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LONG TIME BEHAVIOUR OF A HAWKES PROCESS-BASED
LIMIT ORDER BOOK

FRÉDÉRIC ABERGEL AND AYMEN JEDIDI

Abstract. Hawkes processes provide a natural framework to model de-
pendencies between the intensities of point processes. In the context
of order-driven financial markets, the relevance of such dependencies
has been amply demonstrated from an empirical, as well as theoretical,
standpoint. In this work, we build on previous empirical and numerical
studies and introduce a mathematical model of limit order books based
on Hawkes processes with exponential kernels. After proving a general
stationarity result, we focus on the long-time behaviour of the limit or-
der book and the corresponding dynamics of the suitably rescaled price.
A formula for the asymptotic (in time) volatility of the price dynamics
induced by that of the order book is obtained, involving the average of
functions of the various order book events under the stationary distribu-
tion.
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1. Introduction

Since their introduction, Hawkes processes have been applied to a wide
range of research areas, from seismology in the pioneering work [24] to
credit risk, financial contagion and more recently, to the modelling of mar-
ket microstructure. Among the growing litterature in this latter field, [4,
3, 5] or [13, 12] introduce and study models where the joint price and or-
der flow dynamics are driven by Hawkes processes. Several recent papers
[23, 19, 28] are concerned with the stability of Hawkes processes calibrated
to price dynamics, and [20] addresses the optimal execution strategies when
the market orders are modelled via Hawkes processes. Closer in spirit to the
present work, [34, 33] are empirical and numerical studies of Hawkes pro-
cesses modelling limit order books, and [36] is a stylized order book model
model driven by Hawkes processes.
As it turns out, the relevance of Hawkes processes for limit order book mod-
elling is amply demonstrated by several empirical properties of the order
flow of market and limit orders at the microscopic level, in particular:

• time clustering: order arrivals are highly clustered in time, see e.g.
[9][13];
• mutual excitation: order flow exhibit non-negligible cross-dependencies.

For instance, as documented in [34][2][17], market orders excite
limit orders, and limit orders that change the price excite market
orders.

At the microscopic level, point process-based microstructure models cap-
ture, by construction, the intrinsic discreteness of prices and volumes. In
this respect, they offer a natural framework in which to model the finer
scales properties of order-driven markets. They do however exhibit a level
of complexity that hides some more macroscopic properties of the markets.
A question of interest in this context is then the microscopic-to-macroscopic
transition in the price dynamics. This strand of research has attracted a lot
of interest of late [1, 5, 10, 26, 6, 36], and the present work is a contribution
to the domain: by casting a Hawkes process-based limit order book model
into a Markovian setting and using techniques from the ergodic theory of
Markov processes, we show that the order book is ergodic and leads to a
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diffusive behaviour of the price at large time scales. Furthermore, we pro-
vide formulae for the asymptotic trend and variance as average of functions
of the state variables under the stationary distribution.
The paper is organized as follows: Section 2 recalls some well-known facts
about Hawkes processes with exponential kernels, while Section 3 describes
the limit order book model we consider. In Section 4, the ergodicity of the
limit order book is proven under reasonable assumptions, and the main re-
sults on the price dynamics are presented in Section 5. Finally, Section 6
contains a short summary and directions for future research.

2. Hawkes processes

We briefly recall in this section several classical results on multivariate
Hawkes processes, and refer the interested reader to [7][14][15] for an in-
depth treatment of point processes.
Let N = (N1, ...,ND) be a D-dimensional point process with intensity vector
λ = (λ1, ..., λD).

Definition 2.1. We say that N = (N1, . . . ,ND) is a multivariate Hawkes pro-
cess with exponential kernel if there exists (λi

0)16i6D ∈
(
R∗+

)D, (αi j)16i, j6D ∈

(R+)D2
and (βi j)16i, j6D ∈

(
R∗+

)D2
such that the intensities satisfy the following

set of relations:

λm
t = λm

0 +

D∑
j=1

αm j

∫ t

0
e−βm j(t−s)dN j

s

for 1 6 m 6 D.

The particular choice of exponential kernels is motivated by an important
result that we now recall:

Proposition 2.1. Define the processes µi j as

µ
i j
t = αi j

∫ t

0
e−βi j(t−s)dN j

s , 1 ≤ i, j ≤ D,

and let µ = {µi j}1≤i, j≤D. Then, the process (N,µ) is Markovian.

