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Wavelets provide an orthonormal basis for multiresolution analysis and decorrelation or ‘whitening’ of
nonstationary time series and spatial processes. Wavelets are particularly well suited to analysis of
biological signals and images, such as human brain imaging data, which often have fractal or scale-
invariant properties. We briefly define some key properties of the discrete wavelet transform (DWT) and
review its applications to statistical analysis of functional magnetic resonance imaging (fMRI) data. We
focus on time series resampling by ‘wavestrapping” of wavelet coefficients, methods for efficient linear
model estimation in the wavelet domain, and wavelet-based methods for multiple hypothesis testing, all of
which are somewhat simplified by the decorrelating property of the DWT.

1 Introduction

1.1 General motivations for wavelet analysis of fMRI data

A wavelet is a little wave, or a brief wave. Unlike sine or cosine waves, which extend
infinitely with a particular frequency and phase, wavelets are finitely extended or
compactly supported; their oscillations decay more or less rapidly to zero (Figure 1).
Over the last 15 years or so, wavelets have emerged as powerful new mathematical
tools for analysis of complex datasets.

The first orthonormal basis after Fourier was constructed by Alfred Haar around
1910 and time—frequency analysis was subsequently developed by Dennis Gabor
and John von Neumann in the late 1940s. The modern era — and the use of the
word ‘wavelet’ — begins with work by Jean Morlet and Alex Grossman in the 1970s.
Widespread application to signal processing followed the work of Stéphane Mallat'
and the construction by Ingrid Daubechies’ of a family of compactly supported
orthonormal bases with arbitrary regularity or number of vanishing moments.
A review of the historical development of wavelets is provided by Jaffard et al.’
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Figure 1 Wavelets and time-scale decomposition of a representative fMRI time series. (a), (b): Daubechies
father and mother wavelets of order 4. (c) A ‘raw’ functional MRI time series extracted from the left postcentral
gyrus, a cortical region important for somatosensory perception, in a single individual. (d) A time-scale plane
tiling or scalogram illustrating the atomization or decomposition of the time series by the DWT using the
Daubechies wavelets. The plane is covered by a set of rectangles of identical area, each of which is coloured in
a shade of grey to indicate the sign and magnitude of the corresponding wavelet coefficient. Note that detail
and approximation coefficients for the coarsest scale of the decomposition have the best resolution of scale
(smallestheight on the y-axis) but the worst resolution of time (greatest width on the x-axis) and vice versa for
the detail coefficients for the finest scale of the decomposition.

Intuitively, wavelet analysis can be understood as a way of decomposing or atomizing
the total energy or variance of a spatial process or time series by an orthonormal basis
of wavelets, each of which is weighted by a coefficient representing the amount of
energy in the data at a particular scale and location. If we think of the total energy in the
data as a frequency—time or scale—space plane, then the discrete wavelet transform can
be visualized as a tiling or tessellation of the plane in which each tile has the same area
but tiles representing atoms of energy at fine scales have superior resolution in time or
space compared to tiles representing atoms of energy at coarse scales (Figure 1).

This is evidently a multiresolutional analysis in that the energy of the data has been
partitioned among a hierarchically organized set of scales. Low-frequency components of
the energy will be represented by wavelet coefficients at coarse scales of the decomposi-
tion and higher frequency components will be represented by coefficients at finer scales.
In this respect wavelet analysis is conceptually similar to Fourier analysis, which
partitions the total energy of the data among an orthonormal basis set of sinusoidal



functions at different frequencies. However, wavelet analysis differs importantly from
Fourier analysis by virtue of its natural adaptivity to local or nonstationary features of the
data within scales of the decomposition. For example, a transient spike in a time series
will be represented with difficulty by a set of stationary sinusoidal functions, but it will be
captured quite deftly in terms of a few fine-scale wavelet coefficients located around the
corresponding point in time. To quote Mallat': ‘If we are interested in transient
phenomena — a word pronounced at a particular time, an apple located in the left
corner of an image — the Fourier transform becomes a cumbersome tool’.

These two aspects of wavelet analysis — its multiresolutional nature and its adaptivity
to nonstationary or local features in data — are sufficient to indicate that it will be of
interest in analysis of functional magnetic resonance (fMRI) data, which we can expect
will include possibly nonstationary features of interest at several scales. However, there
are arguably at least three additional aspects of wavelet analysis that are advantageous
for fMRI data analysis.

First, the wavelet transform is often a whitening or decorrelating transform of
autocorrelated data, and this may prove to be statistically convenient in various
ways. For example, as we show below, whitening of an autocorrelated time series by
taking its wavelet transform can facilitate resampling or efficient linear model para-
meter estimation. Secondly, the wavelet transform has proven to be a useful basis for
nonparametric regression, denoising or compression of large imaging datasets in many
other applications. The signal-to-noise ratio in M RIis often not much greater than one
or two, so any techniques for enhancing representation of signal components are
potentially valuable. Thirdly, the discrete wavelet transform implemented by Mallat’s
pyramid algorithm is remarkably quick to compute: the algorithm has O(N) complexity
compared to O(N log(N)) complexity of the fast Fourier transform. Computational
speed is clearly of operational value in dealing with the large volumes of data (typically
in the order of gigabytes) generated by a single fMRI study.

1.2 Wavelets, fractals and the brain

In addition to these general technical advantages of statistical analysis in the wavelet
domain there is a related argument favouring the use of wavelet methods specifically in
analysis of brain imaging data, which is founded on the expectation that such data may
often demonstrate fractal properties. The fractal nature of the brain has a bearing on
the suitability of wavelets for brain mapping because it has been recently recognlzed
that wavelets are particularly apt for analysis and synthesis of fractal processes.* ™ The
key feature of wavelet decomposition that makes it suitable for analysis of fractal data
is that each level is a scaled (by a factor of 2) version of the next smallest scale. Hence a
family of wavelet functions is itself a fractal.

