
HAL Id: hal-01121700
https://hal.science/hal-01121700

Submitted on 2 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictable Flight Management System Implementation
on a Multicore Processor

Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire
Pagetti, W. Puffitsch

To cite this version:
Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti, et al.. Pre-
dictable Flight Management System Implementation on a Multicore Processor. Embedded Real Time
Software (ERTS’14), Feb 2014, TOULOUSE, France. �hal-01121700�

https://hal.science/hal-01121700
https://hal.archives-ouvertes.fr

Predictable Flight Management System
Implementation on a Multicore Processor

Guy Durrieu∗ Madeleine Faugère† Sylvain Girbal† Daniel Gracia Pérez† Claire Pagetti∗ Wolfgang Puffitsch‡
∗ONERA - Toulouse, France, †Thales TRT - Palaiseau, France ‡DTU Copenhagen, Denmark

Abstract—This paper presents an approach for hosting a
representative avionic function on a distributed-memory mul-
ticore COTS architecture. This approach was developed in
collaboration by Thales and ONERA, in order to improve the
performance of the function while enforcing its predictability.
Once the target avionic function and the multicore architecture
have been introduced, the execution model and the needed basic
services are described and evaluated.

I. INTRODUCTION

Multicore processors are becoming the only solutions avail-
able for the development of embedded safety critical ap-
plications with increasing performance requirements. These
architectures are challenging for safety critical applications
because they are in general not predictable, in the sense that
(1) evaluating the worst case execution time (WCET) of an
application is almost impossible [22] and (2) synchronizing
the different cores precisely is sometimes hardly achievable
[11]. The difficulties increase when the multicore hosts several
applications and in particular mixed critical applications [6].
A solution to enforce predictability relies on the use of an
appropriate execution model [2], [4]. Such a model is a set of
rules to be followed by the designer in order to avoid, or at
least reduce, unpredictable behaviors.

The purpose of the paper is twofold: (1) to define an im-
proved execution model that fits the requirements of complex
safety critical applications, and (2) to describe the executive
services implementing the constrained behaviors imposed by
the execution model on a real target. The execution model
and its implementation will be evaluated using a Flight Man-
agement System as a representative complex safety critical
application from the avionic domain.

A. Input of the project
The application studied in this work is a simplified but

representative version of a Flight Management System (FMS)
developed at Thales. In modern avionics, the FMS provides
the crew with centralized control for the aircraft navigation
sensors, computer based flight planning, fuel management,
radio navigation management, and geographical situation in-
formation. Pilot and co-pilot have a strong control on the
application and therefore the implementation comprises both
periodic and aperiodic tasks.

The target COTS architecture is a Texas Instruments
TMS320C6678 (TMS in short) high-throughput multicore
processor [7], comprising 8 DSP cores. This architecture offers
several advantages with regard to real-time: it is possible

to configure the local caches as local SRAM, making the
platform a distributed memory architecture with explicit ac-
cesses to the shared bus and memories. However, this target
suffers from a lack of synchronization: the cores are started
independently and the hardware local clocks, even though they
do not drift, have unpredictable offsets.

B. Context and related work

Executing the FMS safely on several cores of the TMS re-
quires a robust real-time implementation ensuring predictabil-
ity regardless of executing conditions (e.g. starting order of
the cores, variation in the execution times). While there is
active research on time-predictable computer architectures
[21], [16] these architectures cannot (yet) compete with COTS
processors in terms of availability or cost. Therefore, the work
presented in this paper targets a hardware platform that was
not designed with predictability in mind. The sources of unpre-
dictability on COTS multicore processors are numerous (e.g.
concurrent accesses to the shared resources), and are identified
nowadays. Several approaches have highlighted different ways
to reduce the unpredictability by acting on:

• The application design. For instance, program develop-
ment can follow the MISRA coding rules [5].

• The access to the shared resources. The designer must
rely as much as possible on predictable mechanisms
offered by the hardware, such as TDMA arbitration [17].
However such mechanisms are rare, thus constraining
the concurrent accesses is mainly reached by forcing
some determinism. For instance, preventing a core from
accessing the RAM can be realized by coding tasks that
are small enough to be fully stored in the local caches
[9], or limiting the number of conflicts can be obtained
by restraining the number of accesses during an interval
[23].