Proof. Lemma 6 in [30] gives a proof of this result. �
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2.0.1. Stationarity. Extending the early stability and stationarity result in
[25], Theorem 5 in [30] proves a general stability result for the multivariate
Hawkes processes just introduced. In fact, under the slightly more strin-
gent condition of irreducibility, one can show the existence of a Lyapunov
function for such a process, that is, a nonnegative, real-valued function
V := V(µ) that goes to ∞ as µ → ∞ and such that LV 6 −γV for some
γ > 0, where L is the infinitesimal generator associated to the Hawkes pro-
cess.
The existence of such a function actually implies exponential convergence
towards the stationary distribution, based on the concept of V-geometric er-
godicity of [32], see e.g. [1].
We summarize these results in the

Proposition 2.2. Let the matrix A be defined by

Ai j =
α ji

β ji
, 1 ≤ i, j ≤ D.

Assume furthermore that A is irreducible and that its spectral radius ρ(A)
satisfies the condition

ρ(A) < 1. (1)

Then, there exists a (unique) multivariate point process N = (N1, . . . ,Nm)
whose intensity is specified as in Definition 2.1. Morevover, this process is
stable, and converges exponentially fast in the total variation norm towards
its unique stationary distribution.

Note that a sufficient condition for irreducibility is that ∀i, j, αi j > 0.
Appendix A provides an explicit construction of Lyapunov functions of ar-
bitrary high polynomial growth at infinity for Hawkes processes.

3. Limit order book driven by Hawkes processes

The limit order book model under scrutiny is presented in details in this
section. After describing the model setup, in particular the processes driv-
ing the arrivals of orders of various types, the dynamics of the order book
is written down and the infinitesimal generator of the associated Markov
process is worked out.
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3.1. Model setup.

3.1.1. Order book representation. Each side of the order book is supposed
to be fully described by a finite number of limits K, ranging from 1 to K
ticks away from the best available opposite quote. We use the notation

(a(t); b(t)) := (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) ,

where a := (a1, . . . , aK) represents the ask side of the order book, ai being
the number of shares available i ticks away from the best opposite quote;
and similarly for b := (b1, . . . , bK) on the bid side. Note that, contrarily
to the representations used in [11] or [35], see also [21] for an interesting
discussion, we adopt as in [1] a finite moving frame, since it reflects more
faithfully the limit order books seen by traders on their screens. For this
reason, a,b will sometimes be referred to as the visible limits.
The quantities ai, bi’s are supposed as in [1] to live in the discrete space
qZ, where q ∈ N∗ is the minimum order size on each specific market (the
lot size), but the results presented in this work are valid in the more general
case of real-valued ai, bi’s. Some extra-care is necessary when writing down
the order book dynamics (Equations (5)(6) below), but no essential change
is required. In particular, the results concerning ergodicity and long-time
behaviour, obtained via the theory developped in [31], are valid in a locally
compact state space.

The cumulative depths up to level i are defined by

A(i) :=
i∑

k=1

ak (2)

B(i) :=
i∑

k=1

|bk|, (3)

and their generalized inverse functions are also introduced:

A−1(x) := inf{p :
p∑

j=1

a j > x}

B−1(x) := inf{p :
p∑

j=1

|b j| > x}.
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In particular, the (common) index iS corresponding to the spread measured
in numbers of ticks is given by

iS := A−1(0) = B−1(0). (4)

The boundary conditions described below will ensure that iS < ∞.

3.1.2. Boundary conditions. Constant boundary conditions are imposed out-
side the moving frame of size 2K: every time the moving frame leaves a
price level, the number of shares at that level is set to a∞ or b∞, depending
on the side of the book. Our choice of a finite moving frame and constant
boundary conditions has three motivations: firstly, it assures that the order
book does not become empty and that the best ask (resp. best bid) price
PA (resp. PB) is always defined. Secondly, it keeps the spread S and the
increments of PA, PB bounded - this will be important when addressing the
scaling limit of the price. Thirdly, it helps make the order book model Mar-
kovian, as we do not keep track of the price levels that have been visited,
and then left, by the moving frame at some prior time.
Figure 1 is a representation of the order book using the above notations.

3.1.3. Arrival of orders. A Markovian Hawkes process as in Definition 2.1
drives the arrivals of new market and limit orders:

• M±(t): arrival of new buy or sell market order, with intensity λM+

and λM−;
• L±i (t): arrival of a new sell or buy limit order at level i, with intensity
λL±

i .