Three particular ways in which wavelets are suitable or simplifying for statistical
analysis of fractal processes are: i) wavelets effect a multiresolutional decomposition
that is advantageous for analysis of fractal processes that, by definition, will demon-
strate self-similar structure on several scales of measurement; i1) wavelets are theore-
tically optimal whitening or decorrelating filters for 1/f-like processes and many issues
in estimation and hypothesis testing are simplified by independence; and iii) wavelets
can be used to construct good estimators for fractal dimensions and other measures of



complexity.” We will return to these advantageous aspects of wavelet analysis in greater
detail below; first we define more thoroughly what we mean by ‘fractal’ and review
some of the prior literature on fractal properties of brain mapping data that are
illustrated in Figure 2.
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Figure 2 Long memory or 1/flike characteristics of fMRI time series. Regional mean time series were
extracted from three left-sided brain structures in each of 50 individual images: thalamus (top row), postcentral
gyrus (middle row) and middle temporal gyrus (bottom row). The individually estimated power spectra and
autocorrelation functions were averaged over all 50 images to obtain the group mean spectrum (left column)
and autocorrelation function (right column) for each region. It is clear that there is disproportionate power at
low frequencies in all regions, and the series are positively autocorrelated in time. The spectrum and ACF for
the postcentral gyrus are distinguished by evidence for power at frequencies corresponding to the (funda-
mental) frequency of contralateral, peripheral somatosensory stimulation and its first few harmonics: this is a
well-localized, experimentally driven effect. Thalamus and middle temporal gyrus were not significantly
activated by this experimental stimulation and their data provide some insight into the properties of fMRI time
series under the null hypothesis. The middle column shows a plot of log (spectrum) vs. log (frequency) for
each region, and a straight line fitted by least squares to estimate the spectral exponent y. The resulting
parameter estimates for each region are: Thalamus 7 = —0.80, 95% Cl [-0.67, —0.93]; Postcentral gyrus
7 =-1.02, 95% CI [-0.86, —1.18]; Middle temporal gyrus = —0.88, 95% CI [-0.79, —0.97].



The word “fractal’ was coined by Mandelbrot® to define a class of objects with certain
interesting properties in common. Typically, fractals demonstrate self-similarity (or self-
affinity), meaning that the statistics describing the structure in time or space of a fractal
process remain the same as the process is measured over a range of different scales. Exact
self-similarity means that an object will look the same after rescaling by a single factor in
all dimensions (zooming in or out); statistical self-similarity means that it will look
approximately the same. Self-affinity means that the process will look the same when it is
nonuniformly rescaled by a different factor for different dimensions. For example, self-
affinity of the fractional Brownian motion B(t), with Hurst exponent H, means that the
rescaled series in time B(st) Wlll have the same statistical distribution as the rescaled signal
on the original time scale s" B(z).

An informal, familiar example of self-similarity is provided by the complex branching
structure of a tree, which is approximately preserved on examination of a single branch
or twig, that is, under examination at progressively finer scales of resolution. The
complexity of self-similar structures can be quantified in terms of their (usually
noninteger) fractal dimensions: for example, a fractal surface will have a fractal
dimension (D) in the range 2 < D < 3, with more complex or space-occupying surfaces
approaching the limit D=3 and simpler, more nearly Euclidean planar surfaces having
D closer to 2. Fractal time series that have 1 <D <2, like the human electrocardiogram
(ECG), typically have long-term autocorrelations (long memory) in time and power
laws for spectral density S(f) as a function of frequency

S(f)ocf%

or
log {S(f)} = ¢ + ylog (f)

See Figure 2 for an example in fMRIL The power law exponent y defining the slope of
the linear relationship between log power and log frequency for a 1/f process is simply
related to the fractal dimension of the process in time
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where T denotes the topological dimension (7T=1 for a time series). There is also a
simple relationship between the fractal dimension and the Hurst exponent O<H<1
which parameterizes the covariance matrix of fractional Brownian motion:’

D=T+1-H

Here we are referring to the ‘box-counting” or Hausdorff dimension — which captures
an intuitive idea of how much space an object occupies. More technically, we can define
the family of dimensions D, by




where the space has been divided into cells of size » and py, is the relative density of
points inside cell k£. The value g =0 defines the Hausdorff dimension; ¢ =1 defines the
information dimension; and g=2 the correlatlon dimension approximated by the
famous Grassberger—Procacc1a algorithm."®

Following Mandelbrot,® it has become increasingly clear that fractal propertles are
shared by a wide Varlety of natural phenomena, ranging from internet trafﬁc and
econometric time series'’ through DNA base sequences'’ and ecosystems'*; see
http://linkage.rockefeller.edu/wli/ 1fnoise for a comprehensive bibliography on 1/f
noise. The pathophysiology of the heart is arguably the biomedical system most
productively investigated to date using mathematical tools from fractal geometry and
wavelet theory. It has been shown that the branching structures of the coronary arterial
and His-Purkinje fibre trees are self-similar and have fractal dimensions. Moreover,
the fractal geometry of cardiac anatomy has been related to the power law dynamics of
the ECG and various fractal and wavelet-based measures of complexity of ECG data
have been developed and shown to add Value in diagnosis of coronary artery disease and
prognosis of otherwise sudden arrythmias;'® see http://reylab.bidmc.harvard.edu/ for a
bibliography of related work. More generally, the fractal geometry of metabolite
exchange surfaces and vascular transport systems has been used persuasively to explam
the widespread prevalence of non-Euclidean allometric scaling laws in biology.'®

There have been some comparable applications of fractal concepts to analysis of
neuroscience data. Dendritic branchmg patterns of single neurons have been quanufied in
terms of fractal dimensions.'” Other groups have measured fractal dimensions and 1/f
spectral properties of electroencephalographic (EEG) signals.'®?° The fractal properties of
anatomical surfaces and boundaries segmented from human MRI data have been
measured.”' ** Fractal methods have been applied to analysis of radio-ligand SPET and
PET images”® and imaging-orientated models for cerebral blood flow have been proposed
on the basis of the probably fractal geometry of cerebrovascular architecture.”” There have
also been some preliminary investigations of 1/f spectral properties in {MRItime series. 2830

In short, fractal processes are virtually ubiquitous in nature and there has already
been some successful work applying ideas from fractal geometry to analysis of several
modalities of human brain mapping data. This provides a case for consideration of
wavelets as more than ‘just another basis’, one among many possible mathematical
domains, for the statistical analysis of fMRI data.

