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This contribution provides a general framework to use Lagrange multipliers for the
simulation of low Reynolds number fiber dynamics based on Bead Models (BM). This
formalism provides an efficient method to account for kinematic constraints. We illustrate,
with several examples, to which extent the proposed formulation offers a flexible and
versatile framework for the quantitative modeling of flexible fibers deformation and
rotation in shear flow, the dynamics of actuated filaments and the propulsion of active
swimmers. Furthermore, a new contact model called Gears Model is proposed and
successfully tested. It avoids the use of numerical artifices such as repulsive forces between

adjacent beads, a source of numerical difficulties in the temporal integration of previous
Bead Models.

1. Introduction

The dynamics of solid–liquid suspensions is a longstanding topic of research while it combines difficulties arising from 
the coupling of multi-body interactions in a viscous fluid with possible deformations of flexible objects such as fibers. A vast 
literature exists on the response of suspensions of solid spherical or non-spherical particles due to its ubiquitous interest 
in natural and industrial processes. When the objects have the ability to deform many complications arise. The coupling 
between suspended particles will depend on the positions (possibly orientations) but also on the shape of individuals, 
introducing intricate effects of the history of the suspension.

When the aspect ratio of deformable objects is large, those are generally designated as fibers. Many previous investiga-
tions of fiber dynamics, have focused on the dynamics of rigid fibers or rods [1,2]. Compared to the very large number of 
references related to particle suspensions, lower attention has been paid to the more complicated system of flexible fibers 
in a fluid.

Suspension of flexible fibers are encountered in the study of polymer dynamics [3,4] whose rheology depends on the 
formation of networks and the occurrence of entanglement. The motion of fibers in a viscous fluid has a strong effect on 
its bulk viscosity, microstructure, drainage rate, filtration ability, and flocculation properties. The dynamic response of such 
complex solutions is still an open issue while time-dependent structural changes of the dispersed fibers can dramatically 
modify the overall process (such as operation units in wood pulp and paper industry, flow molding techniques of composites, 
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water purification). Biological fibers such as DNA or actin filaments have also attracted many researches to understand the 
relation between flexibility and physiological properties [5].

Flexible fibers do not only passively respond to carrying flow gradients but can also be dynamically activated. Many 
of single cell micro-organisms that propel themselves in a fluid utilize a long flagellum tail connected to the cell body. 
Spermatozoa (and more generally one-armed swimmers) swim by propagating bending waves along their flagellum tail to 
generate a net translation using cyclic non-reciprocal strategy at low Reynolds number [6]. These natural swimmers have 
been modeled by artificial swimmers (joint microbeads) actuated by an oscillating ambient electric or magnetic field which 
opens breakthrough technologies for drug on-demand delivery in the human body [7].

Many numerical methods have been proposed to tackle elasto–hydrodynamic coupling between a fluid flow and de-
formable objects, i.e. the balance between viscous drag and elastic stresses. Among those, “mesh-oriented” approaches have 
the ambition of solving a complete continuum mechanics description of the fluid/solid interaction, even though some ap-
proximations are mandatory to describe those at the fluid/solid interface. Without being all-comprehensive, one can cite 
immerse boundary methods (e.g. [8–11]), extended finite elements (e.g. [12]), penalty methods [13,14], particle-mesh Ewald 
methods [15], regularized Stokeslets [16,17], Force Coupling Method [18].

In the specific context of low Reynolds number elastohydrodynamics [19], difficulties arise when numerically solving the 
dynamics of rigid objects since the time scale associated with elastic waves propagation within the solid can be similar to 
the viscous dissipation time-scale. In the context of self propelled objects the ratio of these time scales is called “Sperm 
number”. When the Sperm number is smaller or equal to one, the object temporal response is stiff, and requires small 
time steps to capture fast deformation modes. In this regime, fluid/structure interaction effects are difficult to capture. One 
possible way to circumvent such difficulties is to use the knowledge of hydrodynamic interactions of simple objects in 
Stokes flow.

This strategy is the one pursued by the Bead Model (BM) whose aim is to describe a complex deformable object by 
the flexible assembly of simple rigid ones. Such flexible assemblies are generally composed of beads (spheres or ellipsoids) 
interacting by some elastic and repulsive forces, as well as with the surrounding fluid. For long elongated structures, al-
ternative approaches to BM are indeed possible such as slender body approximation [1,20–22] or Resistive Force Theory 
[23–25].

One important advantage of BM which might explain their use among various communities (polymer Physics [2–5,
26–34], micro-swimmer modeling in bio-fluid mechanics [35–44], flexible fiber in chemical engineering [45–52]), relies 
on their parametric versatility, their ubiquitous character and their relative easy implementation. We provide a deeper, 
comparative and critical discussion about BM in Section 2. However, we would like to stress that the presented model is 
more clearly oriented toward micro-swimmer modeling than polymer dynamics.

One should also add that BM can be coupled to mesh-oriented approaches in order to provide accurate description of 
hydrodynamic interactions among large collection of deformable objects at moderate numerical cost [43]. Many authors 
only consider free drain, i.e. no Hydrodynamic Interactions (no HI), [27,48,49,53] or far field interactions associated with the 
Rotne–Prager–Yamakawa tensor [35,36,40,54]. This is supported by the fact that far-field hydrodynamic interactions already 
provide accurate predictions for the dynamics of a single flexible fiber when compared to experimental observations or 
numerical results. In order to illustrate the method we use, for convenience, the Rotne–Prager–Yamakawa tensor to model 
hydrodynamic interactions. We wish to stress here that this is not a limitation of the presented method, since the presented 
formulation holds for any mobility problem formulation. However, it turns out that for each configuration we tested, our 
model gave very good comparisons with other predictions, including those providing more accurate description of the 
hydrodynamic interactions.

The paper is organized as follows. First, we give a detailed presentation of the Bead Model for the simulation of flexible 
fibers. In this section, we propose a general formulation of kinematic constraints using the framework of Lagrange multi-

pliers. This general formulation is used to present a new Bead Model, namely the Gears Model which surpasses existing 
models on numerical aspects. The second part of the paper is devoted to comparisons and validations of Bead Models for 
different configurations of flexible fibers (experiencing a flow or actuated filaments).

Finally, we conclude the paper by summarizing the achievements we obtain with our model and open new perspectives 
to this work.

2. The Bead Model

2.1. Detailed review of previous Bead Models

The Bead Model (BM) aims at discretizing any flexible object with interacting beads. Interactions between beads break 
down into three categories: hydrodynamic interactions, elastic and kinematic constraint forces. Hydrodynamics of the whole 
object result from multibody hydrodynamic interactions between beads. In the context of low Reynolds number, the re-
lationship between stresses and velocities is linear. Thus, the velocity of the assembly depends linearly on the forces and 
torques applied on each of its elements. Elastic forces and torques are prescribed according to classical elasticity theory 
[55] of flexible matter. Constraint forces ensure that the beads obey any imposed kinematic constraint, e.g. fixed distance 
between adjacent particles. All of these interactions can be treated separately as long as they are addressed in a consistent 



Fig. 1. Spring Model: linear spring to keep constant the inter-particle distance.

Fig. 2. Joint Model: overlapping due to bending if no gap between beads.

Fig. 3. Joint Model: c1 is separated by a gap εg from the beads.

order. The latter is the cornerstone which differentiates previous works in the literature from ours. Numerous strategies 
have been employed to handle kinematic constraints.

[32,34,35,40] and [50] used a linear spring to model the resistance to stretching and compression without any constraint 
on the bead rotational motion (Fig. 1). The resulting stretching force reads:

Fs = −ks
(

ri,i+1 − r0i,i+1

)

(1)

where

• ks is the spring stiffness,
• ri,i+1 = ri+1 − ri is the distance vector between two adjacent beads (for simplicity, equations and figures will be pre-

sented for beads 1 and 2 and can easily be generalized to beads i and i + 1),

• r01,2 is the vector corresponding to equilibrium.

However, regarding the connectivity constraint, the spring model is somehow approximate. A linear spring is prone 
to uncontrolled oscillations and the problem may become unstable. Many other authors, among which [28–30], thus use 
non-linear spring models for a better description of polymer physics. Nevertheless, the repulsive force stiffness has an 
important numerical cost in time-stepping as will be discussed in Section 2.6.3. Furthermore, unconstrained bead rotational 
motion leads to spurious hydrodynamic interactions and thus limits the range of applications for these BM.

Alternatively, [47–49,53] and [46] constrained the motion of the beads such that the contact point for each pair ci
remains the same. While more representative of a flexible object, this approach exhibits two main drawbacks:

1. a gap between beads is necessary to allow the object to bend (see Fig. 2),
2. it requires an additional center to center repulsive force, and thus more tuning numerical parameters to prevent over-

lapping between adjacent beads.

Consider two adjacent beads, with radius a, linked by a hinge c1 (typically called ball and socket joint). The gap εg

defines the distance between the sphere surfaces and the joint (see Fig. 3). Denote pi the vector attached to bead i pointing 
towards the next joint, i.e. the contact point ci .