Note that buy limit orders L−i (t) arrive below the ask price PA(t), and sell
limit orders L+

i (t) arrive above the bid price PB(t).
As explained in the introduction, the motivation for this model comes from
the empirically observed fact that there exists a definite interplay between
liquidity taking and providing on order-driven markets. Hawkes processes
offer a very natural, analytically tractable and rather intuitive framework to
model such an interplay.
The case of cancellation orders is a little different. Depending on the data
that are made available by exchanges or data providers, empirical studies
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Figure 1. Order book dynamics: in this example, K = 9, q = 1,
a∞ = 4, b∞ = −4. The shape of the order book is such that
a = (0, 0, 0, 0, 1, 3, 5, 4, 2) and b = (0, 0, 0, 0,−1, 0,−4,−5,−3).
The spread in ticks is given by iS = 5. Assume that a sell market
order arrives, then a,b, iS become a′ = (0, 0, 0, 0, 0, 0, 1, 3, 5), b′ =

(0, 0, 0, 0, 0, 0,−4,−5,−3) and i′S = 7. Assume instead that a new
buy limit order arrives one tick away from the best ask price, then
a′ = (1, 3, 5, 4, 2, 4, 4, 4, 4), b′ = (−1, 0, 0, 0,−1, 0,−4,−5,−3)
and i′S = 1.

on the arrival of cancellations are more difficult to perform than those cor-
responding to market and limit orders. The minimal hypothesis of an ex-
ponential lifetime for limit orders that are not executed therefore leads us
to model as in [1][35] the arrival of cancellations by a doubly stochastic
Poisson process with proportional intensity:

• C±i (t): cancellation of a limit order at level i, with intensity λC+

i ai

and λC−
i |bi|,

where the superscripts “+” and “−” respectively refer to the ask and bid side
of the book.
Actually, it could be interesting and relevant to allow all kinds of orders,
including cancellations, to interact with one another1. This extension and
some of its consequences are discussed in Remark 4.1.

1We thank one of the anonymous referees for this suggestion.
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3.2. Dynamics of the limit order book. The dynamics of the limit order
book is governed by the following set of SDE’s

dai(t) = −1{ai(t),0} (q − A(i − 1))+ dM+(t) + qdL+
i (t) − qdC+

i (t)

+
(
JM−(a) − a

)
i
dM−(t) +

K∑
i=1

(
JL−i (a) − a

)
i
dL−i (t)

+

K∑
i=1

(
JC−i (a) − a

)
i
dC−i (t) (5)

and

dbi(t) = 1{bi(t),0} (q − B(i − 1))+ dM−(t) − qdL−i (t) + qdC−i (t)

+
(
JM+

(b) − b
)

i
dM+(t) +

K∑
i=1

(
JL+

i (b) − b
)

i
dL+

i (t)

+

K∑
i=1

(
JC+

i (b) − b
)

i
dC+

i (t) (6)

(remember that, by convention, the bi’s are non-positive).
In Equations (5)(6), the first three terms on the right-hand side describe the
evolution of the quantity available at a given limit i under the influence of
the three type of events that can directly affect it:

• a buy market order decreasing by an amount q the first non-zero
limit on the ask side, possibly hitting the liquidity reservoir if all
visible limits are empty (and similarly on the bid side);
• a new limit order increasing by an amount q the available quantity;
• a cancellation order decreasing by an amount q the available quan-

tity.

By assumption, the intensity of the point process triggering a cancellation is
0 when the corresponding quantity is 0, avoiding all inconsistencies. How-
ever, for market orders, no such assumption is made, hence the use of the
indicator function. Note that this formulation holds without change in the
case of varying order sizes.

As for the J’s, they are shift operators corresponding to the renumbering
of the ask side following an event affecting the bid side of the book and
vice-versa. For instance, the shift operator corresponding to the arrival of a
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sell market order dM−(t) of size q is

JM−(a) =

0, 0, . . . , 0︸      ︷︷      ︸
k times

, a1, a2, . . . , aK−k

 (7)

with

k = inf{p :
p∑

j=1

|b j| > q} − inf{p : |bp| > 0}

= A−1(q) − iS .

Equation (7) is the mathematical formulation of the fact that the limit order
book always has exactly K visible limits, and that the reference price for
the ask side of the book possibly changes if a sell market order eats up
all the available liquidity at the best bid price. Similarly, a new buy limit
order within the spread k ticks above the previous best bid price - so that
k := iS − i > 0 - will shift the ask side according to

JL−i (a) =

a1+k, a2+k, . . . , aK , a∞, ..., a∞︸     ︷︷     ︸
k times

 ,
see Figure 1 for a graphical representation. Similar expressions are readily
derived for the other events affecting the order book.

