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Discrete Hammersley’s Lines with sources and sinks

A-L. Basdevant∗, N. Enriquez†, L. Gerin‡, J-B. Gouéré§

March 2, 2015

Abstract

We introduce two stationary versions of two discrete variants of Hammersley’s process in
a finite box, this allows us to recover in a unified and simple way the laws of large numbers
proved by T. Seppäläinen for two generalized Ulam’s problems. As a by-product we obtain
an elementary solution for the original Ulam problem.

We also prove that for the first process defined on Z, Bernoulli product measures are the
only extremal and translation-invariant stationary measures.

MSC 2010 Classification: 60K35, 60F15.
Keywords: Hammersley’s process, Ulam’s problem, longest increasing subsequences.

1 Introduction

In a celebrated paper, J.M.Hammersley used Poissonization to attack the so-called Ulam problem
of the typical length `(n) of the longest increasing subsequence of a uniform permutation of size
n. Namely, he reduced this problem to finding the greatest number of points of a Poisson point
process inside a square, an increasing path can go through. He proved ([4], Theorem 4) that
`(n)/

√
n converges in probability to some constant c, sometimes refered to as the Ulam constant,

and conjectured that c = 2.
The proof of c = 2 was achieved independently by Logan and Shepp and by Vershik and

Kerov in 1977, using algebraic methods. Various authors were then interested in finding a more
probabilistic proof of this result. First, Aldous and Diaconis [1] gave one, using the properties
of what they called Hammersley’s process, which was implicitly introduced in [4] (p.358 and
following). Hammersley’s process is continuous in time and space and Aldous and Diaconis
studied its properties on the infinite line, in particular its stationary distributions. A few years
later, Groeneboom [3] and Cator and Groeneboom [2] studied Hammersley’s process on a quarter
plane. By adding what they called Poisson sinks and sources on the x and y-axis, they also
found a stationary version of this process on the quarter plane. Using this point of view, they
were able to recover again the value of c.

In this paper, we study two discrete variants of Ulam’s problem. Namely, for all p in [0, 1], we
replace the original Poisson point process by the following random set ξ of integer points: each
integer point of the square [1, n]2 is chosen independently with probability p. We are interested
in the two following quantities.

∗Laboratoire Modal’X, Université Paris Ouest, France. E-mail: anne-laure.basdevant@u-paris10.fr
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• The length of the longest increasing subsequence through points of ξ:

L(1)
n = max {L; (i1, j1), . . . , (iL, jL) ∈ ξ, i1 < · · · < iL and j1 < j2 < · · · < jL} .

• The length of the longest non-decreasing subsequence through points of ξ:

L(2)
n = max {L; (i1, j1), . . . , (iL, jL) ∈ ξ, i1 < · · · < iL and j1 ≤ j2 ≤ · · · ≤ jL} .

One aim of the present work is to recover by simple and unified probabilistic arguments the

first order asymptotics of L
(1)
n and L

(2)
n already obtained by T. Seppäläinen in two independent

papers, for L
(1)
n in [9] and for L

(2)
n in [10].

Theorem 1. • The length L
(1)
n of the longest increasing subsequence satisfies

L
(1)
n

n

a.s.−−−−−→
n→+∞

2
√
p

√
p+ 1

. (1)

• The length L
(2)
n of the longest non-decreasing subsequence satisfies

L
(2)
n

n

a.s.−−−−−→
n→+∞

{
2
√
p(1− p) if p < 1/2,

1 if p ≥ 1/2.
(2)

To prove this, Seppäläinen associates to each problem a particle system on the infinite line Z
and checks that Bernoulli product measures are stationary. The position of particles at a given
time is then characterized as the solution of a discrete optimization problem, and the a.s. limit

of L
(i)
n /n is identified using convex analysis arguments. Note also that for the second question,

Johansson used later ([6], Th.5.3) another description of L
(2)
n /n and proved that the rescaled

fluctuations converge to the Tracy-Widom distribution.
In [8], Rolla et al. considered the closely related model of last-passage percolation with

geometric weights. Here is a quick description of the model. Let (ξ̃(i, j))1≤i,j≤n be a family of
independent geometric random variables with parameter p. Set:

L(3)
n = max

{∑
t

ξ̃(γ(t))

}

where the maximum is taken over all paths γ from (1, 1) to (n, n) with (1, 0) or (0, 1) steps.

With respect to L
(1)
n or L

(2)
n , we have simply changed the weight of each point (from Bernoulli

to geometric) and the set of paths considered. Rolla et al. gave a new proof of the following
results:

L
(3)
n

n

a.s.−−−−−→
n→+∞

2
√
p

1−√p.

Our proof of the lower bound of Theorem 1 is inspired by the proof of Rolla et al. of the above
result.

The strategy is to consider a particle system on a bounded domain which turns out to coincide
with the restriction of Seppäläinen’s particle system on Z. This simplifies the definition of the
process (especially, in the case of the second problem). Moreover, it turns out that a local balance
property around a single site, see Lemma 1 and 2 below, is enough to check the stationarity
of the process on the whole square. Our proofs are essentially the same for both models. This
kind of remarkable local balance property also occurs in last-passage percolation with geometric
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weights (see Rolla et al., Section 3.1 in [8] or Seppäläinen, Lemma 2.3 in [11]). The particle
systems studied here provide two other examples where such a property holds. Theorem 1 is
then proven by investigating the behaviour of the models under the different stationary measures
which have been exhibited. Again, the strategy is the same as in Rolla et al. [8].