• The scheduling of tasks. Partitioned non-preemptive off-
line schedules are much more predictable than global
preemptive schedules.

• The hardware mechanisms. For instance, deactivating the
cache coherence [3] increases the predictability at the cost
of managing the coherent vision by software (cost of CPU
time and additional code).

C. Contribution

As pointed out in the previous section, reducing the un-
predictability with an execution model requires to take into

account both the application’s specifics and the target ca-
pabilities. Existing work in the literature cannot handle a
safe execution of the FMS on the TMS, because these ap-
proaches are often partial (e.g. no management of aperiodic
tasks) and/or too restrictive (e.g. no solution to handle large
databases, no approach to minimize the performance degrada-
tion when several cores run in parallel). The FMS is full of
irregular real-time behaviors and of complex communication
patterns between the tasks, requiring for instance to manage
validity of data. We therefore promote an execution model
which combines and extends existing results. It is not a new
model but rather an improvement and adaptation of existing
approaches in order to implement a representative application
on a multicore COTS architecture.

• Periodic tasks execute on dedicated cores. Scheduling is
partitioned non-preemptive off-line. All instructions and
data are stored in the distributed local SRAM memories.
This is a direct adaptation of [11] and [4]. A bare-metal
executive layer has been developed specifically for the
TMS. A bare-metal approach is a low-level programming
method that allows to bypass the BIOS or operating
system interface to achieve high-performance and real-
time computing with minimal footprint.

• Aperiodic tasks execute on dedicated cores provided
with the Texas Instruments SYS/BIOS operating system.
Scheduling is global deadline monotonic (DM). This part
is an on-going work.

• Communication between the cores is done by directly
writing to the distributed on-chip SRAM. A memory area,
named MPB (Message Passing Buffer), is reserved for
that purpose in this SRAM on all cores. The notion of
MPBs is inspired by the architectural design of the Intel
Single-chip Cloud Computer (SCC) [8].

The paper is organized as follows: Section II describes the
real-time design of the FMS application; Section III depicts
the features of the TMS target that can be used to enforce
predictability; Section IV details the execution model, the
current implementation and the next steps to be realized by
the end of the year.

This study was realized using the TMS320C678 as the
hardware target. The solutions presented in this paper however
are not restricted to this particular architecture, can could
easily be applied to any distributed-memory multicore.

II. DESCRIPTION OF THE FMS

The Flight Management System aims at performing in-
flight guidance of aircrafts. Such guidance is based on the
use of flight plans selected before departure, either by the
pilot or a dispatcher for airliners. A flight plan includes basic
information such as departure and arrival points, in-flight
waypoints, estimated time en route, alternate landing airports,
expected weather conditions, and so on. During the flight, the
FMS is then in charge of (1) determining the plane localization
and (2) computing the trajectory in order to follow the flight
plan and the pilot directives.

A. General overview
The Thales FMS220 [19] is used both on regional airliners

(ATR-72, ATR-42) and on some helicopters (Sikorsky S-76D).
The original version was sequential and the code has been
rewritten in a multi-threaded way.

FMS

Localization

Flightplan

Trajectory Guidance
Sensors

Nearest

bcp

legs
profiles

Auto Pilot

a
n

g
les

Display

database
NavigationPilot

Fig. 1. Functional overview of the FMS

Figure 1 gives a functional overview of the Flight Manage-
ment System. For the sake of simplicity, the system is de-
scribed as a set of functional groups, which do not necessarily
exist at implementation level.
• The sensor group collects information from various sen-

sors such as the Anemo-barometric sensor, the Pure Iner-
tia Reference System (IRS) sensor, the Global Positioning
System (GPS) or the Doppler sensor.

• The localization group performs some sensor merging
on the localization and speed information provided by
the sensor group to compute a Best Computed Position
(BCP) corresponding to the most probable position of the
plane.

• The flight plan group deals with in-flight flight plan mod-
ifications, extracting new flight routes from the navigation
database.

• The trajectory group uses the BCP position to compute
some physically possible trajectories (profiles) to follow
the selected flight plans. This computation involves very
complex physical models and constraints, such as re-
specting arrival time windows and optimizing the fuel
consumption.