It is probably also relevant to note that wavelets are increasingly invoked in the
theoretical and numerical study of complex dynamical systems. For example, wavelets
have been shown parsimoniously to capture the rich dynamics of morphologlcal
phenomena such as microbial growth and nonequilibrium chemical rea CthIlS "to display
the flow of information between scales in nonequilibrium fluid ﬂows and to predict
the behaviour of spatially extended nonlinear dynamical equations.’” These aspects of
wavelets may be leading indicators of future applications to fMRI and electrophysiolo-
gical data because they show how wavelets can shed light on the underlying mechanisms
of pattern formation and information flow in complex systems like the brain.

1.3 Overview of wavelet-based methods for fMRI data analysis
Previous general reviews of wavelet applications in biomedical image processmg,
including some early work on fMRI are provided by Aldroubi and Unser’* and



Laine.’® Statistical issues in wavelet analy51s of time series are addressed comprehen-
sively by Percival and Walden.’® Wornell*” makes a detailed case for the general
optimality of wavelet representations for analysis of fractal signals. Bruce and Gao’’
describe implementation of wavelet methods in S-PLUS.

Several research groups have pioneered applications of wavelets to various issues in
fMRIdata analysis. The most popular application to date has been image compression
or denozszng38 " Multiresolutional analysis of s4pat1a1 maps, of fMRI time series
statistics has been explored by Ruttimann et 2L*° Brammer*® and Desco er al*’
Linear model estimation in the wavelet domain has been described by Fadili and
Bullmore,’® Meyer*® and Miiller et al*’ Resamplmg of fMRI data in the wavelet
domain has been developed by Bullmore et al,’® Hossien-Zadeh et al,’' and Break-
spear et al’? There have also been apphcatlons of wavelets to the image processmg
problems of registering individual fMRI datasets in a standard anatomical s ace ’ and
correcting unidirectional geometric distortions in echoplanar imaging data.”*

There have also been a number of interesting applications of wavelet methods to analysis
of human brain mapping data in other modalities. Turkheimer et a/”>>° have developed
methods for multiresolution analysis and linear modeling (e.g. ANOVA) of multisubject
positron emission tomography (PET) studies in the wavelet domain; Cselenyi et al’’
explored two- and three-dimensional wavelet transforms as spatial filters of radioligand
binding potential maps measured using PET; Raz et aL°® used wavelet packet analysis to
decompose auditory evoked potentlals (electrophysmloglcal data) into component wave-
forms; and Barra and Boire’® reported a technique for brain tissue classification or
segmentation of structural MRI based on fuzzy clustering of wavelet coefficients.

In the rest of this paper, we provide a brief formal introduction to some key
properties of the discrete wavelet transform (DWT). We will focus predominantly on
dyadic, orthonormal wavelets in the knowledge that related methods for time-invariant
or undecimated wavelet transformation, which effect a redundant or nonorthogonal
multiresolutional decomposition, are also available and may have some advantages for
aspects of time series analysis; see Ref. 36 for details. We will discuss in more detail its
application to three aspects of statistical analysis of fMRI data: resampling of fMRI
time series; time series modeling and nonparametric regression; and multiple hypothesis
testing. In all three of these areas of application, the whitening or decorrelating property
of the DWT can be exploited for statistical convenience.

2 The discrete wavelet transform (DWT)

2.1 Notation and definitions

Wavelets can be formally defined as families of functions that form an orthonormal
basis for a large class of physically relevant (square integrable) functions. A wavelet
family is obtained by dilation and translation of a compactly supported ‘mother’
wavelet i with zero integral over time [y(z)dt = O:

1 — 2k
w]-,k(w:ﬁw(t < )




and by dilation and translation of a ‘father’ wavelet or scaling function ¢ with unit
integral over time [¢(¢)dt =1

1 t—2k
Pjp(t) = fd)( > )
where j=1, 2, 3,..., ] indexes the scale S;=2/=2, 4,..., 2/ to which the wavelet has
been dilated and k = 1,2,3,..,K=N/2 indexes the location in time or space to which
it has been translated.

Wavelets can be distinguished by their smoothness or regularity, which is closely
related to the number of vanishing moments R. The number of vanishing moments of a
mother wavelet i is defined to be the largest integer R that satisfies [r'y(t)dr =0,
where r=0,1,..., R — 1.

2.2 Multiresolutional analysis

The discrete wavelet transform of a spatial process or time series achieves a multi-
resolutional analysis in which the total variance or energy of the data is distributed over
a hierarchy of scales, S At each scale the data is decomposed into two orthogonal
components — the detalf coefficients d;; and the approximation coefficients 4; . These
coefficients are respectively defined as the inner products of the data and the corre-
spondingly scaled and dilated mother i or father ¢, wavelets. The detail coefficients
contain information about variation in the data at a particular scale and the approxi-
mation coefficients represent the residual of the data after the information on this and
all finer scales has been removed. The original data y can be losslessly recovered by
adding the approximation at the coarsest scale and the details at this and all finer scales:

Y= a0 Y it
p ]k

2.3 Whitening properties of the discrete wavelet transform

Generally, the correlation between wavelet coefficients — both within and between
scales of the decomposition — will be small even if the data are highly autocorrelated.
This is sometimes called the whitening or decorrelating property of the DWT and it was
first understood theoretlcally for the class of signals known as fractional Brownian
motion.*®~*? Wornell*” later showed that the DWT has optimally decorrelating or
Karhunen-Loeve properties for the wider class of signals with 1/flike power spectral
density functions. More specifically, we can say that the correlation between any two
detail coetficients d;z and d;

(d]_’k, d]_,’k,> ~ |2jk _ 2j’/€/‘2(H—R)

or that the correlation between any two detail coefficients at the same scale d;z and dj
112(H-R
(o ) ~ Il = K

where R denotes the regularity of the wavelet and H is the Hurst exponent of the
process. Hence, provided that the number of vanishing moments of the chosen wavelet



basis functions is sufficiently large, R > 2H + 1, the correlations will decay rapidly and
indeed may be negligible even for adjacent coefficients.