3.3. The infinitesimal generator. The limit order book model just intro-
duced is naturally cast under the form of a D-dimensional Markov process
(a; b;µ) using the decomposition of the intensities of the Hawkes processes
presented in Section 2. Here, D = (2K + 2)2 + 2K is the dimension of the
state space.
Its infinitesimal generator is now worked out - in fact, the following result
holds true:

Lemma 3.1. The infinitesimal generator associated to the limit order book
process is the operator L defined for functions F : (a; b;µ) → F(a; b;µ)
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that are of class C1 in their last argument, by

LF(a; b;µ) = λM+
(
F

(
[ai − (q − A(i − 1))+]+; JM+

(b);µ + ∆M+

(µ)
)
− F

)
+

K∑
i=1

λL+

i

(
F

(
ai + q; JL+

i (b);µ + ∆L+
i (µ)

)
− F

)
+

K∑
i=1

λC+

i ai

(
F

(
ai − q; JC+

i (b);µ
)
− F

)
+ λM−

(
F

(
JM−(a); [bi + (q − B(i − 1))+]−;µ + ∆M−(µ)

)
− F

)
+

K∑
i=1

λL−
i

(
F

(
JL−i (a); bi − q;µ + ∆L−i (µ)

)
− F

)
+

K∑
i=1

λC−
i |bi|

(
F

(
JC−i (a); bi + q;µ

)
− F

)
−

D∑
i, j=1

βi jµi j
∂F
∂µi j

. (8)

Proof. By direct computations as in [1]. �

In order to ease the already cumbersome notations, we have written F(ai; b;µ)
instead of F(a1, . . . , ai, . . . , aK; b;µ). The notation ∆(...)(µ) stands for the
jump of the intensity vector µ corresponding to a jump of the process N(...),
see Definition 2.1.
The operator L is a combination of

• standard difference operators corresponding to the arrival and can-
cellation of orders at each limit;
• shift operators expressing the moves of the origins of the reference

frames;
• drift terms coming from the mean-reverting behaviour of the inten-

sities of the Hawkes processes between jumps.

Note that, as already mentioned, the operator in (8) corresponds to the case
of the discrete state-space for the available quantities; some trivial but no-
tationally cumbersome modifications are necessary in order to account for
the case of general real-valued quantities ai, bi’s and variable order sizes q.
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4. Stability of the order book

In this section, we study the long-time behaviour of the limit order book.
Our main result is stated in the

Proposition 4.1. Under the standing assumptions, in particular those of
Proposition 2.2 and the proportional cancellation rate assumption, the limit
order book (a, b,µ) is an ergodic process. It converges exponentially fast
towards its unique stationary distribution.

Proof. Given the existence of the Lyapunov function, see Lemma 4.1 below,
and the geometric drift condition (10), the result is proven exactly as in [1]
using Theorem 7.1 in [31]. �

The main technical result of this section is the following

Lemma 4.1. For η > 0 small enough, the function V defined by

V(a; b;µ) =

K∑
i=1

ai +

K∑
i=1

|bi| +
1
η

(2K+2)2∑
i, j=1

δi jµi j ≡ V1 +
1
η

V2 (9)

with V1 := V(a; b; 0) and V2 := V(0; 0;µ), is a Lyapunov function satisfying
a geometric drift condition

LV 6 −ζV + C, (10)

for some ζ > 0 and C ∈ R. The coefficients δi j’s are defined in (22) in
Appendix A.

Proof. First specialize V2 to be identical - up to a change in the indices
- to the function defined by (23) in Appendix A. Regarding the "small"
parameter η > 0, it will become handy as a penalization parameter, as we
shall see below.
Thanks to the linearity of L, there holds

LV = LV1 +
1
η
LV2.
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The first term LV1 is dealt with as in [1]:

LV1 ≤ −(λM+

+ λM−)q +

K∑
i=1

(
λL+

i + λL−
i

)
q −

K∑
i=1

(
λC+

i ai + λC−
i |bi|

)
q

+

K∑
i=1

λL+

i (iS − i)+a∞ +

K∑
i=1

λL+

i (iS − i)+|b∞| (11)

≤ −
(
λM+

+ λM−
)

q +
(
ΛL− + ΛL+

)
q − λCqV1(x)

+ K
(
ΛL−a∞ + ΛL+

|b∞|
)
, (12)

where

ΛL± :=
K∑

i=1

λL±
i and λC := min

1≤i≤K
{λC±

i } > 0.