The connectivity between two contiguous bodies writes:
[

r1 + (a + εg)p1

]

−
[

r2 − (a + εg)p2

]

= 0 (2)

and its time derivative
[

ṙ1 − (a + εg)p1 × ω1

]

−
[

ṙ2 + (a + εg)p2 × ω2

]

= 0. (3)



ṙi and ωi are the translational and rotational velocities of bead i. The constraint forces and torques associated to (3) are 
obtained either by solving a linear system of equations involving beads velocities [53], or by inserting (3) into the equations 
of motion when neglecting hydrodynamic interactions [48,49].

The gap width 2εg controls the maximum curvature κ J
max allowed without overlapping. From the sine rule, one can

derive the simple equation relating εg and κ J
max

κ
J
max =

√

1− ( a
a+εg

)2

a
(4)

Once aware of these limitations, the gap εg , range and strength of the repulsive force should be prescribed depending on 
the problem to be addressed.

[56] and [43] proposed a more sophisticated Joint Model than those hitherto cited, using a full description of the links 
dynamics along the curvilinear abscissa. They derived a subtle constraint formulation which ensures that the tangent vector 
to the centerline is continuous and that the length of links remains constant. These two works are worth mentioning since 
they avoid an empirical tuning of repulsive forces. Yet, [56] computed the constraint forces and torques with an iterative 
penalty scheme instead of using an explicit formulation.

Finally, it is worth mentioning that the bead model proposed in [31] circumvents the inextensibility difficulty by impos-

ing constraints on the relative velocities of each successive segments, so that their relative distance is kept constant. Using 
bending potential, [31] permit overlap between beads with restoring torque (cf. Fig. 2). A Lagrangian multiplier formulation 
of tensile forces is also used in [57], which is equivalent to a prescribed equal distance between successive beads. Again, 
inextensibility condition does not prevent bead overlapping due to bending in this formulation. The computation of contact 
forces which is proposed in the following Section 2.2 generalizes the Lagrangian multiplier formulation of [31] to general-
ized forces. Using more complex constraints involving both translational and angular velocities, we show that it is possible 
to accommodate both non-overlapping and inextensibility conditions without additional repulsive forces (using the rolling 
no-slip contact with the gears model detailed in Section 2.3). This proposed general formulation is also well suited for any 
type of kinematic boundary conditions as illustrated in Section 3.4.

2.2. Generalized forces, virtual work principle and Lagrange multipliers

The model and formalism proposed in this article rely on earlier work in Analytical Mechanics and Robotics [58,59]. The 
concept of generalized coordinates and constraints which has proven to be very useful in these contexts is described here. 
Generalized coordinates refer to a set of parameters which uniquely describes the configuration of the system relative to 
some reference parameters (positions, angles, . . . ). For describing objects of complex shape, let us consider the position ri
of each bead i ∈ {1, Nb} with associated orientation vector pi which is defined by three Euler angles p ≡ (θ, φ, ψ). In the 
following, any collection of vector population (r1, ..ri, ..rNb

) ≡ R will be capitalized, so that R is a vector in R3Nb . Hence 
the collection of orientation vectors pi will be denoted P, which is a vector of length 3Nb , the collection of velocities 
dri
dt

= ṙi = vi , will be denoted V, the collection of angular velocity ṗi ≡ ωi will be Ä, the collection of forces fi , F, the 
collection of torques γ i , Γ . All V, Ä, F and Γ are vectors in R3Nb .

Let us then define some generalized coordinate qi for each bead, which is defined by qi ≡ (ri, pi) ≡ {r1,i, r2,i, r3,i, θi,
φi, ψi} so that the collection of generalized positions (q1, ..qi, ..qNb

) ≡ Q is a vector in R6Nb . Generalized velocities are then 
defined by vectors q̇i ≡ (vi, ωi) with associated generalized collection of velocities Q̇.

Articulated systems are generically submitted to constraints which are either holonomic, non-holonomic or both [33]. 
Holonomic constraints do not depend on any kinematic parameter (i.e any translational or angular velocity) whereas non-
holonomic constraints do.

In the following we consider non-holonomic linear kinematic constraints associated with generalized velocities of the 
form [60]

JJJ Q̇+ B = 0, (5)

such that JJJ is a 6Nb × Nc matrix and B is a vector of Nc components. Nc is the number of constraints acting on the 
Nb beads. B and JJJ might depend (even non-linearly) on time t and generalized positions Q, but do not depend on any 
velocity of vector Q̇, so that relation (5) is linear in Q̇. In subsequent sections, we provide specific examples for which this 
class of constraints are useful. Here we describe, following [58,60] how such constraints can be handled thanks to some 
generalized force that can be defined from Lagrange multipliers. The idea formulated to include constraints in the dynamics 
of articulated systems is to search additional forces which could permit to satisfy these constraints. First, one must rely 
on generalized forces fi ≡ (fi, γ i) which include forces and torques acting on each bead, whose collection (f1, fi, ..fNb

) is 
denoted F. Generalized forces are defined such that the total work variation δW is the scalar product between them and 
the generalized coordinates variations δQ

δW =F · δQ = F · δR+ Γ · δP, (6)



so that, on the right hand side of (6) one also gets the translational and the rotational components of the work. Then, the 
idea of virtual work principle is to search some virtual displacement δQ that will generate no work, so that

F · δQ = 0. (7)

At the same time, by rewriting (5) in differential form

JJJ dQ+ Bdt = 0, (8)

admissible virtual displacements, i.e. those satisfying constraints (8), should satisfy

JJJ δQ = 0. (9)

Combining the Nc constraints (9) with (7) is possible using any linear combination of these constraints. Such linear com-

bination involves Nc parameters, the so-called Lagrange multipliers which are the components of a vector λ in RNc . Then 
from the difference between (7) and the Nc linear combination of (9) one gets

(F− λ ·JJJ ) · δQ = 0. (10)

Prescribing an adequate constraint force

Fc = λ ·JJJ , (11)

permits to satisfy the required equality for any virtual displacement. Hence, the constraints can be handled by forcing the 
dynamics with additional forces, the amplitude of which are given by Lagrange multipliers, yet to be found. Note also, that 
this first result implies that both translational forces and rotational torques associated with the Nc constraints are both 
associated with the same Lagrange multipliers.

This formalism is particularly suitable for low Reynolds number flows for which translational and angular velocities are 
linearly related to forces and torques acting on beads by the mobility matrix M

(

V

Ä

)

= M

(

F

Γ

)

+

(

V∞

Ä∞

)

+ C : E∞. (12)

V∞ = (v∞
1 , . . . , v∞

Nb
) and Ä∞ = (ω∞

1 , . . . , ω∞
Nb

) correspond to the ambient flow evaluated at the centers of mass ri . E∞ is

the rate of strain 3 × 3 tensor of the ambient flow. C is a third rank tensor called the shear disturbance tensor, it relates the 
particles velocities and rotations to E∞ [54]. Matrix M (and tensor C) can also be re-organized into a generalized mobility 
matrix MMM (generalized tensor CCC resp.) in order to define the linear relation between the previously defined generalized 
velocity and generalized force

Q̇ =MMMF+VVV ∞ +CCC : E∞, (13)

where VVV ∞ = (v∞
1 , ω∞

1 , . . . , v∞
Nb

, ω∞
Nb

). The explicit correspondence between the classical matrix M and the hereby proposed 
generalized coordinate formulation MMM is given in Appendix A. Hence, as opposed to the Euler–Lagrange formalism of 
classical mechanics, the dynamics of low Reynolds number flows does not involve any inertial contribution, and provide 
a simple linear relationship between forces and motion. In this framework, it is then easy to handle constraints with 
generalized forces, because the total force will be the sum of the known hydrodynamic forces Fh , elastic forces Fe , inner 
forces associated to active fibers Fa and the hereby discussed and yet unknown contact forces Fc to verify kinematic 
constraints

F= F′ +Fc, with (14)

F′ =Fh +Fe +Fa. (15)

Hence, if one is able to compute the Lagrange multipliers λ, the contact forces will provide the total force by linear su-
perposition (14), which gives the generalized velocities with (13). Now, let us show how to compute the Lagrange multiplier 
vector. Since the generalized force is decomposed into known forces F′ and unknown contact forces Fc = λ ·JJJ , relations 
(14) and (13) can be pooled together yielding

MMMFc =MMMλJJJ = Q̇−MMMF′ −VVV ∞ −CCC : E∞. (16)

So that, using (5),

JJJMMMJJJ Tλ = −B−JJJ
(

MMMF′ +VVV ∞ +CCC : E∞
)

, (17)

one gets a simple linear system to solve for finding λ, where JJJ T stands for the transposition of matrix JJJ .



Fig. 4. Gears Model: contact velocity must be the same for each bead (no-slip condition).