2.4 Wavelet estimators of fractal noise parameters

The Hurst exponent (and therefore the fractal dimension and spectral exponent) of a
time series can be estimated from its wavelet transform. If a 1/f-like noise with Hurst
exponent H is projected onto a wavelet basis with R vanishing moments, and if
0 <(2H + 1) < 2R, then the sample variance of the wavelet coefficients at the jth scale

Var(dy}; = Z( e dy)
is related to the scale by a power law with exponent 2H + 1°°
Var{dy); = ()"

From this expression various estimators of  can be derived,"*’ of which the
simplest is a least-squares fit of the linear model®’

log,(Var{d,}) = c + QH + 1)j +

See Figure 3 for an example in fMRL

3 Data resampling in the wavelet domain or ‘wavestrapping’

Data resampling by permutation or bootstrap offers many advantages for inference on
functional neuroimaging data — in particular it obviates the need to make probably
unrealistic assumptions about spatial autocovariance and other distributional attributes
of the data and, perhaps for these reasons, an appropriate nonparametric test can have
superior sensitivity compared to a parametric alternative.”**> Moreover, there are many
statistics of potential interest in brain mapping, for example, spatial and multivariate
statistics, that do not have theoretically tractable or well-established distributions under
the null hypothesis and therefore cannot properly be tested parametrically. By contrast,
almost any statistic of interest may be accessible to inference on the basis of an
appropriate resampling scheme (see Bullmore ez 2L.°® and Welchew et al®’ for examples,
respectively, of resampling spatial and multivariate statistics in brain mapping).

However, designing an appropriate resampling scheme for statistics estimated by
analysis of a time series is of course complicated by nonindependence of the observa-
tions under the null hypothesis. If we write the linear model

y=Xp+e

where y is the fMRI time series observed at a single voxel, X is the design matrix
summarizing experimental effects of interest, B is the parameter vector to be estimated,
and € is the vector of residuals, then we must allow that the covariance matrix of the
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Figure 3 Functional MRI time series: wavelet shrinkage and wavelet estimator of Hurst exponent. (a), (b) A
‘raw’ functional MRI time series extracted from the left postcentral gyrus, a cortical region important for
somatosensory perception, in a single individual. (c), (d) Results of wavelet shrinkage or nonparametric
regression using soft (c) and hard (d) thresholding rules and Donoho and Johnstone’s universal threshold. The
approximately periodic structure of the signal is clearer after denoising by the soft shrinkage rule. (b) Wavelets
provide convenient estimators of the Hurst exponent H (or fractal dimension D) of a time series. A simple
estimator shown here is the slope of a straight line fitted to a plot of the log of the variances of the wavelet
(detail) coefficients at different scales log(Var{d,};) vs. the relevant scales of the decomposition; by this
method, H =0.48 or D = 1.562.

residuals ¢ will not generally be diagonal — there will be appreciable autocorrelation or
serial dependency of the residuals in the time domain.®®

The causes of residual or endogenous autocorrelation in fMRI time series are not yet
certainly known: they may include instrumental noise, head movement in the scanner,
and aliased cardiac or respiratory cycle pulsation. In addition to these ‘nuisance’ sources
of coloured noise, there may also be contributions from substantively more interesting
neurophysmloglcal processes. The problem for resampling is clearly that it will be
inappropriate in this context simply to ‘reshuffle’ the data points in the time domain.
This will destroy serial dependency or whiten the data and differentially bias the
estimation of any standardized test statistic in the resampled series. It may also
destroy physiologically important properties of the data. In short, random resampling



in time is not a valid basis for a test because the reshuffled units of observation are not
exchangeable. (A set of n units of observation of the random variable X is termed
ex changeable if the j joint probability distribution ngl , X5, X5,..., X,,) is invariant under
permutation of the units; see Lindley and Novick®” for details.) Various methods have
been proposed to circumvent this problem (and are more completely reviewed by Davison
and H1nkley7°) Block resampling involves defining the resampled unit as a block of
consecutive time points; provided the length of each block is long enough to encompass
all (possibly long memory) dependencies in the time serles the unspecified correlational
structure of the data may be preserved under resamphng Model-based prewhitening
involves specifying a parametric form for the dependencyin & and correcting the data and
design matrix so that the residuals of the corrected model are whitened. For example, if
we specify a first-order autoregressive AR(1) model for the residual series

g =n€ 1 +p, p~NOI)

and transform the data and design matrix by the estimated AR(1) coefficient # so that

)’: =Y~ ﬁyt—l
X: = Xt - ;’Xt—l

then the residuals €* of the transformed model y* = X*B + &* will be white, provided
the AR(1) model is adequate to account for the autocorrelation in the observed time
series under the null hypothesis. This method can of course be generalized to
accommodate a higher-order autoregressive model for the observed autocorrelation.
The key point is that the data (or model residuals) are rendered exchangeable, and a
permutation test on this basis is therefore valid, if the serial dependency in the residual
process € is accurately modeled by the specified AR model.

