the other half with the last stage route to
1. That is why the routing information is presented in the form ”00
& 0 and 1” in Table I. In SBTC mode, the route of the last stage is
determined by the LSB of the global address. That is why the routing
information is presented in the form ”00 & 0 or 1” in Table I. If the
global address is odd, the route of the last stage is 1 while it is 0
when the global address is even.

The extrinsic information has to be stored in the extrinsic memory
associated with each RDecASIP. Thus a local address (Local @) is
computed depending on the global address computed by the emitter
RDecASIP and the level of sub-block parallelism as shown in Table
I. In DBTC mode, one complete extrinsic information for one symbol
is stored in each memory address. Thus depending on the level of
sub-block parallelism, the extrinsic information is spread over the
extrinsic memories of each RDecASIP from the local address 0
to FS

NumASIPs
where NumASIPs is the number of the selected

RDecASIPs in each component decoder. In SBTC mode, extrinsic
information for two symbols is stored in each memory address.
Thus depending on the level of sub-block parallelism, the extrinsic
information is spread over the extrinsic memories of each RDecASIP
from the local address 0 to FS/NumASIPs

2
.

When the ASIPShift value differs from 0, the routing information
can be computed as shown in Fig. 4. To obtain the final routing
information taking into account the ASIPShift value, the initial routing
information is first added with 2 × ASIPShift (since each router
has two output ports) and then, a modulo operator is used in order to
ensure a loop-like configuration where RDecASIP 0 and RDecASIP 4
can logically follow the RDecASIP 3 and RDecASIP 7 respectively.

These flexible parameters are introduced in the 26-bit width
configuration memory associated with the platform controller. It also

4

DBTC mode SBTC mode
Routing info. Local @ Routing info. Local @

0 ≤ G@ < FS
2

00 & 0 and 1 G@ 00 & 0 or 1 G@
2

FS
2

≤ G@ < FS 01 & 0 and 1 G@ - FS
2

01 & 0 or 1 (G@−FS/2)
2

TABLE I
ROUTING INFORMATION FOR A 2 SELECTED ASIPS CONFIGURATION

RDecASIP
G@

Routing information

generation

Frame Size (FS)

NumASIPs

+

2 x ASIPShift

modulo

Final Routing

information

NITX

Number of RDecASIPs

implemented in each

component decoder

Fig. 4. Complete routing information generator
Nb. Transfer latency

ASIPs FPGA1 125MHz ASIC 2 500MHz
in ns in clock cycles in ns in clock cycles

4 1 032 129 86 43
8 1 320 165 110 55
16 1 896 237 158 79
32 3 048 381 254 127
64 5 352 669 446 223

128 9 960 1245 830 415

TABLE II
ESTIMATED CONFIGURATION TRANSFER TIME IN ns FOR AN ASIC

IMPLEMENTATION (1 MEASURED - 2 ESTIMATED)

contains some parameters which are used to spread the input symbols
over the input memories of each activated ASIP. Considering all con-
figuration memories of the platform, a configuration represents 286
bits per activated ASIP plus 182 bits for the platform configuration
memory.

V. IMPLEMENTATION RESULTS

In order to evaluate the configuration latency of the proposed archi-
tecture, a hardware prototype of the configuration infrastructure has
been developed on a Xilinx XUPV5 platform implementing a Virtex
5 LX110T field-Programmable Gate Array (FPGA). Configuration
latencies were evaluated for several numbers of RDecASIPs. For
this purpose, a MicroBlaze processor connected to the configuration
infrastructure through a Xilinx Fast Simplex Link (FSL) is used to
generate and transfer the configuration information and the design
frequency is set to 125 MHz. Table II shows the configuration
transfer latencies in nanoseconds and in number of clock cycles
for different numbers of RDecASIPs being reconfigured. More-
over, estimations for an 1pplication-Specific Integrated Circuit
(ASIC) implementation targeting 65nm CMOS technology at 500
MHz are provided. The maximum speedup of 12 is reached thanks
to a higher clock frequency and by removing the FSL link between
the processor and the configuration infrastructure. Results show that
up to 128 RDecASIP can be configured in 9960ns and 830ns for
FPGA and ASIC implementation respectively.