2.3. The Gears Model

The Euler–Lagrange formalism can be readily applied to any type of non-holonomic constraint such as (3). In the follow-

ing, we propose an alternative model based on no-slip condition between the beads: the Gears Model. This constraint, first 
introduced in a Bead Model (BM) by [27], conveniently avoid numerical tricks such as artificial gaps and repulsive forces.

However, [27] and [61] relied on to an iterative procedure to meet requirements. Here, we use the Euler–Lagrange 
formalism to handle the kinematic constraints associated to the Gears Model.

Considering two adjacent beads (Fig. 4), the velocity vc1 at the contact point must be the same for each sphere:

v1c1 − v2c1 = 0. (18)

vLc1 and vRc1 are respectively the rigid body velocity at the contact point on bead 1 and bead 2. Denote σ 1 the vectorial
no-slip constraint. (18) becomes

σ 1(ṙ1,ω1, ṙ2,ω2) = 0, (19)

i.e.

[ṙ1 − ae12 × ω1] − [ṙ2 − ae21 × ω2] = 0, (20)

where e12 is the unit vector connecting the center of bead 1, located at r1 , to the center of bead 2, located at r2 (e12 =

e2 − e1). The orientation pi vector attached to bead i, is not necessary to describe the system. Hence, from (20) one realizes
that σ 1 is linear in translational and rotational velocities. Therefore Eq. (19) can be reformulated as

σ 1(Q̇) = J1Q̇ = 0, (21)

where, Q̇ is the collection vector of generalized velocities of the two-bead assembly

Q̇ = [ṙ1,ω1, ṙ2,ω2]
T , (22)

J1 is the Jacobian matrix of σ 1:

J1kl =
∂σ 1

k

∂Q l

, k = 1, . . . ,3, l = 1, . . . ,12, (23)

J1 =
[

J11 J12

]

=
[

I3 −ae×
12 −I3 ae×

21

]

, (24)

and

e× =





0 −e3 e2
e3 0 −e1

−e2 e1 0



 . (25)

For an assembly of Nb beads, Nb − 1 no-slip vectorial constraints must be satisfied. The Gears Model (GM) total Jacobian 
matrix J GM is block bi-diagonal and reads

J GM =













J11 J12
J22 J23

. . .
. . .

J
Nb−1
Nb−1 J

Nb−1
Nb













(26)

where Jαβ is the 3 × 6 Jacobian matrix of the vectorial constraint α for the bead β .
The kinematic constraints for the whole assembly then read

J GMQ̇ = 0. (27)

The associated generalized forces Fc are obtained following Section 2.2.



Fig. 5. Beam discretization and bending torques computation of beads 1, 3 and 5. Remaining torques are accordingly obtained: γ b
2 = m(s3) and γ b

4 =

−m(s3).

2.4. Elastic forces and torques

We are considering elastohydrodynamics of homogeneous flexible and inextensible fibers. These objects experience bend-
ing torques and elastic forces to recover their equilibrium shape. Bending moments derivation and discretization are 
provided. Then, the role of bending moments and constraint forces is addressed in the force and torque balance for the 
assembly.

2.4.1. Bending moments

The bending moment of an elastic beam is provided by the constitutive law [55,62]

m(s) = K bt ×
dt

ds
, (28)

where K b(s) is the bending rigidity, t is the tangent vector along the beam centerline and s is the curvilinear abscissa. Using 
the Frenet–Serret formula

dt

ds
= κn, (29)

the bending moment writes

m(s) = K bκb, (30)

where κ(s) defines the local curvature, n(s) and b(s) are the normal and binormal vectors of the Frenet–Serret frame. When 
the link considered is not straight at rest, with an equilibrium curvature κeq(s), (30) is modified into

m(s) = K b
(

κ − κeq
)

b. (31)

Here, the beam is discretized into Nb −1 rigid rods of length l = 2a (cf. Fig. 5). Inextensible rods are made up of two bond 
beads and linked together by a flexible joint with bending rigidity K b . Bending moments are evaluated at joint locations 
si = (i − 1)l for i = 2, . . . , Nb − 1, where si correspond to the curvilinear abscissa of the mass center of the ith bead.

The bending torque on bead i is then given by

γ b
i = m(si+1) −m(si−1), (32)

with m(si) = K bκ(si)b(si). See Fig. 5 for the torque computation on a beam discretized with four rods.
The local curvature κ(si) is approximated using the sine rule [42]

κ(si) =
1

a

√

1+ ei−1,i .ei,i+1

2
(33)

where ei−1,i is the unit vector connecting the center of mass of bead i − 1 to the center of mass of bead i. This elementary 
geometric law provides the radius of curvature R(si) = 1/κ(si) of the circle circumscribing neighboring bead centers ri−1 , ri
and ri+1 .

A more general version of the discrete curvature proposed in [63] can also be used in the case of three dimensional 
motion. In that case, the curvature of the fiber is discretized as in [63]

κ(si) =
ei−1,i × ei,i+1

2a
, (34)



where, again, ei−1,i is the unit vector connecting the center of mass of bead i − 1 to the center of mass of bead i. The 
bending moment reads

m(si) = K bκ(si). (35)

To include the effect of torsional twisting about the axis of the fiber, one would have to compute the relative orientation 
between the frames of reference attached to the beads using Euler angles [56] (see Section 2.2) or unit quaternions as 
in [53]. This would provide the rate of change of the twist angle along the fiber centerline and thus the twisting torque 
acting on each bead. In the following, only bending effects are considered.

2.4.2. Force and moment acting on each bead
The Gears Model proposed in this paper does not need to consider gaps to allow bending. Fc also ensures the connectiv-

ity condition and circumvent the use of repulsive forces as distances between adjacent bead surfaces remain constant. More 
specifically, the tangential components of the force Fc , which is only one part of the generalized force Fc , acts as tensile 
force.

For each bead i, contact forces applied from bead i to bead i + 1 at contact point ci between bead i and i + 1 (Fig. 4 for 
two beads) is denoted fci . From Newton third law at contact point ci , the contact force applied to bead i from bead i + 1 is 
obviously −fci . Total force acting on bead i from contact, and hydrodynamic forces fhi reads

fi = fci−1
− fci + fhi (36)

Similarly, the contact force fci at point ci produces a moment mci = ati × fci associated with local tangent vector ti = ei,i+1

and distance a to the neutral fiber at point ci . Total moment acting on bead i from contact points moments, elastic and 
hydrodynamic torques are then

γ i = mci−1
−mci + γ b

i + γ h
i . (37)

The contribution of contact force and contact moment acting on bead i exactly equals the contribution of the generalized 
contact force. Indeed, using the kinematic constraints Jacobian (26) in (11), and computing the force and torque contribu-
tions, one exactly recovers the first and the second contributions of the right-hand-side of (36) and (37). In Appendix B, 
we also show that this model is consistent with classical formulation for slender body force and moment balance when the 
bead radius tends to zero.

2.5. Hydrodynamic coupling

Moving objects (rigid or flexible fibers) in a viscous fluid experience hydrodynamic forcing. The interactions are mediated 
by the fluid flow perturbations which can alter the motion and the deformation of the fibers in a moderately concentrated 
suspension. The existence of hydrodynamic interactions has also an effect on a single fiber dynamics while different parts 
of the fiber can respond to the ambient flow but also to local flow perturbations related to the fiber deformation. Resistive 
Force Theory (RFT) can be used to estimate the fiber response to a given flow assuming that the fiber is modeled by a large 
series of slender objects [23,64]. Slender body theory has also been used [20,65] to relate local balance of drag forces with 
the filament forces upon the fluid resulting in a dynamical system to model the deformation of the fiber centerline. This 
model provided interesting results on the stretch-coil transition of fibers in vortical flows.

In our beads model, the fiber is composed of spherical particles to account for the finite width of its cross-section. The 
hydrodynamic interactions are provided through the solution of the mobility problem which relates forces, torques to the 
translational and rotational velocities of the beads. This many-body problem is non-linear in the instantaneous positions 
of all particles of the system. Approximate solutions of this complex mathematical problem can be achieved by limiting 
the mobility matrices to their leading order. The simplest model is called free drain as the mobility matrix is assumed 
to be diagonal neglecting the HI with neighboring spheres. Pairwise interactions are required to account for anisotropic 
drag effects within the beads composing the fiber. The Rotne–Prager–Yamakawa (RPY) approximation is one of the most 
commonly used methods of including hydrodynamic interactions. This widely used approach has been recently updated by 
Wajnryb et al. [54] for the RPY translational and rotational degrees of freedom, as well as for the shear disturbance tensor C

which gives the response of the particles to an external shear flow (12).

2.6. Numerical implementation

2.6.1. Integration scheme and algorithm
The kinematics of the constrained system results from the superposition of individual bead motions. Positions are ob-

tained from the temporal integration of the equation of motion with a third order Adams–Bashforth scheme

dri

dt
= vi, (38)

where ri , vi are the position and translational velocity of bead i.