• The guidance group translates the profiles computed by
the trajectory group to angle corrections values that are
transmitted to the autopilot.

• The nearest group is regularly computing the list of the
nearest airports. This information is not used to guide
the plane, but will help the pilot in case of an emergency
landing.

• The display is not directly part of the FMS but every
transmitted data could be sent to the display such as the
BCP, the selected flight plan, or the list of nearest airports.

Figure 2 zooms on the content of localization group.
LOCC1, LOCC2, LOCC3, and LOCC4 are periodic tasks
respectively in charge of sensor merging, flight phase com-
putation, magnitude variation correction and navigation per-
formance computation. LOCA1, LOCA2, and LOCA3 are
aperiodic tasks corresponding to manual selection of active
sensors, manual reinitialization of the magnetic variation, and
manual configuration of the required navigation performance.

Localization Group
LOCA1

2

BCP
Config.

LOCC1
0.2s

LOCC2
1.6s

LOCC3
5s

LOCC4
1s

High
freq. BCP

Low
freq. BCP

Magnetic
Declination

Performance

LOCA2

5

MagVar
Config.

LOCA3

5

Performance
Config.

sensors
data BCP

Fig. 2. Detailed view of the Localization group

The communication of this data between tasks is done via
dedicated blackboard or mailbox structures appearing as shad-
owed box or stacks in the figure. For instance, the variable
High freq BCP is stored in a blackboard, produced by LOCC1

and consumed by LOCC2. A blackboard is a single-writer /
multiple-reader double-buffer allowing concurrent reads and
write. A mailbox is a single-writer / single-reader FIFO usually
used to enqueue pilot and co-pilot requests in case of manual
intervention (after an aperiodic task). These requests are then
taken into account on the next activation of the consumer task.

B. Real-time constraints
The scheduling of the system is done independently of the

communication between tasks. In particular, when a manual
configuration is done by the pilot, the associated aperiodic task
does not trigger the periodic task that consumes the mailbox.
As a consequence, tasks in the system may work with value
that does not correspond to the very latest input value. Figure
3 shows the asynchronous communication between aperiodic
and periodic tasks.

time

time

Periodic

6s 6s 6s 6s 6s 6s 6s
init

Aperiodic
pilot pilot pilot

1

Fig. 3. Consumption of pilot requests

The Flight Management System contains a specific type of
tasks named restartable tasks. Such a long-running task is
managed by another task that can either suspend or restart
it (see Figure 4). This is for instance the case of trajectory
computation tasks, that could be suspended either on flight
plan change or when the BCP value is considered too old.

time

Periodic

Restartable

15s 15s 15s
init

start start start stop

1

Fig. 4. Restartable task activation patterns

Globally, the FMS is composed of 10 periodic tasks, 15 ape-
riodic tasks and 3 restartable tasks. All the above-mentioned
tasks have hard real-time constraints. The Table I gives the
real-time constraints associated to the tasks of the localization
group. Periods are varying from 200ms to 5s, while the number
of asynchronous task activations is bounded per period, due
to the usage of an HMI.

task period task max activation
LOCC1 200ms LOCA1 2 every 200ms
LOCC2 1.6s LOCA2 5 every 5s
LOCC3 5s LOCA3 5 every 1s
LOCC4 1s

TABLE I
REAL-TIME CONSTRAINTS OF THE LOCALIZATION GROUP

C. Memory footprint
For distributed memory systems, it is critical to describe

the memory footprint of the application, as its deployment
is constrained by the distributed memory sizes. The overall
memory footprint of each task can be decomposed into: (1) the
code size that corresponds to the part of the text segment from
the binary that is related to the task; (2) the instance size that
corresponds to the task object including all the task interval
variables; (3) and finally the output data size that corresponds
to the size of the target output blackboard of mailbox buffers.

code instance output task code instance output
task size size size task size size size
LOCC1 6236 2744 1232 LOCA1 9012 200 136
LOCC2 3072 1360 1232 LOCA2 9216 224 328
LOCC3 3892 1104 272 LOCA3 9524 224 328
LOCC4 2528 1104 208

TABLE II
MEMORY CONSTRAINTS (IN BYTES) OF THE LOCALIZATION GROUP

Table II shows the memory footprint of the Localization
group. In addition to the code size of the tasks to be deployed
on each core, some additional code is added at compile time:
60KB to deal with the Flight Management data types, and
105KB for the platform related level libraries.