Computing LV2 yields an expression identical to that obtained in Appendix
A:

LV2 =
∑

i, j

λ
j
0δi jαi j + (κ − 1)

∑
j,k

εkµ jk,

so that there holds

LV = LV1 +
1
η
LV2 6 −λ

CqV1 −
γ

η
V2 −G.µ + C,

where γ is as in Equation (24), G.µ is a compact notation for the linear
form in the µi j’s obtained in (12), and C is some constant. Now, thanks
to the positivity of the coefficients in V2 and of the µi j’s, one can choose η
small enough that there holds

∀µ, |G.µ| 6
γ

2η
V2(µ),

which yields

LV ≡ LV1 +
1
η
LV2 6 −λ

CqV1 −
γ

2η
V2 + C, (13)

and finally
LV 6 −ζV + C,

with ζ = min
(
λCq, γ

2η

)
and C is some constant. �

Remark 4.1. The proportionality of the cancellation rates clearly plays
an important role in the stability of the order book. A careful analysis of
the proof of Lemma 4.1 shows that one can easily add an excitation from
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the market and limit orders towards the cancellation orders. This feature
would account for instance for the fact that the cancellation rate at the
second limit is likely to increase if a market order starts emptying the first
limit. However, should the arrival of a cancellation order excite other types
of orders, a new term will appear in the computation of LV, possibly with
the wrong sign. Hence, the proof of stability will not work out in a similar
fashion. From a physical standpoint, it is actually rather clear that, should
cancellations increase the arrival of new limit orders, the order book may
become quite fat and ergodicity, harder to prove - or even false !

5. Large scale limit of the price process

This section is devoted to the asymptotics in time of the price process.
The ergodic theory of Markov processes, see [8], is combined with the mar-
tingale convergence theorem [18], to obtain the results. This approach is
extremely general and flexible, and prone to many generalizations for Mar-
kovian models of limit order books. It is somewhat similar to that used in
[26][6], where various long-time, large-scale behaviour of limit order books
are studied. However, the stochastic behaviour of the intensities of the point
processes triggering the order book events makes the situation we consider
slightly different.

5.1. Price dynamics and the Ergodic Theorem. We first write down the
expression for the price dynamics. Consider for instance the best ask and
bid prices, denoted by PA(t) and PB(t). One can easily see that they satisfy
the following SDE’s:

dPA(t) = ∆P
[(

A−1(q) − iS

)
dM+(t)

−

K∑
i=1

(iS − i)+ dL+
i (t) +

(
A−1(q) − iS

)
dC+

iS (t)
]

and

dPB(t) = −∆P
[(

B−1(q) − iS

)
dM−(t)

−

K∑
i=1

(iS − i)+ dL−i (t) +
(
B−1(q) − iS

)
dC−iS (t)

]
,
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describing the various events that affect them: change due to a market order,
change due to a new limit order inside the spread, and change due to the
cancellation of a limit order at the best limit (recall that iS is defined in (4)).
Let us recast these equations under a general form as follows:

Pt = P0 +

∫ t

0

∑
i

Fi(Xu)dN i
u, (14)

where the N i are the point processes driving the limit order book, X is the
Markovian process describing its state, and P is one of the price processes
we are interested in. For instance, in the Poisson case dealt with in [1],
X = (a,b) and the N i are the Poisson processes driving the arrival of mar-
ket, limit and cancellation orders. In the context of Hawkes processes con-
sidered in this work, X = (a,b,µ) and the N i are the Poisson and Hawkes
processes driving the limit order book. Moreover, the Fi are bounded func-
tions, thanks to the non-zero boundary conditions a∞, b∞.
Denote by Π the stationary distribution of X as provided by Proposition 4.1.
Then, the Ergodic Theorem for Markov processes states the following:

Theorem 5.1 ([8][29]). Let G be in L1(Π(dX)). Then,
a.s.
lim

t→+∞

1
t

∫ t

0
G(Xs)ds =

∫
G(X)Π(dX).

Using this classical result, together with the deep Theorem 7.1.4 of [18]
on the convergence of martingales, one can prove the

Proposition 5.1. Consider the price process described by Equation (14)
above, and introduce the sequence of martingales P̂n formed by the cen-
tered, rescaled price

P̂n
t ≡

Pnt − Qnt
√

n
where Q is the compensator of P

Qt =

∫ t

0

∑
i

Fi(Xs)λi
sds.