The time step 1t used to integrate (38) is fixed by the characteristic bending time [46]

1t <
µ(2a)4

K b
, (39)

where µ is the suspending fluid viscosity.
The evaluation of bead interactions must follow a specific order. Elastic and active forces can be computed in any order. 

Constraint forces and torques must be estimated afterwards as they depend on F′ . Then velocities and rotations are obtained 
from the mobility relation. And finally, bead positions are updated.

• Initialization: positions ri(0),
• Time Loop

1. Evaluate mobility matrix M (Q) and C : E∞ (see Section 2.5),

2. Calculate local curvatures (33) and bending torques γ b
i (32) to get Fe ,

3. Add active forcing Fa and ambient velocity V ∞ if any,
4. Compute the Jacobian matrix associated with non-holonomic constraints J (Q),

5. Solve (17) to get the constraint forces Fc = λJ ,

6. Sum all the forcing terms F = Fe + Fa + Fc ,

7. Apply mobility relation (13) to obtain the bead velocities Q̇,

8. Integrate (38) to get the new bead positions.

2.6.2. Implementation of the Joint Model

To provide a comprehensive comparison with previous works, we exploit the flexibility of the Euler–Lagrange formalism 
to implement the Joint Model as described in [49] supplemented with hydrodynamic interactions. The joint constraint for 
two neighboring beads reads

[

ṙi − (a + εg)pi × ωi

]

−
[

ṙi+1 + (a + εg)pi+1 × ωi+1

]

= 0. (40)

Using the Euler–Lagrange formalism, (40) is reformulated with the Joint Model (JM) Jacobian matrix

J JMQ̇ = 0, (41)

where J JM has the same structure as in (26) and

Ji =
[

Ji1 Ji2

]

=
[

I3 −(a + εg)p
×
i −I3 −(a + εg)p

×
i+1

]

. (42)

Accordingly, the corresponding set of forces and torques Fc are obtained from Section 2.2. As mentioned in Section 2.1, 
such formulation does not prevent beads from overlapping when bending occurs. A repulsive force Fr is added according to 
[46] (the force profile proposed by [49] is very stiff, thus very constraining for the time step):

Fri j =















−F0 exp(−
di j+δD

d0
)ei j, di j ≤ −δD ,

−F0(
1
2

−
di j
2δD

)ei j, −δD < di j ≤ δD ,

0, ri j > δD .

(43)

δD is an artificial surface roughness, di j is the surface to surface distance. di j < 0 indicates overlapping between beads i
and j. d0 is a numerical damping distance which has to be tuned to prevent overlapping. F0 is the repulsive force scale 
chosen in order to avoid numerical instabilities. To deal with this issue, [46] proposed to evaluate F0 from bending and 
viscous stresses. A slight modification of their formula for inertialess particles yields

F0 = C16πµL
(

v∞ − v
)

+ C2

√

K bEb

L3
, (44)

the bar denotes the average over the constitutive beads or joints where C1 and C2 are adjustable constants. Eb is the 
bending energy

Eb =

Nb−1
∑

i=1

K b
(

κ(si) − κeq(si)
)2

. (45)

Bending moments are evaluated at the joint locations s J
i = (a +εg) + (i −1) ×2(a +εg), i = 1, . . . , Nb −1. Joint curvature 

is given by

κ
(

s
J
i

)

=
2

a + εg

√

1+ pi .pi+1

2
. (46)



Fig. 6. Dependence of the constraints ǭM/γ̇ L on the time step γ̇ 1t , +: Gears Model, 1: Joint Model. Inset: ǭM/γ̇ L with the Gears Model for a fixed time

step given by (39) for different values of γ̇ .

Similarly to (32), bending torque on bead i is

γ b
i = m

(

s
J
i

)

−m
(

s
J
i−1

)

. (47)

Bead orientation pi is integrated with a third order Adams–Bashforth scheme

dpi

dt
= ωi × pi . (48)

The procedure is similar to the Gears Model. pi are initialized together with the positions. The repulsive force Fr is added 
to F′ and can be computed between step 1 and 5 of the aforementioned algorithm. Time integration of (48) is performed 
at step 8.

2.6.3. Constraints and numerical stability
At each time step, the error on kinematic constraints ǫ is evaluated, after application of the mobility relation (13), 

between step 7 and step 8:

ǫGM(t) =
∥

∥J GMQ̇
∥

∥

2
=

(

Nb−1
∑

i=1

(

vLci − vRci

)2

)1/2

(49)

for the Gears Model, and

ǫJM(t) =
∥

∥J JMQ̇
∥

∥

2
(50)

for the Joint Model.

To verify the robustness of both models and Lagrange formulation, a numerical study is carried out on a stiff configura-
tion.

A fiber of aspect ratio rp = 10 with bending ratio BR = 0.01 is initially aligned with a shear flow of magnitude γ̇ = 5 s−1 . 
For this aspect ratio, Nb = 10 beads are used to model the fiber with the Gears Model.

Joint Model involves additional items to be fixed. Nb = 9 spheres are separated by a gap width 2εg = 0.25a. The repulsive 
force is activated when the surface to surface distance di j reaches the artificial surface roughness δD = 2(a + εg)/10. The 
remaining coefficients are set to reduce numerical instabilities without affecting the Physics of the system: d0 = (a + εg)/4, 
C1 = 5 and C2 = 0.5.

Fig. 6 shows the evolution of the maximal mean deviation from the no-slip/joint constraint ǭM = maxt ǫ(t)/(Nb − 1)

normalized with the maximal shear velocity γ̇ L depending on the dimensionless time step γ̇ 1t . First, one can observe 
that for both Joint and Gears models, ǭM/γ̇ L weakly depends on γ̇ 1t and the resulting motion of the beads complies very 
precisely with the set of constraints, within a tolerance close to unit roundoff (< 2.10−16). Secondly, Joint Model is unstable 
for time steps 100 times smaller than Gears Model. The onset for numerical instability indicates that the repulsive force 
stiffness dominates over bending, thus dictating and restricting the time step.

As a comparison, [46] matched connectivity constraints within 1% error for each fiber segment. To do so, they had to 
use an iterative scheme reducing the time step by 1/3 each iteration to meet requirements and limit overlapping between 
adjacent segments. For similar results, a stiff configuration, such as the sheared fiber, is therefore more efficiently simulated 
with the Gears Model.



Thirdly, inset of Fig. 6 shows that, for a given time step, the Gears Model constraints ǭM/γ̇ L are satisfied whatever the 
shear magnitude. Hence, (39) ensures unconditionally numerical stability as bending is the only limiting effect for the Gears 
Model.

Hence, the robustness of the Euler–Lagrange formalism and the numerical integration we chose provide a strong support 
to the Gears Model over the Joint Model.

As a final remark to this section, it is important to mention that the numerical cost of the proposed method strongly 
depends on the choice for the mobility matrix computation, as usual for bead models. If the mobility matrix is computed 
taking into account full hydrodynamic interactions with Stokesian Dynamics, most of the numerical cost will come from its 
evaluation in this case. This limitation could be overcame using more sophisticated methods such as Accelerated Stokesian 
Dynamics [66] or Force Coupling Method [18]. Moreover, when considering Rotne–Prager–Yamakawa mobility matrix, its 
cost only requires the evaluation of O ((6Nb)

2) terms. Furthermore, the main algorithmic complexity of bead models does 
not come from the time integration of the bead positions which only requires a matrix–vector multiplication (13) at an
O ((6Nb)

2) cost. Fast-multipole formulation of a Rotne–Prager–Yamakawa matrix can even provide an O (6Nb) cost for such 
matrix–vector multiplication [67].

The main numerical cost indeed comes from the inversion of the contact forces problem (17). It is worth noting that 
this linear problem is Nc × Nc which is slightly different from Nb × Nb , but of the same order. Furthermore, problem (17)
gives a direct, single step procedure to compute the contact forces, as opposed to previous other attempts [27,46,56] which 
required iterative procedures to meet forces requirements, involving the mobility matrix inversion at each iteration. The cost 
for the inversion of (17) lies in-between O (N2

c ) and O (N3
c ) depending on the inversion method.