The complete memory footprint of the FMS application
consists of 295KB of code and 25KB of data, to be completed
with a few megabytes for the navigation database stored in the
DDR memory.

D. Communication requirements
The FMS application relies on the use of semaphores or mu-

texes to protect communication structures allowing concurrent
accesses to the mailboxes and the blackboards. Additionally,
some specific data structures, such as the flight plan, also
involve some mutual exclusion sections to avoid concurrent
modifications by the pilot and the copilot.

Moreover, the FMS application requires some output com-
munication channels to send the output data to the autopilot
and the display. Such a traffic is characterized by a very low
throughput.

III. DESCRIPTION OF THE TMS
To implement any real-time application on the TMS, we

need to identify the available hardware features to enforce
predictable behavior.

A. General overview
The Texas Instruments TMS320C6678 (see Figure 5) is

a multicore platform, comprising 8 TMS320C66x DSP pro-
cessors that are clocked at 1 GHz. The TMS320C66x cores
implement a VLIW instruction set architecture and can issue
up to 8 instructions in the same clock cycle. The cores
are connected via the TeraNet on-chip network, which also
provides access to several auxiliary hardware modules (e.g.,
I/O interfaces and DMA engines). Each core contains 32 KB
level 1 program memory (L1P), 32 KB data memory (L1D),
and 512 KB level 2 memory (L2) that may contain instructions
and data. The level 3 memory (MSMC) provides 4 MB of on-
chip SRAM that is shared between cores. The external DDR3
memory is shared between cores as well. While this memory
has a long latency compared to the on-chip memories, it is
also considerably larger (512 MB on our evaluation board).

Multicore Navigator

Network Coprocessor

Memory Subsystem

C66x
CorePac

L2 SRAM

L1P
SRAM

L1D
SRAM

HyperLink TeraNet

EDMA

PLL

Power Mgt

Semaphore2

Boot ROM

Debug

E
M

IF
1

6

G
P

IO

I2
C

P
C

Ie

U
A

R
T

S
P

I

T
S

IP

S
R

IO

NAND
flash

Queue
Manager

Packet
DMA

E
th

er
n

et
S

w
it

ch

SGMI

S
w

it
ch

Packet
Accelerator

Security
Accelerator

MSMC
Controller

MSMC
SRAM64-bit

DDR3
EMIF

DDR
Memory

512M

4M

64M

32K
32K

512K

eight c66x
DSP cores

Fig. 5. TMS320C6678 architecture

B. Direct Communication through On-Chip Memories
The L1P, L1D, and L2 memories can be configured as

cache, SRAM, or a mix of both. When part of a local cache is
configured as SRAM, all other cores can have direct distant ac-
cess to that memory area thanks to global memory addressing.
The access to the local memories can be used to implement
direct communication between cores without crossing shared
L3 or DDR3 memory. A core can access its local memories
through two different addresses: global address (accessible
by all cores) or local address (only accessible by the asso-
ciated processor through aliased address). For example, core

3 can access its L2 SRAM memory through local address
0x00800000 or through global address 0x13800000. The
local addresses are exactly the same for all cores and should
thus be used for common code to be run unmodified on
multiple cores.

C. Timing management
On each core there is a local time-stamp counter that runs at

the core’s frequency of 1 GHz. This local clock is obtained by
reading two registers: TCSL and TCSH. We have to be careful
with those registers for two reasons:

1) The cores start independently and the counters on each
core are launched at different moments. This entails that
even though they do not drift, they have unpredictable
offsets.

2) When executing on the evaluation board, the debugger
may interrupt the cores and therefore stall those regis-
ters. In particular, the use of printf causes an interaction
between the core and the debugger that can stall the
processor.

The hardware of the debugging board provides also a global
time-stamp counter that runs at 250 MHz. This clock cannot
be used for implementing the execution model but can be used
during the debugging phase for verification.

D. Hardware support for communication
The TMS platform provides full support for various means

of communication, including Ethernet, serial RAPID-IO, serial
UART, GPIO and system calls translated to the local host
through the hardware debug probe.