Then, P̂n converges in distribution in the space D ([0,∞);R) endowed with
the Skorohod topology, to a Wiener process σ̂W, where the volatility σ̂ is
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given by

σ̂2 =
a.s.
lim

t→+∞

1
t

∫ t

0

∑
i

(Fi(Xs))2 λi
sds =

∫ ∑
i

(Fi(X))2 λiΠ(dX). (15)

Proof. Proposition 5.1 follows from the convergence of the predictable qua-
dratic variation of P̂n. By construction, there holds

< P̂n, P̂n >t=
1
n

∫ nt

0

∑
i

(Fi(Xs))2λi
sds,

or else

< P̂n, P̂n >t= t(
1
nt

∫ nt

0

∑
i

(Fi(Xs))2λi
sds),

and Theorem 5.1 ensures that
a.s.
lim

t→+∞

1
nt

∫ nt

0

∑
i

(Fi(Xs))2λi
sds =

∫ ∑
i

(Fi(X))2λiΠ(dX)

whenever the integrability conditions of Theorem 5.1 are satisfied. Now,
those are easily seen to hold true, since the Lyapunov function V itself is
in L1(Π(dX)), see e.g [22], and the integrand in the predictable quadratic
variation, being linear in the λ’s and bounded as a function of the ai, bi’s, is
bounded by a multiple of V .
The other condition for the martingale convergence theorem to apply is triv-
ially satisfied, since the size of the jumps of P̂n is bounded by C

√
n , C being

some constant. �

5.2. The dynamics of the rescaled price process. It is tempting to use
Equation (15) as a characterization of the volatility of the price process at
the larger time scales - as indeed one of our main motivations for this work
was to establish the connection between microstructural models and diffu-
sive behaviour in the long run. As it turns out, Proposition 5.1 is not com-
pletely satisfactory: in order to give a more precise characterization of the
dynamics of the rescaled price process, it is necessary to understand thor-
oughly the behaviour of its compensator Qnt. As a matter of fact, Qnt itself
satisfies an ergodic theorem, and if its asymptotic variance is not negligible
w.r. to nt, one cannot use directly Proposition 5.1 to assess the volatility of
the rescaled, deterministically centered price process.
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The next result provides a more accurate answer, valid under general ergod-
icity conditions.

Theorem 5.2. Write as above the price

Pt = P0 +

∫ t

0

∑
i

Fi(Xs)dN i
s

and its compensator

Qt =

∫ t

0

∑
i

Fi(Xs)λi
sds.

Set
h =

∑
i

Fi(X)λi

and let α ∈ R be defined by

α :=
a.s.
lim

t→+∞

1
t

∫ t

0

∑
i

(Fi(Xs))λi
sds =

∫
h(X)Π(dX).

Finally, introduce the solution g to the Poisson equation

Lg = h − α (16)

and the associated martingale

Zt = g(Xt) − g(X0) −
∫ t

0
Lg(Xs)ds ≡ g(Xt) − g(X0) − Qt + αt.

Then, the deterministically centered, rescaled price

P̄n
t ≡

Pnt − αnt
√

n

converges in distribution in the space D ([0,∞);R) endowed with the Skoro-
hod topology, to a Wiener process σ̄W. The asymptotic volatility σ̄ satisfies
the identity

σ̄2 =
a.s.
lim

t→+∞

1
t

∫ t

0

∑
i

((
Fi − ∆i(g)

)
(Xs)

)2
λi

sds (17)

≡

∫ ∑
i

((
Fi − ∆i(g)

)
(X)

)2
λiΠ(dX),

where ∆i(g)(X) denotes the jump of the process g(X) when the process N i

jumps and the limit order book is in the state X.
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Proof. The martingale method, see e.g. [22][16][27], consists in rewriting
the price process under the form

Pt = (Pt − Qt) − Zt + g(Xt) − g(X0) + αt = (Mt − Zt) + g(Xt) − g(X0) + αt,

so that
P̄n

t =
Vnt + g(Xt) − g(X0)

√
n

,

where V = M − Z is a martingale. Therefore, the theorem is proven iff
one can show that g(Xt)−g(X0)

√
n converges to 0 in L2(Π(dX)), or simply, that

g ∈ L2(Π(dX)).
Theorem 4.4 of [22] states that the condition

h2 6 V (18)