3. Validations

3.1. Jeffery orbits of rigid fibers

Much of our current understanding of the behavior of fibers experiencing a shear flow has come from the work of Jeffery 
[68] who derived the equation for the motion of an ellipsoidal particle in Stokes flow. The same equation can be used for 
the motion of an axisymmetric particle by using an equivalent ellipsoidal aspect ratio. Rigid fibers can be approximated 
by elongated prolate ellipsoids. An isolated fiber in simple shear flow rotates in a periodic orbit while the center of mass 
simply translates in the flow (no migration across streamlines). The period T (51) is a function of the aspect ratio of the 
fiber and the flow shear rate while the orbit depends on the initial orientation of the object relative to the shear plane

T =
2π(re + 1/re)

γ̇
. (51)

γ̇ is the shear rate of the carrying flow. re is the equivalent ellipsoidal aspect ratio which is related to the fiber aspect 
ratio rp (length of the fiber over diameter of the cross-section which turns out to rp = Nb with Nb beads). The fiber is 
initially placed in the plane of shear and is composed on Nb beads. No gaps between beads is required in the Joint Model 
because the fiber is rigid and flexibility deformations are negligible. We have compared the results with two relations for re: 
Cox [1]

re =
1.24rp
√

ln(rp)
, (52)

and Larson [69]

re = 0.7rp . (53)

This classic and simple test case has been successfully validated in [27,34,49]. Both the Joint and Gears models give 
a correct prediction of the period of Jeffery orbits (Fig. 7). The scaled period γ̇ T of simulations remains within the two 
evolutions based on Eqs. (52) and (53). We have tried to compare it with the linear spring model proposed by Gauger and 
Stark [40] (and used by Slowicka et al. [50] with a more detailed formulation of hydrodynamic interactions). In this latter 
model, there is no constraint on the rotation of beads and the simulations failed to reproduce Jeffery orbits (the fiber does 
not flip over the axis parallel to the flow).

3.2. Flexible fiber in a shear flow

The motion of flexible fibers in a shear flow is essential in paper making or composite processing. Prediction and control 
of fiber orientations and positions are of particular interest in the study of flocks disintegration. Many models have been 
designed to predict fiber dynamics and much experimental work has been conducted. The wide variety of fiber behaviors 
depends on the ratio of bending stresses over shear stress, which is quantified by a dimensionless number, the bending 
ratio BR [53,70]

BR =
E(ln2re − 1.5)

µγ̇ 2r4p
(54)

E is the material Young’s Modulus and µ is the suspending fluid viscosity.



Fig. 7. Tumbling period T depending on fiber aspect ratio rp . : theoretical law (51) with re given by (53), : theoretical law (51) with re given by
(52), P: Gears Model, e: Joint Model.

Fig. 8. Orbit of a flexible filament in a shear flow with BR = 0.04. Temporal evolution is shown in the plane of shear flow. (a) Symmetric “S-shape” of a
straight filament, κeq = 0. (b) Buckling of a permanently deformed rod with an intrinsic curvature κeq = 1/(100L).

In the following, we investigate the response of the Gears Model with known results on flexible fiber dynamics.

3.2.1. Effect of permanent deformation

[70,71] analyzed the motion of flexible threadlike particles in a shear flow depending on BR. They observed important 
drifts from the Jeffery orbits and classified them into categories. Yet, the goal of this section is not to carry out an in-depth 
study on these phenomena. Instead, the objective is to show that our model can reproduce basic features characteristic of 
sheared flexible filaments. We analyze first the influence of intrinsic deformation on the motion.

If a fiber is straight at rest, it will symmetrically deform in a shear flow. When aligned with the compressive axes of 
the ambient rate of strain E∞ , the fiber adopts the “S-shape” observed in Fig. 8(a). When aligned with the extensional 
axes, tensile forces turn the rod back to its equilibrium shape. This symmetry is broken when the filament is initially 
slightly deformed or has a permanent deformation at rest, i.e. a nonzero equilibrium curvature κeq > 0. An initial small 
perturbation of the shape of a straight filament aligned with flow can induce large deformations during the orbit. This 
phenomenon is known as the buckling instability whose onset and growth are quantified with BR [72,73]. Fig. 8(b) illustrates 
the evolution of a flexible sheared filament with BR = 0.04 and a very small intrinsic deformation κeq = 1/(100L). The 
equilibrium dimensionless radius of curvature is 2Req/L = 200. During the tumbling motion it decreases to a minimal value 
of 2Rmin/L = 0.26. Buckling thus increases by 770 times the maximal fiber curvature.

3.2.2. Maximal fiber curvature
[74] measured the radius of curvature R of sheared fiber for aspect ratios rp ranging from 283 to 680. They reported on 

the evolution of the minimal value Rmin , i.e. the maximal curvature κmax , with BR. [53] used the Joint Model with prolate 
spheroids but no hydrodynamic interactions and compared their results with [74]. Both experimental results from [74] and 
simulations from [53] are accurately reproduced by the Gears Model.

Hydrodynamic interactions between fiber elements play an important role in the bending of flexible filaments [46,50,74]. 
As mentioned in Section 2.5 the use of spheres to build any arbitrary object is well suited to compute these hydrodynamic 
interactions. However, modeling rigid slender bodies in a strong shear flow becomes costly when increasing the fiber aspect 
ratio. First, the aspect ratio of a fiber made up of Nb spheres is rp = Nb . Each time iteration requires the computation of 



Fig. 9. (a) Minimal radius of curvature depending on fiber length for several bending ratios. : BR = 0.01, : BR = 0.03, : BR = 0.04, : BR
= 0.07. (b) Minimal radius of curvature along BR. !: current simulations with aspect ratio rp = 35 and intrinsic curvature κeq = 0; ": current simulations 
with aspect ratio rp = 35 and intrinsic curvature κeq = 1/(10L); simulation results from [53] with κeq = 1/(10L): (E: rp = 50, P: rp = 100, e: rp = 150, 
1: rp = 280); +: experimental measurements from [74], rp = 283.

M and C : E∞ and the inversion of a linear system (17) corresponding to Nc relations of constraints with Nc ≥ 3(Nb − 1). 
Secondly, for a given shear rate γ̇ and bending ratio BR, Young’s modulus increases as r4p . According to (39), the time step 
becomes very small for large E . [53] partially avoided this issue by neglecting pairwise hydrodynamic interactions (M is 
diagonal), and by assembling prolate spheroids of aspect ratios re ∼ 10.

Yet, it is shown in Fig. 9(a) that for a fixed BR, 2Rmin/L converges asymptotically to a constant value with rp . An 
asymptotic regime (relative variation less than 2%) is reached for rp ≥ 25. Choosing rp = 35 thus enables a valid comparison 
with previous results.

Our simulation results compare well with the literature data (Fig. 9(b)) and better match with to experiments than [53]. 
When BR ≥ 0.04, the Gears Model clearly underestimates measurements for κeq = 1/(10L) and overestimates them for 
κeq = 0. However, Salinas and Pittman [74] indicated that the error quantification on parameters and measurements is diffi-

cult to estimate as the fibers were hand-drawn. Notably, drawing accuracy decreases for large radii of curvature, which leads 
to the conclusion that the hereby observed discrepancy might not be critical. They did not report the value of permanent 
deformation κeq for the fibers they designed, whereas, as evidenced by [71], it has a strong impact on Rmin . A numerical 
study of this dependence should be conducted to compare with [71, Fig. 7].

[46] used the same approach as [53] with hydrodynamic interactions to repeat numerically the experiments from [74]; 
but their results, though reliable, were displayed such that direct comparison with previous work is not possible.

To conclude, it should be noted that, in [53], the aspect ratio does not affect 2Rmin/L for a fixed BR, confirming the 
asymptotic behavior observed in Fig. 9(a).

3.3. Settling fiber

Consider a fiber settling under constant gravity force F⊥ = F⊥e⊥ acting perpendicularly to its major axis. The dynamics 
of the system depends on three competing effects: the elastic stresses which tend to return the object to its equilibrium 
shape, the gravitational acceleration which uniformly translates the object and the hydrodynamic interactions which creates 
local drag along the filament. After a transient regime, the filament reaches steady state and settles at a constant velocity 
with a fixed shape (see Figs. 10(a) and 10(b)). This steady state depends on the elasto-gravitational number

B = F⊥L/K b. (55)

[41,75] and [65] examined the contribution of each competing effect by measuring the normal deflection A, i.e. the distance 
between the uppermost and the lowermost point of the filament along the direction of the applied force (Fig. 10(b)); and 
the normal friction coefficient γ⊥/γ 0

⊥ as a function of B . γ 0
⊥ is the normal friction coefficient of a rigid rod. To compute 

hydrodynamic interactions [75] used Stokeslet; [41], the Force Coupling Method (FCM) [18]; [65], Slender Body Theory.
Similar simulations were carried out with both the Joint Model described in Section 2.6.2 and the Gears Model. Fiber of 

length L = 68a is made out of Nb = 31 beads with gap width 2εg = 0.2a for the Joint Model and Nb = 34 for the Gears 
Model. To avoid both overlapping and numerical instabilities with the Joint Model, the following repulsive force coefficients 
were selected: d0 = (a + εg)/4, δD = (a + εg)/5, C1 = 0.01 and C2 = 0.01. No adjustable parameters are required for Gears 
Model.

Fig. 11 shows that our simulations agree remarkably well with previous results except slight differences with [65] in 
the linear regime B < 100. Using Slender Body Theory, [65] made the assumption of a spheroidal filament instead of a 
cylindrical one, with aspect ratio rp = 100, i.e. three times larger than other simulations, whence such discrepancies. The 



Fig. 10. Shape of settling fiber for B = 10 000 in the frame moving with the center of mass (xc, zc). (a) Metastable “W” shape, t = 12L/V s . (b) Steady
“horseshoe” shape at t = 53L/V s . V s is the terminal settling velocity once steady state is reached.