Some of these features however cannot be easily used in
a safety critical context. Indeed, communication through the
hardware debug probe involves inserting software breakpoints
during the execution of distant I/O accesses breaking the hard
real-time concept. Relying on the Ethernet controller for com-
munication on the other side would require to either develop
or reuse an heavyweight full IP stack, that will both result in a
high resource usage and a lack of predictability. Finally some
interfaces such as UART could be very lightweight, but only
offer small data bandwidth.

The TMS platform also provides some hardware semaphore
support thanks to the semaphore2 hardware module, that
provides up to 64 independent semaphores accessible across
all the cores to implement shared-resource protection. Note
also that the TMS hardware does not provide any hardware
features to directly implement barriers.

IV. PORTING THE FMS TO THE TMS
The certification of safety critical systems relies on the

compliance with industry-level certification standards. Avionic
application in particular must conform to the DO-178C [14]
(for software development), DO-254 [12] (for hardware de-
sign) and DO-297 [13] (for mixed-critical system) standards.

The implementation of the Flight Management System
must fulfill the timing determinism requirement from those
standards. As stated in the introduction, multi-core platforms

introduce multi-clock domains and rely on shared hardware re-
sources which access is handled by dedicated non predictable
arbitration mechanisms.

In this section, we explain the execution model that permits
us to implement a predictable FMS on the target. We then
detail the executive layer specifically developed to execute
tasks according to the model’s rules and restrictions.

A. Execution model

The execution model provides a set of rules that will enforce
predictable behaviors. A first straightforward execution model
to ensure predictability is to avoid any interference. Strictly
applying time segregation principles as proposed in ARINC
653 on a multi-core system implies to define system-wide time
slots where only one core can execute and use the shared
system resources, as depicted in Figure 6.

time

Task T1 Task T1

Task T2 Task T2

T3 T3

Task T4CORE4

CORE3

CORE2

CORE1

repetitive pattern timeslot

over-provisioning

o
ver-p

ro
visio

n
in
g

Fig. 6. Scheduling with system-wide time slots

In such a scheme, each task that executes during its ded-
icated time slot is guaranteed to have full access on all
the shared resources (interconnect, devices, memories, ...),
eliminating all unpredictable competition on shared hardware
resources. The main drawback is that the multi-core platform is
underused, and therefore there will be no performance benefits
over a single-core. Both sources of resource over-provisioning
responsible for the lack of performance are depicted in Figure
6: over-margin of shortest tasks, and unused cores during a
time slot.

This is the reason why we promote the execution model
illustrated Figure 7.

L2
L1D L1I

bare-metal
library

{τk}k∈S1

MPB L2
L1D L1I

bare-metal
library

{τk}k∈S2

MPB L2
L1D L1I

SYS/BIOS

MPB L2
L1D L1I

SYS/BIOS

MPB

TeraNet

Fig. 7. Execution model at a glance

Periodic tasks execute on dedicated cores. These tasks are
the most constrained ones in terms of deadlines. Therefore,
we choose to optimize their real-time behavior as much as
possible and reuse the most predictable execution model ideas.
The following situations should be avoided:

1) interruption by another task due to preemption,
2) stalling by implicit hardware mechanisms such as cache

coherence mechanisms,
3) delays during accesses to the TeraNet due to unknown

concurrent accesses.
To avoid situation 1), we impose partitioned non-preemptive
off-line scheduling. Since there are no precedence constraints
among the tasks, standard techniques apply. To compute such
a schedule, we have to evaluate the WCET on the TMS of
each task.

To avoid situations 2) and 3), we reuse ideas from [9] and
[4]: all executions are performed without any shared resource
access. This means that all the instructions and data are locally
stored in the local memories. Since the size of the periodic
tasks is small enough to fit in the local memories, the L2
caches are configured as SRAM. This configuration prevents
the cores from accessing implicitly the DDR, L3 memory and
TeraNet. Evaluating the WCET without any non-predictable
behavior (thanks to the locality of the data and code within
the caches) on a uniprocessor, is a well-known problem.