A third strategy is to resample the observed time series after orthogonal transforma-
tion to another domain. A well-known example of this approach is to take the Fourier
transform of the observed time series, randomly permute the phases of the complex
valued transform over all Fourier frequencies, then take the inverse transform of the
‘phase-scrambled’ data to obtam a resampled time series that preserves the spectral
density of the observed data.”? Exchangeability is conferred by the independence of the
Fourier transform at different frequencies, and by the independence of the real and
imaginary components of the transform at each frequency. However, if the observed
data are nonstationary, or include long memory dependencies, then this phase-
scrambling algorithm may fail adequately to preserve their second-order stochastic
properties;”® it may also have undesirable effects on the amplitude distribution of
the data.

The discrete wavelet transform provides an alternative device for this strategy
of resampling a time series after orthogonal transformation. In its simplest form,
‘wavestrapping’ involves:

1) computing the discrete wavelet transform of the observed series;
2) randomly permuting the decorrelated detail and approximation coefficients within
each scale of the decomposition; and



3) computing the inverse wavelet transform to recover the resampled series in the time
domain.

As illustrated in Figure 4, this method can faithfully preserve the autocorrelational
structure of a 1/f-like time series because its wavelet coefficients will be whitened and
therefore exchangeable in the wavelet domain. It is also notable that, because of their
spatio-temporal localization, wavelets provide a suitable basis for resampling of
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Figure 4 Resampling in the wavelet domain or ‘wavestrapping’ of simulated 1/fnoise. Top row, from left to
right: A long memory time series simulated by a physical model of multiple relaxation processes (N=128); its
autocorrelation function (ACF), with dashed lines indicating Bartlett's 95% confidence interval for zero
0+2/+/n, and its discrete wavelet transform (DWT). In the top right panel, the coefficients of the dilated
and translated mother wavelets are shown for five levels of detail j, labelled d1-d5; and for the father wavelet,
labelled s5. The top row of this panel shows the time series reconstructed by the inverse wavelet transform.
Middle row, from left to right: The autocorrelation functions of the wavelet coefficients at levels d1-d3 are
shown with dashed lines indicating 95% CI for zero, 0+ 2/,/n/2/. Bottom row, right to left: The wavelet
coefficients after random permutation within each level of detail; the autocorrelation function of the time
series obtained by the inverse wavelet transform on the resampled coefficients; the resampled time series.
The key point is that although the original time series is strongly autocorrelated, its wavelet coefficients are
relatively whitened or decorrelated, and random permutation of these serially independent or exchangeable
coefficients generates a resampled time series with an autocorrelation function very similar to the original.
Figures produced by permission of Wiley.



possibly irregular subsets of an image, such as the domain of voxels representing
intracerebral tissue in an MR image. Resampling of a locally defined subset of the data
cannot so readily be achieved by Fourier techniques.

This method is more fully described by Bullmore et al°° for sampling the null
distribution of the linear model parameter vector B by fitting the time series regression
model to the fMRI data at each voxel after repeated permutation in the wavelet
domain. Breakspear et al>? describe two variations on this resampling scheme that
more exactly preserve the phase and amplitude distribution of the original data: block
resampling in the wavelet domain, which involves permutation of blocks of adjacent
wavelet coefficients within each level of the decomposition; and cyclic rotatlon of the
wavelet coefficients within each level by a random shift. Breakspear et al>? use these
methods for generation of surrogate data ensembles to test the null hypothesis of zero
nonlinear interaction between coupled attractors in a dynamical systems analysis of
electrophysiological data.

A crucial issue in the design and validation of wavestrapping schemes is the extent to
which the wavelet coefficients are indeed decorrelated. For fractal time series there is
useful theory predicting decay of the correlation between coefficients within scale as an
exponential function of the distance between them; but the theoretical constraints on
decay of the correlation between higher-dimensional, for example, two- or three-
dimensional, wavelet coefficients are not so clearly specified, at least to our knowledge.
Moreover, there is as yet only preliminary evidence in support of the assumption that
fMRI time series generally have 1/f-like spectral densities or long memory autocorrela-
tion functions. In any case, {MRI time series will invariably be finite and are typically
rather short (7 ~50-200 time points). This potentially creates a problem for waves-
trapping because estimation of wavelet coefficients at the boundaries of finite time series
can introduce artefactual correlations between coefficients; this is notably an issue with
the widely used periodic convolutional filter for boundary correction, although
nonconvolutional filters may be less problematic in this respect.”

These caveats imply that development and optimization of resampling schemes in the
wavelet domain remains an active focus for methodological research, but the potential
advantages of this approach seem clear for resampling a wide range of test statistics on
the null hypothesis of long memory autocorrelational structure in time.

4 Linear modeling in the wavelet domain

The existence of long memory noise in fMRI time series not only complicates
resampling but also impacts on the efficiency of estimation of the linear model
parameter vector B. It is well known that ordinary least squares (OLS) will be the
best linear unbiased (BLU) estimator of B if the residual series € is white. However, if €
is autocorrelated, OLS will be less than optimally efficient and will severely under-
estimate the standard error of . One response to this problem is to formulate a linear
time invariant (LTT) model for the serial dependency in €, the simplest example of which
is the AR(1) model already discussed; then use the estimated parameters of the LTI
model to prewhiten the data and design matrix, or diagonalize the error covariance
matrix o. Variants of this approach — autoregressive least squares (ARLS) — have been



quite widely advocated or discussed in fMRI data analysis®®’*~’? but are susceptible
to failure, with consequent loss of type 1 error control due to overestimation of
standardized test statistics, in the context of noise structures more complex than
predicted, for example, by low-order AR models.

An alternative strategy to achieve diagonalization of the error covariance matrix, and
thereby optimize efficiency in estimation of B, is to transform both data and demgn
matrix into the wavelet domain prior to signal and noise parameter estimation.’® This
approach is predicated on the assumption that the residual process is fractal or has
scale-invariant properties. More formally, we write the regression model as

y:Xﬁ+83 SNN(O,E{H})

that is, we suppose that the error covariance matrix is not diagonal but has an off-
diagonal structure parameterized by the Hurst exponent, H. Taking the discrete wavelet
transform of this model gives

Yo = XuB+€, £, ~N(O,Z,)

where X, is the result of applying the DWT separately to each column of the design
matrix, and Yy and €, are, respectively, the wavelet transforms of the data and the error
process. As noted earlier, the orthonormal DWT is a Karhunen-Loeve expansion of 1/f
processes. To a good approximation, the variance-covariance matrix of the noise is
therefore diagonalized by the wavelet transform, that is, £, is a diagonal matrix.