Fig. 11. (a) Scaled vertical deflection A/L depending on B . : Gears Model, : Joint Model, : FCM results from [41], : Stokeslets results from
[75], : Slender body theory results from [65]. (b) Normal friction coefficient vs. B . : Gears Model, : Joint Model, : FCM results from [41],

: Stokeslets results from [75].

normal friction coefficient (Fig. 11(b)), resulting from hydrodynamic interactions, perfectly matches the value obtained by 
[41] with the Force Coupling Method. The FCM is known to better describe multibody hydrodynamic interactions. Such a 
result thus supports the use of the simple Rotne–Prager–Yamakawa tensor for this hydrodynamic system.

Differences between Gears and Joint Models implemented here are quantified by measuring the relative discrepancies on 
the vertical deflection A



ǫA =
AG − A J

AG
, (56)

and on the normal friction coefficient γ⊥/γ 0
⊥

ǫγ ⊥ =
(γ ⊥/γ ⊥

0 )G − (γ ⊥/γ ⊥
0 ) J

(γ ⊥/γ ⊥
0 )G

. (57)

Discrepancies between Joint and Gears models remain below 5% except at the threshold of the non-linear regime (B ≈
100) where ǫA reaches 15% and ǫγ ⊥ ≈ 7.5%.

In accordance with [75], a metastable “W” shape is reached for B > 3000 (Fig. 10(a)) until it converges to the stable 
“horseshoe” state (Fig. 10(b)).

3.4. Actuated filament

The goal of the following sections is to show that the model we proposed is not only valid for passive objects but also for 
active ones. Elastohydrodynamics also concern swimming at low Reynolds number [6]. Many type of micro-swimmers have 
been studied both from the experimental and theoretical point of view. Among them two categories are distinguished: cili-
ates and flagellates. Ciliates propel themselves by beating arrays of short hairs (cilia) on their surface in a synchronized way 
(Opalina, Volvox, Paramecia). Flagellates undulate and/or rotate their external appendage to push (pull) the fluid from their 
aft (fore) part (spermatozoa, Chlamydomonas Rheinardtii, Bacillus Subtilis, Eschericia Coli). Recent advances in nanotechnologies 
allows researchers to design artificial swimming micro-devices inspired by low Reynolds number fauna [7,76,77].

In that scope, the study of bending wave propagation along passive elastic filament has been investigated by [78,79] and 
[24,80].

The experiment of [79] consists in a flexible filament tethered and actuated at its base. The base angle was oscillated 
sinusoidally in plane with an amplitude α0 = 0.435 rad and frequency ζ .

Deformations along the tail result from the competing effects of bending and drag forces acting on it. A dimensionless 
quantity called the Sperm number compares the contribution of viscous stresses to elastic response [19]

Sp = L

(

ζ(γ ⊥/L)

K b

)1/4

=
L

lζ
. (58)

γ ⊥ is the normal friction coefficient. When using Resistive Force Theory, (γ ⊥/L) is changed into a drag per unit length 
coefficient ξ⊥ . lζ can be seen as the length scale at which bending occurs. Sp . 1 corresponds to a regime at which 
bending dominates over viscous friction: the whole filament oscillates rigidly in a reversible and symmetrical way. Sp ≫ 1

corresponds to a regime at which bending waves are immediately damped and the free end is motionless [19].
The experiment of [80] is similar to [79] except for that the actuation at the base is rotational. Here, the filament was 

rotated at a frequency ζ forming a base angle α0 = 0.262 rad with the rotation axis.
In both contributions, the resulting fiber deformations were measured and compared to Resistive Force Theory for several 

values of Sp. Simulations of such experiments [79,80] were performed with the Gears Model.

3.4.1. Numerical setup and boundary conditions at the tethered base element

Corresponding kinematic boundary conditions for BM are prescribed with the constraint formulation of the Euler–
Lagrange formalism.

3.4.1.1. Planar actuation In the case of planar actuation [79], we consider that the tethered, i.e. the first, bead is placed at 
the origin and has no degree of freedom

{

ṙc1 = 0,

ωc
1 = 0.

(59)

Denote α0 the angle formed between ex and e1,2 .
The trajectory of bead 2 must follow

rc2(t) =





2a cos(α0 sin(ζ t))

0

2a sin(α0 sin(ζ t))



 . (60)

The translational velocity of the second bead ṙ2(t) is thus constrained by taking the derivative of (60)

ṙc2(t) =





−2aα0ζ cos(ζ t) sin(α0 sin(ζ t))

0

2aα0ζ cos(ζ t) cos(α0 sin(ζ t))



 . (61)



3.4.1.2. Helical actuation In the case of helical beating [24,80], the anchor point of the filament is slightly off-centered with 
respect to the rotation axis ex [24]: r(0) = δ0 (cf. Fig. 13, left inset). [24] measured a value δ0 = 2 mm with a filament length 
varying from L = 2 cm to 10 cm. Here we take δ0 = δ̃0 sinα0 with δ̃0 = 2.7a and vary the filament length by changing the 
number of beads Nb to match the experimental range δ0/L = 0.1 → 0.02. The position of bead 1 must then follow

rc1(t) =







δ̃0 cos(α0 sin(ζ t)) cos(α0 cos(ζ t))

δ̃0 cos(α0 sin(ζ t)) sin(α0 cos(ζ t))

δ̃0 sin(α0 sin(ζ t))






. (62)

The translational velocity of the first bead ṙ1(t) is thus constrained by taking the derivative of (62)

ṙc1(t) =















δ̃0α0ζ [− cos(ζ t) sin(α0 sin(ζ t)) cos(α0 cos(ζ t))

+ sin(ζ t) sin(α0 cos(ζ t)) cos(α0 sin(ζ t))]

δ̃0α0ζ [− cos(ζ t) sin(α0 sin(ζ t)) sin(α0 cos(ζ t))

− sin(ζ t) cos(α0 cos(ζ t)) cos(α0 sin(ζ t))]

δ̃0α0ζ cos(ζ t) cos(α0 sin(ζ t))















. (63)

And the rotational velocity is set to zero ω1 = 0.

The velocity of the second bead ṙc2(t) is prescribed in synchrony with bead 1:

ṙc2(t) =















(δ̃0 + 2a)α0ζ [− cos(ζ t) sin(α0 sin(ζ t)) cos(α0 cos(ζ t))

+ sin(ζ t) sin(α0 cos(ζ t)) cos(α0 sin(ζ t))]

(δ̃0 + 2a)α0ζ [− cos(ζ t) sin(α0 sin(ζ t)) sin(α0 cos(ζ t))

− sin(ζ t) cos(α0 cos(ζ t)) cos(α0 sin(ζ t))]

(δ̃0 + 2a)α0ζ cos(ζ t) cos(α0 sin(ζ t))















. (64)

The rotational velocity ω2 is consistently constrained by the no-slip condition. The three-dimensional curvature κ is dis-
cretized with (34).

In both cases, imposing actuation at the base of the filament therefore requires the addition of three vectorial kinematic 
constraints, (59) and (61), to the no-slip conditions: Nc = 3(Nb − 1) + 3 × 3. The additional Jacobian matrix Jact writes

Jact =





I3 03 03 03 · · · 03 03

03 I3 03 03 · · · 03 03

03 03 I3 03 · · · 03 03



 . (65)

The corresponding right-hand side Bact contains the imposed velocities

Bact =





0

0

−ṙc2



 (66)

for planar beating, and

Bact =





−ṙc1
0

−ṙc2



 (67)

for helical beating.
Jact and Bact are simply appended to JJJ and B respectively; corresponding forces and torques Fc are computed as 

explained before in Section 2.2.

3.4.2. Comparison with experiments and theory
The dynamics of the system can be described by balancing elastic stresses (flexion and tension) with viscous drag. 

Subsequent coupled non-linear equations can be linearized with the approximation of small deflections or solved with an 
adaptive integration scheme [23,25,81].

3.4.2.1. Planar actuation [79] considered both linear and non-linear theories and included the effect of a sidewall by using 
the corrected RFT coefficients of [82].

Simulations are in good agreement with experiments, linear and non-linear theories for Sp = 1.73, 2.2, and 3.11

(Fig. 12). Even though sidewall effects were neglected here, the Gears Model provides a good description of non-linear 
dynamics of an actuated filament in Stokes flow.



Fig. 12. Comparison with experiments and numerical results from [79]. Gears Model results are superimposed on the original Fig. 3 of [79]. Snapshots are
shown for four equally spaced intervals during the cycle for one tail with α0 = 0.435 rad. : experiment, : linear theory, : non-linear theory, —:

Gears Model, (a) ζ = 0.5 rad s−1 , Sp = 1.73. (b) ζ = 1.31 rad s−1 , Sp = 2.2. (c) ζ = 5.24 rad s−1 , Sp = 3.11.