The counterpart is to manage the communication with tasks
on distant cores explicitly. To avoid congestion on the DDR
and to be more efficient, we rely on the direct communication
provided by the TMS. A shared portion of L2 SRAM is re-
served for passing messages between cores. To ensure the pre-
dictability during the access to the mailboxes and blackboards,
we use an AER task model. The idea is the following: the
remaining interferences only occur during the communication
phases between cores, devices and memories. By decoupling
execution and communication phases as proposed in [18], [10],
[9], [2], it allows us to safely exploit parallelism between
execution phases, while still guaranteeing an interference-free
system by forcing the communication phases to be sequential.

time

A E R

A E R

A E R

A E R

A E R

A E R

A E R

A E RCORE4

CORE3

CORE2

CORE1

parallelism

#comm

repetitive pattern

1 2 3 2 1 1 2 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

x

Fig. 8. Scheduling with strict AER task model

Decoupling execution from communication has to be per-
formed at task-level within the application, by decomposing
each task into three successive phases: acquisition, execution,
and restitution (AER task model). Communication between
the distributed memories and devices are only allowed during
acquisition and restitution phases, while the execution phase is
restricted to only use the local private memory. Such a model
allows to run execution phases in parallel ensuring that only

one acquisition or restitution phase runs at a given time as
depicted by Figure 8.

The extra design cost of splitting each task into separate
acquisition, execution and restitution phases was factored in
with the design cost of the spatial partitioning that already
forces us to rely on local copies at task level.

MPB. Inter-core communication is done using direct accesses
to the on-chip SRAM. To avoid overwriting other data, we
reserve some space as message passing buffer (MPB). Stack,
code and data sections (.stack, .data, .text,. . .) are
allocated in the remaining L2 SRAM. Furthermore, DDR3
memory is partitioned such that each core has a private area.
The L3 SRAM remains shared, and can be used to pass data
that does not fit into the MPBs. Note that explicit message
passing via the MBP has a cost in terms of WCET since a
core is blocked as long as the writing to a distant MPB is
not finished. We have made several benchmarks on the TMS
to evaluate the worst-case latencies when there are concurrent
accesses. No unbounded behavior in these latencies has been
detected and a write takes at most a bounded number of cycles.

Aperiodic and restartable tasks use large amounts of data
(in particular those retrieved from database). Therefore, the
approach followed for periodic tasks which consists in storing
everything in the L2 SRAM is not applicable. Similarly,
static off-line scheduling does not apply either. Fortunately,
these tasks are less constrained (large deadlines) and are
more tolerant or robust with regard to unpredictability. We
can therefore relax the execution model and we choose to
execute them on separate cores with the SYS/BIOS operating
system. Scheduling is global deadline monotonic (DM). We
did not yet start this part, but we will probably rely on non-
preemptive scheduling. The configuration of L2 memory has
to be discussed because the smallest SRAM portion is 50%
of the L2 size. Communication with periodic tasks will be
done through the MBPs (in case of configuration 50%) or
through L3 memory otherwise. Communication with other
aperiodic/restartable tasks will go through the shared DDR
memory.

B. Bare-metal library for periodic tasks
We have developed a run-time environment on the TMS

based on a bare-metal library. This library is an adaptation of
bare-metal libraries1 developed at ONERA for the Intel SCC
[15], [11].

Synchronization of the local time-stamps. As explained sec-
tion III, the local clocks of the TMS320C6678 are synchronous
(i.e. no clock drift between the local clocks) but they are not
perfectly synchronized because they do not boot at the same
time. The offsets between the cores are not handled by the
hardware and it is up to the user to manage a synchronization
if needed. We have encountered the same problem on the
Intel Single-chip Cloud Computer (SCC) and the TILERA
TILEMPOWERGX-36 [20].