The L, regression problem can be solved in the wavelet domain using an iterative
maximum likelihood (ML) estimator, called wavelet-generalized least squares (WLS).*°
The WLS estimator was shown to be the BLU estimator of regression model parameters
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Figure 5 Type 1 error calibration curves for three linear model estimators applied to analysis of ‘null’ fMRI
datasets. (a) WLS =wavelet-generalized least squares; (b) OLS =ordinary least squares; (c) AR(q)[SBC]=
autoregressive least squares using AR models of order g specified by minimization of the Schwarz Bayesian
criterion (SBC) at each voxel. Exacttype 1 error control is indicated by correspondence between observed and
expected numbers of positive tests. For both OLS and AR(qg)[SBC] estimators, there is loss of type 1 error
control (observed false positives > expected false positives) implying inadequate whitening of autocorrelated
fMRI noise. The WLS estimator provides the basis for a valid, sometimes slightly conservative test. Figures
produced by permission of Elsevier.



Figure 6 Maps of the Hurst exponent (0<H<1)
estimated at each voxel of a single ‘null’” image by
wavelet-generalized least squares. Selected slices of
the parameter map are shown corresponding to
Talairach z-coordinates +26mm (a), +30mm (b)
and +34mm (c). H is colour-coded as shown in the
bar to the right so that time series with long memory
noise parameterized by H — 1 are coloured oran-
ge/red. These voxels are concentrated symmetrically
in the frontal cortex and in the medial posterior
parietal cortex. Central areas of white matter are
characterized by lower values of H (dark green/blue
voxels).

Figure 7 Multiple hypothesis testing in the wavelet
domain. The method for multiple hypothesis testing
proposed by Brammer*® (1998) was here applied to
detection of activation in a single slice of fMRI data
acquired during bimodal (visual and auditory) stimu-
lation at different frequencies. The Kolmogorov-
Smirnoff test statistic is colour-coded at each voxel.
Red voxels indicate brain regions where the beha-
viour of the wavelet coefficients at scales corre-
sponding to the frequencies of bimodal stimulation
departed significantly from the expectation under the
null hypothesis of an i.i.d Gaussian process. Figure
produced by permission of Wiley.

Figure8 Multiple hypothesistestinginthe waveletdomain:controlof FDR and Bayesian approaches.(a) Spatial
map of test statistics estimated by linear modelling (WLS) of the fMRI time series at each voxel of an individual
image. (b) Thresholded map controlling false discovery rate at P=0.01. (c) Thresholded map using Ogden’s
recursive hypothesis testing algorithm with P=0.01. (d) Thresholded map using Vidakovic’s Bayesian rule for
wavelet thresholding. See Fadili and Bullmore® for further details. Figure produced by permission of SPIE.



in the context of long-memory errors; it also provides an ML estimate of the Hurst
exponent and the error variance o* of the noise at each voxel. Properties of this
estimator, including its Cramer-Rao bounds, were derived theoretically and compared
satlsfactorlly to its empirical performance on a range of simulated data.

One useful empirical technique to evaluate the performance of different estimators
and inferential procedures in fMRIdata analysis is to apply them to analysis of ‘resting’
or ‘null’ datasets acquired while human subjects lie quietly in the scanner with their eyes
closed. These data provide an experimental realization of the null hypothesis that brain
activity is not determined by experimental design, since there is no explicit experimental
input driving brain function in these data. If the linear model parameter B is then
estimated at each voxel, for an arbitrary design matrix X, and tested against the null
hypothesis p =0, we expect aV (false) positive tests over the whole image, where
0 <a<1 is the size of hypothesis test at each voxel and V is the search volume or
number of voxels tested. As shown in Figure 5, parameter estimation by WLS gives
almost exact type 1 error control over all sizes of test applied to null images acquired
from seven individuals and analysed with three different design matrices each. As
expected, OLS is associated with unacceptable loss of type 1 error control: the number
of positive tests is much greater then oV because the standard error of f is substantially
underestimated by OLS in the context of autocorrelated noise. The same is true, to a
lesser extent, for an estimator using an arbitrary order of autoregressive model in an
attempt to prewhiten the model residuals (the order of AR model was individually
specified for each voxel to minimize the Schwarz Bayesian criterion). This suggest that
the noise structure in fMRI time series may be more complex than reasonable choices of
AR model order may be able to deal with robustly.

Another benefit of WLS is that it provides a map of the Hurst exponent estimated at
each voxel. This confirms that some voxels have highly persistent autocorrelational
structure, indicated by H— 1, and preliminary data suggest that the anatomical
distribution of such long memory noise is not random. In the image represented in
Figure 6, for example, long memory noise is concentrated symmetrically in areas of the
frontal cortex and in the medial posterior parietal cortex; voxels representing central
white matter are characterized by lower values of H. Further experimental studies to
clarity the source(s) of long memory noise in fMRI are possible on this basis, using WLS
estimates of H to map changes in fMRI noise properties related to systematic
manipulation of relevant instrumental or physiological variables.

4.1 Nonstationary noise models and semiparametric regression

Two further extensions of linear modeling i in the wavelet domain have been described
in relation to fMRI data analysis. Fadili et al.?’ specified a nonstationary fractal noise
model in which the Hurst exponent was allowed to vary in time. They found that voxels
representing cortical regions of the brain were particularly likely to demonstrate
nonstationarity of H. Fadili and Bullmore®® also noted the possibility of estimating
partial linear or semiparametric models in the wavelet domain. Such models can be
written

y=Xp+gkt)+e



where g(¢) denotes a nonparametric function of time. Meyer describes the theory and
application of semiparametric models to fMRI data in greater detail.