(where V is a Lyapunov function for the process) is sufficient for g to be in
L2(Π(dX)). As opposed to the case of Poisson intensities, the linear Lya-
punov function V introduced in (9) does not yield the desired result, because
h is linearly increasing in the λ’s. However, see Lemma A.1 in Appendix
A, one can design a Lyapunov function having a polynomial growth of arbi-
trary high order in the λ ’s at infinity, thereby ensuring that (18) holds. �

5.3. Interpreting the asymptotic volatility. A general formula for the low
frequency volatility of the price process is provided in (17); it is related to
the frequency of events that cause a price change, and to the size of price
jumps when a change occurs. Formula (17) can easily be implemented nu-
merically by using its formulation as a time average, but its analytical com-
putation would require the knowledge of the stationary distribution of the
order book. However, some simplifying hypotheses help shed some light
on its interpretation and qualitative dependency on the model parameters.
Assume for instance that one is interested in modelling large tick assets, for
which the size of price changes is always equal to 1 tick. In our framework,
this is made possible by choosing K = 1: only one limit on each side of the
order book is modelled. In this case, all the Fi’s introduced in Section 5 are
equal to 1 or 0, and the asymptotic variance can be rewritten by separating
the events that change the price from those that do not.
Let us introduce such a decomposition of market, limit and cancellation
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orders depending on whether an event change the price or not - and use a
1 (resp. 0) superscript to indicate that the event changes (resp. does not
change) the price:

M± = M±,1 + M±,0,

L±i = L±,1i + L±,0i ,

C±i = C±,1i + C±,0i .

Now, should all these processes be independent Poisson processes, the as-
ymptotic variance would be given using (15) or (17) (see comment below)
by

σ̄2 = (∆P)2

λM+,1 + λM−,1 +
∑

i

(
λL+,1

i + λL−,1
i

)
+ λC+,1

iS
+ λC−,1

iS

 ,
where all the quantities involved are easily interpreted, and can be measured
empirically from the data. Obviously the Poisson hypothesis is violated in
the framework of a limit order book driven by Hawkes processes, but we
think that this rewriting makes the formula more intuitive.
Another interesting question concerning Formula (17) is the role played
by the correcting term coming from the solution g to the Poisson equation
(16). In the case of Poisson arrival for the price-changing processes and
deterministic price changes, the right-hand-side of (16) is 0, so that the
correcting terms are also 0: Formulae (15) and (17) coincide. In general
this is not the case, and one should find an estimate of the correcting terms -
essentially, a control of the variance of h =

∑
i Fi(X)λi when the λi’s are now

random. Some analytic computations may be performed as in the Poisson
case under the simplifying assumptions of deterministic price changes and
Hawkes processes driving the events that change the prices, but the general
case is more intricate, although easily attainable via numerical simuations.

6. Concluding remarks

In this work, a model for a limit order book driven by Markovian Hawkes
processes has been studied. The model is motivated by empirical obser-
vations on the interplay between liquidity taking and providing, and cap-
tures this phenomenon at the high frequency level. Under standard stability
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conditions for the Hawkes processes driving the arrival of orders, stability
and exponential convergence towards the stationary state have been proven.
Then, the long time asymptotics of the price has been studied, and a formula
for the volatility at large time scales has been given.
Several further research directions naturally come to mind. First, there is the
issue of the relevance of the model: does a multivariate exponential Hawkes
process satisfactorily describe the interplay one is interested in, and how
does it compare to empirical measurements ? Recent works on Hawkes
processes in the context of price and trade arrivals offer diverging, some-
times contradictory opinions on that subject; what seems to be clear is that
a model such as ours, where the base intensity and the kernel parameters are
constant, should be used in the context of stable market conditions. Another
question of interest is related to cancellations: it would be natural to allow
for mutual excitations between cancellations and other types of orders. As
already noted in Remark 4.1, very minor modifications to this work should
be made if one only allows cancellations to be excited by orders of other
types; but the reverse situation is not as simple. It is easy to obtain some
smallness conditions on the size of the jumps so as to ensure ergodicity, but
whether such conditions are necessary is not clear at the moment.