1http://sites.onera.fr/schedmcore/

The algorithm, specifically developed for the
TMS320C6678, is based on the writing of flags in the
MPB. The synchronization algorithm works as follows:
• N Boolean variables are stored on the MPB of core 0;
• 1 Boolean variable is stored on each core’s MPB;
• when core i starts, it sets the N variables to false. Then,

the core makes an active wait: as long as it did not receive
any value on its own variable, it continuously sets to true
the i-th variable of core 0;

• core 0 works differently. It sets once all its MPB Boolean
variables to false and waits actively until all cores are
awaken. When this occurs, it sets the variables hosted by
the other cores to true;

• when a core detects that its local variable is set to true,
it starts a waiting of 1s using its local clock. After this
second, it reads the current time. This value becomes its
local offset;

• then the shared global time = local time - local offset.
The principles are drawn in Figure 9.

core 0

core 1

core 2

core 0

core 2 core 1

Cores awake in a
random order

All cores awaken,
start time in 1 s

Fig. 9. Synchronization principles

This synchronization algorithm leads to a precision of 40
cycles, that is 40 ns. This is much better from what we
obtained on the SCC (4 µs) and the TILERA (0.5 µs in the
worst case, 50ns in most of the cases).

Message passing and dispatcher. All the mailboxes and
blackboards are hard-coded as illustrated below:

Sensor_data = (blackboard *)(MPB(0)+64);

The local scheduling consists first in mapping a set of
periodic tasks on each core. In order to respect the execution
model, the size of the tasks must fit in the local SRAM. At
compilation and execution times, if the sizes of the stack and
the heap exceed those imposed in the configuration file, an
error is raised. A hard coded dispatcher is then defined. For
instance, for geometric tasks,

for(i=0;i<ITER;i++) {
t1 += PERIOD;
task1(); ;taskn();

// sequence of task with smallest period
if(i%r1==0){

http://sites.onera.fr/schedmcore/

task1_r1(); ;taskp1_r1();
// sequence of task with
// period = smallest period / r1

}

if(i%r2==0){
task1_r2(); ;taskp2_r2();

// sequence of task with
//period = smallest period / r2

}
....

active_wait_until(t1);
}

C. Application Deployment
We have ported the FMS on the TMS320C6678 according

to the execution model described previously. To start with, the
integrator must first assess the WCET of each task. No static
WCET analysis tool, such as ABSINT [22] or OTAWA [1],
is available for the TMS320C6678 platform. Therefore, we
use a measure-based approach, which is not safe in general
but we can hardly do better at this stage. To measure the
execution times, we run the task in isolation and use the local
clock of each core that counts the number of cycles. From the
experimental observation, there is no variation in the execution
times which comfort us on the fact that our implementation is
predictable. The values for the tasks of the localization group
are given in Table III.

TABLE III
WCET

Task WCET Task WCET
LOCC1 7 ms LOCC2 6 ms
LOCC3 5 ms LOCC4 5 ms

The second step consists in choosing a mapping and a
scheduling of the tasks. As stated in the introduction, par-
titioned non-preemptive off-line scheduling best fits the pre-
dictability requirements. Partitioning also permits to uses a
MIMD (“multiple instruction, multiple data”) approach where
the created binaries are specific to particular cores.

We tried several mappings for the periodic tasks. We ob-
served no variation on the execution times of the tasks and a
perfect reproducibility of the functional execution.

V. CONCLUSION AND NEXT STEPS

We have defined an execution model to implement safely
the Flight Management System on the Texas Instruments
TMS320C6678 multicore. At this stage, we are still on the
validation and verification phases for the periodic tasks but the
first results are promising. The development is not complete
since the case of aperiodic and restartable tasks has not been
treated.

An other on-going work, besides completing the FMS
porting, consists in developing a designer kit. Indeed, for the

first experiments, everything is hard coded which lacks of
genericity. This kit will automatically generate (1) the source
code for a given mapping of tasks to cores and communication
buffers to MPBs, and (2) an off-line dispatcher.

Future work will prepare for a wider integration with other
applications sharing the same target. The implementation of a
mixed critical system must fulfill two main requirements from
the avionic standards:

1) spatial partitioning to ensure that no running task can
corrupt the memory space of another task,

2) time partitioning to ensure that no task can delay any
other tasks.

Spatial partitioning can be obtained by extended uni-processor
techniques while time partitioning remains a complex issue.
The conflicts resolution introduces delays that break the time
partitioning principle. The purpose of the execution model is
therefore to enforce time partitioning. The MULCORS [6]
project has given some rules and concepts for implementing
mixed-critical systems on multi-core platforms but no solution
currently exists.