Fig. 13. Comparison with experiments from [80]. (Insets) Evolution of the filament shape with Sp4 . Snapshots are shown for twenty equally spaced intervals 
during one period at steady state. Gray level fades as time progresses. Left inset: δ0/L is the distance of the tethered bead to the rotation axis, d/L is the
distance of the free end to the rotation axis. (Main figure) Distance of the rod free end to the rotation axis normalized by the filament length d/L.

E: experiment, ": Gears Model with no anchoring distance δ0/L = 0, 2: Gears Model with δ0/L = 0.1 → 0.02 as in [24].

3.4.2.2. Helical actuation Once steady state was reached, [80] measured the distance of the tip of the rotated filament to 
the rotation axis d = r(L) (cf. Fig. 13, left inset). Fig. 13 compares their measures with our numerical results. Insets show 
the evolution of the filament shape with Sp. The agreement is quite good. Numerical simulations slightly overestimate d for 
30 < Sp4 < 90. This may be due to the lack of information to reproduce experimental conditions and/or to measurement 
errors. As stated in [24], taking the anchoring distance δ0 into account is important to match the low Sperm number 



Fig. 14. (a) Simulated wave motion of a swimming model C. Elegans. The nematode swims leftward and gray level fades as time progresses. Motion is shown

in a frame moving with the micro-swimmer center of mass. (b) (Inset) Two C. Elegans beating in the same plane at a distance d in opposite phase (1φ = π ).

Nematodes swim leftward and gray level fades as time progresses. (Main figure) Swimming speed of the center of mass of the system V normalized by

the isolated swimming speed of C. Elegans V ∗ . !: in-phase motion (1φ = 0); 1: antiphase motion (1φ = π).

configurations where δ0/L is non-negligible and the filament is stiff. If the anchoring point was aligned with the rotation 
axis (δ0 = 0), the distance to the axis of the rod free end would be d/L = sinα0 = 0.259 for small Sp, as shown on Fig. 13.

3.5. Planar swimming nematode

Locomotion of the nematode Caenorhabditis Elegans is addressed here as its dynamics and modeling are well documented 
[39,43]. C. Elegans swims by propagating a contraction wave along its body length, from the fore to the aft (Fig. 14(a)). 
Modeling such an active filament in the framework of BM just requires the addition of an oscillating driving torque γ D(s, t)
to mimic the internal muscular contractions. To do so, [43] used the preferred curvature model. In this model, the driving 
torque results from a deviation in the centerline curvature from

κD(s, t) = −κD
0 (s) sin(ks − 2π f t), (68)

where κD
0 (s) is prescribed to reproduce higher curvature near the head:

κD
0 (s) =

{

K0, s ≤ 0.5L

2K0(L − s)/L, s > 0.5L.
(69)

The amplitude K0 , wave number k and the associated Sperm number

Sp = L
(

fµ/K b
)1/4

(70)

were tuned to reproduce the measured curvature wave of the free-swimming nematode. They obtained the following set 
of numerical values: K0 = 8.25/L, k = 1.5π/L and Sp∗ = 22.61/4 . The quantity of interest to compare with experiments 
is the distance the nematode travels per stroke V /( f L). K b is assumed to be constant along s and is deduced from the 
other parameters. As for (32), the torque applied on bead i results from the difference in active bending moments across 
neighboring links

γ D
i (t) = mD(si+1, t) −mD(si−1, t), (71)

with mD(si, t) = K bκD(si, t)b(si). γ D is added to Fa at step 3 of the algorithm in Section 2.6.1.

To match the aspect ratio of C. Elegans, rp = 16, [43] put Nb = 15 beads together separated by gaps of width 2ǫg = 0.2a. 
Here we assemble Nb = 16 beads, avoiding the use of gaps, and employ the same target-curvature wave and numerical 
coefficient values.

The net translational velocity V ∗ = V /( f L) = 0.0662 obtained with our model matches remarkably well with the nu-
merical results V /( f L) = 0.0664 [43] and experimental measurements V /( f L) ≈ 0.07 [39].

3.6. Cooperative swimming

One of the configurations explored in [83] has been chosen as a test case for the interactions between in-phase or 
out-of phase swimmers. Two identical, coplanar C. Elegans swim in the same direction with a phase difference 1φ which is 
introduced in the target curvature, and thus in the driving torque, of the second swimmer

κD,2(s, t) = −κD
0 (s) sin(ks − 2π f t + 1φ). (72)



Fig. 15. Helical swimming of C. Elegans. (Inset) Snapshot for Sp∗ = 22.61/4 and β/α = 1. : trajectory of the center of mass. (Main figure) Swimming

speed of the center of mass V normalized by the planar swimming speed of C. Elegans V ∗ . —: β/α = 1, –·–·–: β/α = 0.5, –––: β/α = 0 (planar motion),.

The initial shape of the swimmers is taken from their steady state. We define d as the distance between their center of mass 
at initial time (see inset of Fig. 14(b)). Similarly to [83, Fig. 3], our results (Fig. 14(b)) show that antiphase beating enhance 
the propulsion, whereas in-phase swimming slows the system as swimmers get closer. Even though the model swimmer 
here is different, the quantitative agreement with [83] is strikingly good. Numerical work by [84] also revealed that the 
average swimming speed of infinite sheets in finite Reynolds number flow is maximized when they beat in opposite phase. 
The conclusion that closer swimmers do not necessarily swim faster than individual ones has also been reported in [85]. 
They measured a decrease in the swimming speed of 25% for groups of house mouse sperm, as obtained on Fig. 14(b) for 
d/L = 0.2.

3.7. Spiral swimming

Many of the flagellate micro-organisms such as spermatozoa, bacteria or artificial micro-devices use spiral swimming to 
propel through viscous fluid. Propulsion with rotating rigid or flexible filaments has been thoroughly investigated in the 
past years [24,36,56,77,86–88]. In this section we illustrate the versatility of the proposed model by investigating the effect 
of the Sperm number and the eccentricity of the swimming gait on the swimming speed of C. Elegans.

3.7.1. Numerical configuration
The target curvature of C. Elegans κD remains unchanged except for that it is now directed along two components which 

are orthogonal to the helix axis. A phase difference 1φ = π/2 is introduced between these two components. The resulting 
driving moment writes:

mD(si, t) = αK bκD(si, t)e⊥ + βK bκD(si, t,1φ = π/2)eb. (73)

{e‖, e⊥, eb} are body fixed orthonormal vectors. e‖ is directed along the axis of the helix, e⊥ is a perpendicular vector and 
eb is the binormal vector completing the basis (Fig. 15 inset). The magnitude of the curvature wave along e⊥ (resp. eb) 
is weighted by a coefficient α (resp. β). The trajectory of a body element in the plane {e⊥, eb} describes an ellipse whose 
eccentricity depends on the value of the ratio β/α. When β/α = 0 the driving torque is two-dimensional and identical to the 
one used in Section 3.5. When β/α = 1 the magnitude of the driving torque is equal in both direction, the swimming gait 
describes a circle in the plane {e⊥, eb} (see Fig. 15 inset). For the sake of simplicity, here we take {e‖, e⊥, eb} = {ex, ey, ez}. 
As in Section 3.4, the curvature is evaluated with (34). In the following, α = 1 and only β is varied in the range [0; 1].

3.7.2. Results
Fig. 15 compares the planar swimming speed of C. Elegans V ∗ with its “helical” version V depending on the Sperm 

number defined in Section 3.5 (68) and on the ratio β/α. The Sperm number Sp lies in the range [171/4; 10001/4] =
[2.03; 5.62]. The lower bound is dictated by the stability of the helical swimming. When Sp < 2.03, the imposed curvature 
reaches a value such that the swimmer experiences a change in shape which is not helical. This sudden change in shape 
breaks any periodical motion and makes irrelevant the measurement of a net translational motion. Such limitation is only 
linked to the choice of the numerical coefficients of the target curvature model.

For the characteristic value Sp∗ = 22.61/4 chosen by [43], the purely helical motion provides a swimming speed four 
times faster than planar beating. Even though the model swimmer is different here, this result qualitatively agrees with 
the observation of [56] for which spiral swimming was faster than planar beating. Beyond a critical value Sp ≈ 2.6, planar 
beating is faster. For β/α = 0.5 the swimming speed is always smaller than for planar beating except when Sp < 2.15. 
This last observation is not intuitive. A more extensive study on the effect of the eccentricity of the swimming gait on the 
swimming speed would be of interest.