In the recent related work proposed in [13], where the configuration
infrastructure consists of several buses each connected to a group of
4 PEs, up to 8 buses have been implemented to configure 35 PEs.
However, the way the buses are driven is not described in details in
[13] but the management of the 8 buses in parallel should increase the
complexity of the configuration manager used to load new configu-
rations. Results of Table III compare the proposed solution with both
initial work and the work presented in [13] where the clock frequency

Initial Proposed solution [13]
UDec FPGA ASIC ASIC
[10] (65nm) (90nm)

Supported TC3

TC3 TC3

codes LDPC LDPC
Configuration not bus-based bus-basedinfrastructure available

bus - 125 MHz 500 MHz 200 MHzfrequency
Number of - 1 8buses
Number of - 128 35PEs

Max. config. - 9 960 ns1 830 ns2 44 275 ns2latency

TABLE III
CONFIGURATION ARCHITECTURE AND LATENCY COMPARISON

(1MEASURED - 2 ESTIMATED - 3 TC=TURBO CODES)

of each bus is set to 200 MHz. Moreover, in order to estimate the
maximum configuration latency of the architecture presented in [13],
we assume that a one clock cycle latency is necessary for each
configuration data that has to be transfered. Moreover, the maximum
configuration latency is computed considering the maximum number
of PEs and the maximum configuration load per PE (i.e. 1771
memory lines in [13]). The high maximum configuration load per PE
of [13] comes from the necessity to load interleaving tables in each
PE while this information is generated at run-time in the RDecASIP
processor. Compared with [13], the proposed solution guarantees
configuration latency below 10µs and 1µs in FPGA and ASIC
implementation respectively while 44µs are necessary to configure
35 PEs in the ASIC implementation presented in [13] using a multi-
buses approach.

Both works presented in [10] and [13] support TC and
LDPC (Low-Density Parity-Check) codes. In LDPC mode, data
exchange can be performed through a global ring bus that
connects all the ASIPs of the platform as presented in [10]. It
is worth noting that methods proposed in this paper are fully
compatible with the integration of LDPC mode. In particular,
the ring buses adaptation method presented in Subsection IV-A
can be adapted for LDPC mode by adding a link between both
groups of ASIPs of the two component decoders in order to
provide a global ring bus. At the processor level, the configuration
and program memories can be organized in order to take
advantage of broadcast mechanism provided by the configuration
infrastructure since the major part of configuration parameters
for LDPC mode is identical for all selected ASIPs. Indeed,
the main configuration parameters for LDPC mode concern
the parity check matrix configuration and content, which are
identical for all ASIPs.

VI. CONCLUSION

The multiplication of communication standards leads to complex
scenarios where the configuration process becomes a key point in
order to guarantee high performances. In this context, this work
tackles the dynamic configuration issues of multiprocessor platform

5

for turbo decoding in order to respect hard constraints imposed by
emerging multi-mode and multi-standard scenario. The configuration
process of the entire platform implementing 128 RDecASIPs can be
performed in less than 10µs with FPGA implementation. Moreover,
ASIC synthesis results considering up to 128 RDecASIPs have
demonstrated that a configuration transfer latency below 1µs is
reachable providing an efficient solution in order to support dynamic
configuration in the multi-mode and multi-standard scenario.

REFERENCES

[1] O. Muller, A. Baghdadi, and M. Jezequel, “Parallelism efficiency in
convolutional turbo decoding,” EURASIP Journal on Advances in Signal
Processing, pp. 927–920, 2010.

[2] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans-
actions on Communications, vol. 53, no. 2, pp. 209–213, 2005.

[3] C.-C. Wong and H.-C. Chang, “Reconfigurable turbo decoder with
parallel architecture for 3GPP LTE system,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 57, no. 7, pp. 566–570,
2010.