ACKNOWLEDGMENTS

We would like to acknowledge the the European Union
Seventh Framework Programme for its partial funding through
the Certainty project, grant No. 288175.

REFERENCES

[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. Otawa: An open
toolbox for adaptive wcet analysis. In 8th IFIP WG 10.2 International
Workshop Software Technologies for Embedded and Ubiquitous Systems
(SEUS 2010), pages 35–46, 2010.

[2] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-time
i/o management system with cots peripherals. IEEE Trans. Computers,
62(1):45–58, 2013.

[3] J. Bin, A. Grasset, D. Gracia Pérez, S. Girbal, P. Bonnot, and A. Merigot.
Controlling execution time variability using cots in for safety critical
systems. In 8th International Summer School on Advanced Computer
Architecture and Compilation for High-Performance and Embedded
Systems (ACACES’12), Fiuggi, Italy, 2012.

[4] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti. Deterministic execution
model on cots hardware. In 25th International Conference Architecture
of Computing Systems (ARCS’12), volume 7179 of Lecture Notes in
Computer Science, pages 98–110. Springer, 2012.

[5] T. M. Consortium. MISRA-C:2004: Guidelines for the use of the c
language in critical systems. Technical Report ISBN 0 9524156 2 3,
MISRA, 2008, Edition 2.

[6] M. Gatti. Development and certification of avionics platforms on multi-
core processors. In Tutorial 4 - Mixed-Criticality Systems: Design and
Certification Challenges, Embedded Systems Week, Montreal, Canada,
2013.

[7] T. Instruments. TMS320c6678 Multicore fixed and floating-point digital
signal processor. Technical Report SPRS691D, Texas Instruments
Incorporated, 2013.

[8] Intel Labs. SCC external architecture specification (EAS). Technical
report, Intel Corporation, May 2010.

[9] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley. A predictable execution model for COTS-based embedded
systems. In 17th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2011), 2011.

[10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore systems.
In Design, Automation and Test in Europe (DATE 2010), pages 741–746,
2010.

[11] W. Puffitsch, E. Noulard, and C. Pagetti. Mapping a multi-rate syn-
chronous language to a many-core processor. In 19th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’13),
Philadelphia, Pennsylvania, USA, 2013.

[12] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-254:
Design assurance guidance for airborne electronic hardware.

[13] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-297:
Software, electronic, integrated modular avionics (ima) development
guidance and certification considerations.

[14] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE). DO-178B:
Software considerations in airborne systems and equipment certification,
1992.

[15] J. Scheller. Real-time operating systems for many-core platforms.
Master’s thesis, ISAE/ONERA, Toulouse, France, 2012.

[16] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn. Towards a time-predictable dual-issue
microprocessor: The Patmos approach. In First Workshop on Bring-
ing Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), pages 11–20, Grenoble, France, March 2011.

[17] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for TDMA
arbitration in resource sharing systems. In 16th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’10),
Stockholm, Sweden, 2010.

[18] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Worst-case response time analysis of resource access models in multi-
core systems. In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 332–337, 2010.

[19] THALES. FMS 220 software requirement specification (SRS). Technical
report, THALES, Nov 2010.

[20] Tilera Corporation. Tile processor architecture - Overview for the
TILEPro Series. Technical Report UG120, 2013.

[21] T. Ungerer, F. J. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiñones, M. Gerdes, M. Paolieri, J. Wolf, H. Cassé, S. Uhrig,
I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische.
Merasa: Multicore execution of hard real-time applications supporting
analyzability. IEEE Micro, 30(5):66–75, 2010.

[22] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem - overview of methods and survey of tools. ACM
Trans. Embed. Comput. Syst., 7:36:1–36:53, May 2008.

[23] H. Yun, Y. Gang, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In 19th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’13), Philadelphia, Penn-
sylvania, USA, 2013.

	Introduction
	Input of the project
	Context and related work
	Contribution

	Description of the FMS
	General overview
	Real-time constraints
	Memory footprint
	Communication requirements

	Description of the TMS
	General overview
	Direct Communication through On-Chip Memories
	Timing management
	Hardware support for communication

	Porting the FMS to the TMS
	Execution model
	Bare-metal library for periodic tasks
	Application Deployment

	Conclusion and next steps
	References