4.2 Nonparametric regression

It is also possible to take an entirely nonparametric approach to signal detection or
denoising 1n fMRI data analysis by adopting well-known techniques of wavelet
shrinkage.*® Tf we write a model of the data as the sum of an unknown function of
time g(¢) plus error

=gt)+e

then we can optimally recover an estimate of the denoised signal g(t), under certain
broad assumptions about the form of the signal by computing the DWT of the data;
thresholding or shrinking the wavelet coefficients in each level according to some rule;
and computlng the inverse wavelet transform of the ‘shrunk’ coefficients. Vidakovic®
and Mallat' provide more detail about optimality of wavelet shrinkage. It can be
proven that soft or hard thresholding with the universal threshold approximates by a
log factor the minimax risk for estimation of a large class of functions, for example,
Besov space, in Gaussian noise.

Within this general scheme, several choices of threshold 2 and thresholding rule are
available. If we are prepared to assume € is 1.i.d. Gaussian there is an argument for using
the universal threshold proposed by Donoho and Johnstone®®

Ly = av/2 log(n)

where 7 is the number of data points in the time series and ¢ is the standard deviation of
the noise, which can be estimated by scaling the median absolute deviation (MAD) of
the wavelet coefficients at the finest scale of the decomposition, 6 = MAD/0.6745.
Hard thresholding sets to zero any wavelet coefficient which has absolute value less
than the threshold and leaves untouched coefficients that exceed threshold. A widely
used soft thresholding rule is defined as

d—7 ifd>)
T, )={d+) ifd<—.
0 if d| < 2

where d is a wavelet coefficient (scale and location subscripts omitted for clarity); this
assumes that all coefficients are contaminated by noise. Hard thresholding achieves a
low bias-high variance solution to the shrinkage problem; soft thresholding is relatively
a high bias-low variance solution. Numerous other thresholding rules and estimators of
/. have been proposed in the general statistical literature but have not yet been explored
systematically in fMRI. Examples of hard and soft thresholding applied to a represen-
tative fMRI time series are illustrated in Figure 4.

Alexander et al** described the application of wavelet shrinkage to complex- and
real-valued fMRIdata and compare hard and soft thresholding rules to wavelet domain
Wiener filtering. They advocated estimating the variance of the noise specifically for
each level of the decomposition, rather than estimating o from the finest scale wavelet



coefficients and assuming that it applies universally to the variance of the noise at all
scales of the decomposition. Level-specific thresholds are appropriate to shrinkage of
the more 2general class of data in which errors are correlated. LaConte, Ngan and
colleagues®'*? described a time-varying filter based on the stationary or translation
invariant wavelet transform and applied it to denoising of eventrelated fMRI time
series. The threshold for shrinkage of wavelet coefficients was estimated by a ‘leave-one-
out’ cross-validation procedure and the method was shown to be robust to reasonable
choices of mother wavelet. Von Tscharner and Thulborn®’ used a wavelet tuned to the
frequency of periodic alternation of the experimental input function to optimize time-
frequency analysis of fMRI data acquired using a blocked periodic activation paradigm.

Although wavelet shrinkage of statistic maps overlaps substantively with the work on
multiple hypothesis testing described below, it is perhaps surprising that wavelet
shrinkage has not yet been explored extensively for two- or three-dimensional denoising
of {MRI statistic maps, prior to statistical testing in the spatial domain, although
Gaussian smoothing is very widely applied for this purpose. Gaussian smooth1n§
customarily entails application of single smoothing kernel (though see Worsley et al. §
for a multiresolutional approach to PET data in Gaussian scale-space) with the obvious
risk of loss of power to detect spatial features incommensurate with smoothing kernel
size. Smoothing by wavelet shrinkage has the relative merit of locally adaptive
bandwidth so that the power to detect spatial feature of varying extent is not
constrained by the arbitrary choice of a single kernel size.

5 Multiple hypothesis testing

A single fMRI dataset typically comprises ~10* voxels representing brain tissue. A
common, massively univariate approach to analysis of these data is to estimate a test
statistic by time series regression modeling at each voxel. This will result in a map
of ~10* test statistics, each of which is to be tested under the null hypothesis of no
experimental effect. This is evidently a multiple comparisons problem, which is
complicated by the likelihood of some degree of spatial smoothness in the statistic
maps under the null hypothesis, perhaps sufficient to render the Bonferroni correction
overconservative (though see Ref. 66).

Ruttimann et al.*’ exploited the multiresolutional and decorrela ting properties of the
wavelet transform of spatial statistic maps in an attempt to mitigate the multiple
comparisons problem. They assumed that the noise in the image was 1.i.d. Gaussian
€ ~ N(0, 6?) and, therefore, that the wavelet coefficients were also 1.i.d. Gaussian under
the null hypothesis d ~ N(0, 6?). (The DWT of Gaussian white noise is Gaussian white
noise.) They then proposed a hierarchical approach to hypothesis testing in which each
level (and orientation) of the two-dimensional wavelet transform was subject to an
‘omnibus’ test of significance by comparing the sum of squared, standardized wavelet



coefficients it comprised against critical values of an appropriate chi-square distribu-
tion. In other words they assumed that under the null hypothesis

K /. 2
kY 2K
> (%) ~ 2

k=1

where K = /2’ is the number of coefficients in the jth level of the decomposition.
Levels of the decomposition for which the null hypothesis could not be refuted by this
test were not examined further. Whereas each standardized coefficient in levels that
passed this omnibus test for significance was then individually tested against the
standard Normal distribution. The independence both between levels and between
coefficients within levels that is implied by the assumption of i.i.d. Gaussian noise in the
data encouraged control of the family-wise error by Bonferroni correction for both
stages of the hypothesis testing algorithm. An activation map was finally constructed by
the inverse wavelet transform using only those coefficients that had survived both tests
for significance. This approach has the merlt of reducing overall the number of tests to
be conducted, but the validity of the y* and Normal approximations, and of the
Bonferroni correction, all depend on the assumption that the errors in the imaging data
have an independent Normal distribution, which currently seems unlikely to be realistic
in general.