[4] C.-H. Lin, C.-Y. Chen, E.-J. Chang, and A.-Y. Wu, “Reconfigurable
parallel turbo decoder design for multiple high-mobility 4g systems,”
Journal of Signal Processing Systems, vol. 73, no. 2, pp. 109–122, 2013.

[5] Y. Sun and J. Cavallaro, “A flexible ldpc/turbo decoder architecture,”
Journal of Signal Processing Systems, vol. 64, no. 1, pp. 1–16, 2011.

[6] C.-H. Lin, C.-Y. Chen, and A.-Y. Wu, “Area-efficient scalable map
processor design for high-throughput multistandard convolutional turbo
decoding,” Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, vol. 19, no. 2, pp. 305–318, Feb 2011.

[7] G. Wang, H. Shen, Y. Sun, J. Cavallaro, A. Vosoughi, and Y. Guo,
“Parallel interleaver design for a high throughput hspa + /lte multi-
standard turbo decoder,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 61, no. 5, pp. 1376–1389, May 2014.

[8] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
turbo code decoder,” in proc. of the Design, Automation and Test in
Europe Conference & Exhibition (DATE), 2010, pp. 1420–1425.

[9] O. Muller, A. Baghdadi, and M. Jezequel, “Asip-based multiprocessor
soc design for simple and double binary turbo decoding,” in proc. of the
Design, Automation and Test in Europe Conference& Exhibition (DATE),
vol. 1, 2006, pp. 1–6.

[10] P. Murugappa, A.-K. R., A. Baghdadi, and M. Jézéquel, “A flexible
high throughput multi-asip architecture for ldpc and turbo decoding,” in
Proc. of Design, Automation and Test in Europe Conference & Exhibition
(DATE), 2011, pp. 1–6.

[11] C. Brehm, T. Ilnseher, and N. Wehn, “A scalable multi-asip architecture
for standard compliant trellis decoding,” in proc. of the International
SoC Design Conference (ISOCC), 2011, pp. 349–352.

[12] S. Kunze, E. Matus, G. Fettweis, and T. Kobori, “A ”multi-user”
approach towards a channel decoder for convolutional, turbo and ldpc
codes,” in Proc. of the IEEE Workshop on Signal Processing Systems
(SIPS), Oct 2010, pp. 386–391.

[13] C. Condo, M. Martina, and G. Masera, “Vlsi implementation of a multi-
mode turbo/ldpc decoder architecture,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 60, no. 6, pp. 1441–1454, June
2013.

[14] ——, “A network-on-chip-based turbo/ldpc decoder architecture,” in
Proc. of the Design, Automation and Test in Europe Conference &
Exhibition (DATE), 2012, pp. 1525–1530.

[15] V. Lapotre, P. Murugappa, G. Gogniat, A. Baghdadi, J.-P. Diguet, J.-N.
Bazin, and M. Huebner, “Optimizations for an Efficient Reconfiguration
of an ASIP-Based Turbo Decoder,” in Proc. of the IEEE International
Symposium on Circuits and Systems (ISCAS), 2013.

[16] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal map decoding algorithms operating in the log domain,” in
proc. of the IEEE International Conference on Communications (ICC),
vol. 2, 1995, pp. 1009–1013.

[17] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of
map turbo decoder algorithms,” IEEE Transactions on Very Large Scale
Integration (VLSI) System, vol. 9, no. 2, pp. 305–312, 2001.

[18] N. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-output
decoding algorithms in iterative decoding of turbo codes,” tech. rep.,
JPL TDA Progress report, 1996.

[19] V. Lapotre, P. Murugappa, G. Gogniat, A. Baghdadi, M. Hubner, and
J.-P. Diguet, “Stopping-free dynamic configuration of a multi-asip turbo
decoder,” in Digital System Design (DSD), 2013 Euromicro Conference
on. IEEE, 2013, pp. 155–162.