Appendix A. Lyapunov functions for Hawkes processes

For the sake of completeness, some explicit constructions of Lyapunov
functions for a multi-dimensional Hawkes processes N = (N i) with intensi-
ties

λi
t = λi

0 +
∑

j

∫ t

0
αi je−βi j(t−s)dN j

s

are now given. Note that [37] provides a somewhat similar construct of a
linearly growing Lyapunov function2.
Denote as in Section 2

µ
i j
t =

∫ t

0
αi je−βi j(t−s)dN j

s ,

2The authors thank one of the anonymous referees for drawing their attention to this paper.
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so that there holds
λi

t = λi
0 +

∑
j

µ
i j
t . (19)

The infinitesimal generator associated to the Markovian process (µi j), 1 6
i, j 6 D, is the operator

LHF(µ) =
∑

j

λ j
(
F

(
µ + ∆ j(µ)

)
− F(µ)

)
−

∑
i, j

βi jµi j
∂F
∂µi j

,

where µ is the vector with components µi j and λ j is as in (19). The notation
∆ j(µ) characterizes the jumps in those of the entries in µ that are affected
by a jump of the process N j. For a fixed index j, it is given by the vector
with entries αi j at the relevant spots, and zero entries elsewhere.
A Lyapunov function for the associated semi-group is sought under the form

V(µ) =
∑

i, j

δi jµi j (20)

(since the intensities are always positive, a linear function will be coercive).
Assuming (20), there holds

LHV =
∑

j

λ j

∑
i

δi jαi j

 −∑
i, j

βi jµi jδi j

or

LHV =
∑

i, j

λ j
0 +

∑
k

µ jk

 δi jαi j − βi jµi jδi j. (21)

Recall the matrix A defined in Section 2 with entries

Ai j =
α ji

β ji
.

Under the assumptions of Proposition 2.2, A is irreducible, and the spectral
condition (1) holds. Let ε be the maximal eigenvector of A and denote
by κ the associated maximal eigenvalue. By Assumption (1), one has that
0 < κ < 1 and furthermore, by Perron-Frobenius theorem, there holds:
∀i, εi > 0.
Assuming that

δi j ≡
εi

βi j
, (22)
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the expression for V becomes

V(µ) =
∑

i, j

εi
µi j

βi j
. (23)

Plugging (23) in (21) yields

LHV =
∑

i, j

λ
j
0δi jαi j +

∑
i, j,k

µ jkεi
αi j

βi j
−

∑
j,k

β jkµ jkδ jk

=
∑

i, j

λ
j
0δi jαi j + (κ − 1)

∑
j,k

εkµ jk,

where we have used the identity
∑

j A jiεi = κε j. A comparison with (23)
easily yields the upper bound

LHV 6 −γV + C, (24)

with γ = (1 − κ)βmin, βmin ≡ in fi, j(βi j) > 0 by assumption, and C =∑
i, j λ

j
0δi jαi j ≡ κε.λ0.

Sufficient as it is to prove Proposition 5.1 using the Lyapunov function for
the limit order book provided by Proposition 4.1, a linearly growing Lya-
punov function is too weak to prove Theorem 5.2: as already noted, The-
orem 4.4 in [22] requires a Lyapunov function with quadratic growth, in
order that the Poisson equation with a linearly growing RHS have a solu-
tion in L2(Π(dX)). To this aim, a useful extension of Lemma 4.1 is given in
the following

Lemma A.1. Under the standing assumptions, one can construct a Lya-
punov function of arbitrary high polynomial growth at infinity.

Proof. Let n ∈ N∗, and V be defined in (23). The function Vn satisfies

LHVn(µ) =
∑

j

λ j
(
Vn

(
µ + ∆ j(µ)

)
− Vn(µ)

)
− nVn−1

∑
i, j

βi jµi j
∂V
∂µi j

 . (25)

Upon factoring Vn
(
µ + ∆ j(µ)

)
− Vn(µ):

Vn
(
µ + ∆ j(µ)

)
−Vn(µ) =

(
V

(
µ + ∆ j(µ)

)
− V(µ)

)  n−1∑
k=0

Vn−1−k(µ + ∆ j(µ))Vk(µ)

 ,
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the linearity of V yields the following expression

Vn
(
µ + ∆ j(µ)

)
− Vn(µ) = nVn−1(µ)

(
V

(
µ + ∆ j(µ)

)
− V(µ)

)
+M j(V)(µ),

whereM j(V)(µ) can be bounded by a polynomial function of degree n − 1
at infinity in µ. Therefore, one can rewrite (25) as follows

LHVn(µ) =
(
nVn−1LHV)(µ

)
+M(V)(µ), (26)

whereM(V)(µ) is a polynomial of degree n − 1 in µ. Combining (23) with
(26) shows that Vn is also a Lyapunov function for the Hawkes process. �
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