Hilton et al®> and Brammer*® all explored a related approach whereby the
coefficients within each level of the wavelet decomposition were recursively tested
against the null hypothesis that they resembled a white noise process. For example,
Brammer*® estimated the ‘Brownian bridge process’
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and tested the maximum value of this cumulative sum process against critical values of
the Kolmogorov-Smirnoff statistic. The coefficients corresponding to maxima of
Bz(z/K) were repeatedly removed and replaced by linear interpolation until the
maximum nowhere exceeded its expected value under the null hypothesis. This process
can be regarded as one way of iteratively identifying wavelet coefficients that depart,
both in terms of their absolute magnitude and their relation to neighbouring coeffi-
cients, from the white Gaussian behaviour predicted under the null hypothesis that the
errors in the spatial map are 1.1.d. Gaussian. An activation map is constructed by taking
the inverse wavelet transform using only those coefficients that were identified as
significant (see Flgure 7).

Miiller et al*’ extended Ruttimann’s method to hierarchical hypothesis testing on
spatial maps of an arbitrary linear model parameter and applied this to analysis of
eventrelated fMRI data. They demonstrated superior SNR compared to monoresolu-
tional Gaussian smoothing and robustness of the method to type of wavelet. In
agreement with studies of simulated data*’ they reported that lower-order wavelets
achieved better performance.



More recent approaches to multiple hypotheses testing on maps or images in the
wavelet domain have included efforts to define test statistics that are informed by the
spatial relations between large coefficients within and between levels of the decom-
position; methods for control of type 1 error in terms of the false discovery rate;’® and
incorporation of prior distributions for wavelet coefficients under the alternative
hypothesis in Bayesian rules.®

In the work by Fadili and Bullmore,’” we applied and compared methods for
controlling the false discovery rate (FDR), and for Bayesian decision making, in the
wavelet domain. The FDR of empirical wavelet coefficients can be defined as the
expected false positive fraction E(FPF), that is, the proportion of all positive tests that
are falsely positive. Following Abramovich and colleagues,**”® we aimed to retain the
maximum number of observed wavelet coefficients subject to the constraint E(FPF) < a,
using the following algorithm to calculate a global threshold for elimination/retention:

1) For each of the n wavelet coefficients d, , inside the brain at scale j, location & and
each orientation, calculate the correspondlng double-sided P-value, p; . under Hy:

(o o(%)

where @ is the cumulative standard normal distribution and ¢ is the robust MAD
estimate of the standard deviation of the noise.

2) Sort the pj in an ascending order, P1<pr<p;-

3) Find the ast index such that, izpgr = max (i/p; < (z/n)oc)

4) For this index, calculate the critical threshold corresponding to this double-sided p-

value:
Jppr = 60! (1 —%)

5) Use Azpr and apply classical hard thresholding or soft thresholding rules.
6) Apply the inverse DWT to obtain the thresholded image in the spatial domain.

However, thlS approach is based on a global threshold. To overcome this limitation,
Ogden et al.’! developed a recursive hypothesis testing procedure that produces level-
dependent thresholds. Rather than seeking to include as many wavelet coefficients as
possible (subject to condition), the algorithm includes a wavelet coefficient only when
there is strong evidence that it is needed in the reconstruction. A soft thresholding rule is
applied with the level-dependent thresholds; see Ref. 87 for details of the algorlthm

A Bayesian method for wavelet thresholdmg was considered by Vidakovic.® The
Bayesian framework here imposes a prior which describes the variability of the wavelet
coefficients of the true unknown image. This requires a prior distribution that has a
point mass component at zero. Otherwise, the testing is impossible because any
continuous prior density will give the prior (and hence the posterior) probability of
zero to the precise hypothesis. In Ref. 87 we used a mixture of a central Gaussian and a
point mass at zero. For this mixture model, Abramovitch et al’® proposed a closed-
form expression for the ratio test (RT) statistic as the Bayes thresholding rule. They also
proposed an EM algorithm to estimate the hyperparameters, namely the mixing



proportion and the level- dependent variance of the Gaussian pdf in the mixture model.
In Fadili and Bullmore,®” we derived an expression of the RT statistic under the null
hypothesis. Only coefficients whose RTs exceed the o-level critical threshold are
retained in the reconstruction by hard thresholding.

Global FDR, recursive and Bayesian approaches to multiple hypothesis testing are
compared for an illustrative example of fMRI data in Figure 8. The activation task was
simply repeated finger-thumb opposition with the right hand. Because of its soft
thresholding rule, the recursive hypothesis testing procedure gives a smoother estimate
than the FDR-based method. However, these two methods seem to have comparable
power. The Bayesian approach, on the other hand, reveals a somewhat fuller char-
acterization of the cerebral response in frontal areas important for movement control
and planning.

6 Conclusions

These are early days in the extension of wavelet methods to the particular challenges of
fMRI data analysis and much remains to be tried and tested. The noise properties of
fMRI data both in time and space need to be further clarified in relation to the
theoretical constraints on decorrelating and other properties of the DWT. There is a
rich variety of wavelet methods for image and signal processing in general, which has
yet to be fully evaluated in relation to fMRL There are several areas of potential
application — such as multiscale analysis of brain connectivity in the wavelet domain -
that are almost entirely unexplored at present. In this article, we hope simply to have
motivated the use of wavelets as an appropriate basis for analysis of nonstationary
brain imaging data and to have highlighted a few methodological issues — resampling,
model estimation and hypothesis testing — that can benefit specifically from the DWT as
an optimal whitening filter of fractal processes.
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