4. Conclusions

We have provided a simple general theoretical framework for kinematic constraints to be used in three-dimensional 
BM. This framework permits to handle versatile and complex kinematic constraints between flexible assembly of spheres, 
and/or more complex non-deformable objects at low Reynolds numbers. Using Stokes linearity, this formulation requires, at 
each time step, the inversion of an O (Nc × Nc) linear system for an assembly having Nc constraints. Constraints are exactly 
matched (up to machine precision) and their evaluation is insensitive to time-step. Furthermore, since the formulation 
explicitly handles mobility matrices, it can be used with any approximation for hydrodynamics interactions, from free drain 
(no HI) to full Stokesian Dynamics. The proposed framework also implicitly incorporates the generic influence of external 
flows on kinematic constraints, as opposed to previous BM formulation which necessitates some adjustments to the ambient 
flow in most cases.

We also propose a simple Gears Model to describe flexible objects, and we show that such model successfully predicts 
the fiber dynamics in an external flow, its response to an external mechanical forcing and the motion of internally driven 
swimmers. Quantitative agreement with previous works is obtained for both slender objects (fibers, actuated filaments) and 
non-slender swimmers (C. Elegans), allowing its use in a wide variety of contexts. The Gears Model is easy to implement 
and it fulfills several important improvements over previous BM:

• There is no limitation on the fiber curvature, since Gears Model does not need any repulsive force nor gap width to be
defined.

• Gears Model is more generic than previous ones, since there is no need for numerical parameter to be tuned.
• When compared with Lagrange multiplier formulation of Joint Model, Gears Model is also much more stable by two

orders of magnitude in time-step, a drastic improvement which offers nice prospects for the modeling of complex

flexible assemblies.

Finally it should be noted that even if we only consider simple collections of spheres, any complex assembly can be easily 
treated within a similar framework, which provide interesting prospects in the future modeling of complex micro-organisms, 
membranes or cytoskeleton micro-mechanics.
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Appendix A. Correspondence between M and MMM

Matrix MMM defined in (13) results from the rearrangement of the well-known mobility matrix M. This operation is 
necessary in order to combine constraint Eq. (5) and mobility relation (12) to obtain the constraint forces Fc .

Matrix M relates the collection of velocities V = (v1, . . . , vNb
) and rotations Ä = (ω1, . . . , ωNb

) to the collection of forces 
F = (f1, . . . , fNb

) and torques Γ = (γ 1, . . . , γ Nb
)

(

V

Ä

)

=

(

MVF MVT

MΩ F MΩT

)(

F

Γ

)

, (A.1)

where MVF is the 3Nb × 3Nb matrix relating all the bead velocities to the forces applied to their center of mass

MVF =







MVF
11 . . . MVF

1Nb

...
. . .

...

MVF
Nb1

. . . MVF
NbNb






. (A.2)

(A.1) is not consistent with the structure of the generalized velocity Q̇ = (v1, ω1, . . . , vNb
, ωNb

) and force F =
(f1, γ 1, . . . , fNb

, γ Nb
) vectors. Thus we rearrange M into M such that

Mii =

(

MVF
ii MVT

ii

MΩ F
ii MΩT

ii

)

, (A.3)

to obtain a mobility equation suited for the Euler–Lagrange formalism






q̇1

...

q̇Nb






=







M11 . . . M1Nb

...
. . .

...

MNb1 . . . MNbNb













f1
...

fNb






. (A.4)

(A.4) is strictly equivalent to (13).



Appendix B. Asymptotic limit of force and moment balance on the Gears Model

In this appendix we show that slender body formulation for elastic fibers, when applied to Gears Model is consistent 
with the discrete formulation of force and moments balance (36) and (37) in the asymptotic limit of small beads.

The force balance equation for a beam is [55]

∂nis

∂s
+ f = 0, (B.1)

nis(s) is the resultant internal stress on a cross-section S(s) at arclength position s along the centerline

nis(s) =

∫

S(s)

σ · tdS, (B.2)

for which the tangent vector to neutral fiber centerline is also the unit normal vector to cross-section S(s). f is the force 
per unit length which contains any supplementary contribution to the internal elastic response of the material (e.g. hydro-
dynamic force per unit length). The moment balance reads [55]

∂mis

∂s
+ t× nis + τ = 0, (B.3)

where mis(s) is the moment of the flexion and torsion stresses on the cross-section which are related to the local defor-
mation of Frenet–Serret coordinates and τ is the torque per unit length resulting from supplementary contributions to the 
internal elastic response.

Let us consider the curvilinear integral of (B.1) over each bead i, following the centerline of the skeleton joining the 
contact point ci−1 between bead i − 1 and i and the bead center ri , as well as the bead center and the contact point ci
between bead i and i + 1 (see Fig. 4). The curvilinear arclength s thus varies from 2ai to 2a(i + 1) within bead i.

Following the centerline, the integral of the internal stress contribution to (B.1) reads

2a(i+1)
∫

2ai

∂nis

∂s
ds = nis

(

2a(i + 1)
)

− nis(2ai). (B.4)

In the limit of pointwise contacts, the normal stress produced by contact forces at contact point ci−1 located at point 
xci−1

reads

σ · t = fci−1
δS(x − xci−1

), (B.5)

where δS stands for the surface Dirac distribution at the bead surface. Consequently the moment distribution associated 
with a Dirac contact forces applied at xci−1

is

mci−1
δS(x − xci−1

) = ati−1 × fci−1
δS(x − xci−1

). (B.6)

Since the area of the cross-section S(s) normal to the centerline tends to the bead surface itself as s → 2ai or s →
2a(i + 1), one can find that nis(2ai) → fci−1

and nis(2a(i + 1)) → fci as a → 0 using (B.4), (B.5) and (B.2). Hence, the finite 
size integral of (B.1), fulfills the following limit as the bead radius tends to zero

fci−1
− fci + f = 0, (B.7)

which is consistent with the force used in (36).
The second term of the moment balance equation (B.3) from contact point ci−1 to bead center ri is

2a(i+1/2)
∫

2ai

t × nis ds = ti−1 ×

2a(i+1/2)
∫

2ai

nis ds = ti−1 ×

( ∫

V i−

σ dV

)

· ti−1, (B.8)

where volume V i− is the half-bead joining contact point ci−1 with bead center ri , whose pointing outward normal at ri
is ti−1 = ei−1,i . The surface S i− enclosing half-bead V i− is composed of half-sphere Si− and disk Di− , S i− = Si− ∪ Di− . 
Similarly, considering the moment balance equation (B.3) from bead center ri to contact point ci leads to

2a(i+1)
∫

2a(i+1/2)

t × nis ds = ti ×

2a(i+1)
∫

2a(i+1/2)

nis ds = ti ×

( ∫

V i+

σ dV

)

· ti, (B.9)

where volume V i+ is the half-bead joining bead center ri to contact point ci , whose pointing outward normal at ri is 
−ti = ei+1,i . The surface S i+ enclosing half-bead V i+ is composed of half-sphere Si+ and disk Di+ , S i+ = Si+ ∪Di+ . Hence 



the integrated contribution of the second term of the moment balance equation (B.3) is the sum of the right-hand-side of 
(B.8) and (B.9) which ought to be evaluated from the volume integral of the total stress over V i− ∪ V i+ inside bead i. Since 
the stress tensor inside the beads is not known, it is possible to relate it to the applied normal force at bead surface. Using 
divergence theorem on any volume V , enclosed by surface S , one finds

∫

V

σαβdV =

∫

S

(σαγ · nγ )xβdS =

∫

S

σ · n⊗ xdS ≡ DS , (B.10)

where n is the normal pointing outward surface S , whilst introducing the tensor DS associated with the first moment 
contribution of the stress at surface S . If the surface S is the surface enclosing the considered bead, DS is the usual stress 
tensor, associated with the hydrodynamic interactions between the fluid and the bead. When considering hydrodynamic 
interactions, DS is usually decomposed into a symmetric tensor called stresslet and an anti-symmetric one called couplet. 
Using relation (B.10) in (B.8) as well as (B.9), one finds the following four contributions

2a(i+1)
∫

2a(i)

t× nis ds = ti−1 ×
(

DSi− +DDi−
)

· ti−1 + ti ×
(

DSi+ +DDi+
)

· ti, (B.11)

to the integration of the second term of (B.3). In the limit of bead radius tending to zero, then ti−1 → ti , so that the outward 
normal vector to Di− , ti−1 , tends to the opposite of the outward normal vector to Di+ . Since Di− → Di+ , this implies in 
turn, that DDi− → −DDi+ . Furthermore, since in the asymptotic limit of zero bead radius, Si− ∪ Si+ → S , one finds that

2a(i+1)
∫

2a(i)

t× nis ds →
(

ti−1 ×
(

DSi− · ti−1

)

+ ti ×
(

DSi+ · ti
))

→ ti ×
(

DS · ti
)

, (B.12)

where S is the bead surface here. For now, we concentrate on the contact forces contribution to (B.12). Using the contact 
surface force (B.5) it is then easy to compute the contact forces contribution to (B.12),

2a(i+1)
∫

2a(i)

t× nis
c ds → (ati−1 × fci−1

− ati × fci ) = (mci−1
−mci ) (B.13)

Hence, result (B.13) is consistent with moment balance used in (37).
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