A nice by-product of our proof is that we obtain non-asymptotic estimates which provide
an elementary proof of c = 2 for the original Ulam problem (see the discussion at the end of
Section 4).

In the last section, which is of independent interest, we study the particle system defined on
the whole line Z associated to the first problem and prove that the only extremal translation-
invariant stationary measures of this process are the independent product of Bernoulli random
variables.

2 Discrete Hammersley’s processes

Like Hammersley did, we construct two sets of broken lines whose cardinality is respectively the

variable L
(1)
n and L

(2)
n . For each case, we first introduce a partial order:

Case 1: Case 2:
(x, y) ≺ (x′, y′) iff (x, y) ≺ (x′, y′) iff
x < x′ and y < y′ x < x′ and y ≤ y′

Now, Hammersley’s lines are paths starting from the top side of the square, ending at its
right side and making only south or east steps. They are constructed recursively. The first line
is the highest non-increasing path connecting the minimal points of ξ for ≺. We withdraw these
points from ξ and connect the new minima to get the second line, and so on.

In the below picture L
(1)
n = 4, L

(2)
n = 5 (crosses denote points of ξ, Hammersley’s lines are

in blue, one of the longest subsequences is in red):

Problem 1 Problem 2

In order to analyze the number of Hammersley’s lines, we introduce two discrete time Marko-
vian particle systems in which the particle trajectories precisely follow these lines.

These processes take their values in {0, 1}n, we denote them by (X1
t )t≥0 := (X1

t (x), x ∈
J1, nK)t≥0 and (X2

t )t≥0 := (X2
t (x), x ∈ J1, nK)t≥0. We will say that there is a particle at time

t at position x in Model i if Xi
t(x) = 1. For both models we start with the initial condition

Xi
0 ≡ 0.

In order to define the dynamic of these processes, we introduce a family of i.i.d. random
variables ξ = {ξt(x), x ∈ J1, nK, t ∈ N} with law Bernoulli(p). We say that there is a cross at
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time t located at x if ξt(x) = 1. A cross will act on a given configuration of particles in the
following way : if a cross is located at x, then the left-most particle in the interval Jx, nK (if any)
moves to x ; if there is no such particle then a particle is created at x.

With this definition, we can now construct the value of Xi
t+1 as a function of Xi

t and the
crosses at time t+ 1:

Model 1. We define X1
t+1 as the result of the successive actions on X1

t of all crosses at time
t+ 1 from the right to the left.

An example is drawn in this figure where the circles represent the particles and the crosses
the locations where ξt+1 equals 1. Here, we have X1

t+1 = (1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0) (as it is usual
in the literature on Hammersley’s processes, time goes from bottom to top in our pictures):

1 n

X1
t+1

X1
t

Let us note that there is an alternative way to construct the model 1 : At time t, if there is
a particle at x and if the particle immediately on its left is at y, then the particle at x jumps
at time t+ 1 at the rightmost cross of ξt+1 in interval (y, x) (if any, otherwise it stays still). If
there are some points of ξt+1 at the right of the rightmost particle of X1

t then a new particle
appears at the leftmost point among them.

Model 2. We define X2
t+1 as the result of the successive actions on X2

t of all crosses at time
t+ 1 from the left to the right.

1 n

X2
t+1

X2
t

We let the reader convince themselves that the trajectories of the particles coincide indeed
with the lines previously defined. In particular, and this is actually the important point, the

number of particles at time n is, for both model, equal to L
(i)
n .

Although the definition of both models seems, at first glance, very close, the nature of the
two processes is in fact quite different. Indeed, in the first model, to find the location at time
t + 1 of a particle located at time t at x, one just need to know the location y of the particle
immediately on his left at time t and the position of the crosses of ξt+1 in the interval (y, x). In
particular, with no difficulty, one can define a process with similar transitions on the whole line
Z as it is done in [9]. For Model 2, the dependances are more intricate. Indeed, to determine
the location at time t + 1 of a particle located at time t at x, one need to know the whole
configuration of X2

t and ξt+1 on the interval J1, xK. In particular, the definition on the whole
line Z of a similar process is more delicate and requires a condition between the density of crosses
and particles (see [10]).

3 Sinks and sources

Since, in both models, the number of particles can only increase as time goes on, both processes
converge a.s. to Xi

∞ :≡ 1. In this section, we are going to modify a little bit the rules of evolution
of the processes such that less trivial stationary measures exist. To do so, we define two families
of random variables : (ξt(0))t≥1 on the y-axis and (ξ0(x))x∈J1,nK on the x-axis. Using the same
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terminology as in [2], we call these two families respectively the sinks and the sources of our
processes. The sources will take values in {0, 1}n whereas the sinks will take values in {0, 1}N
for Model 1 and in ZN

+ for Model 2. The two processes with sources and sinks evolve with the
following rules:

Model i with sources and sinks
- the process starts with the initial configuration given by the sources i.e. Xi

0 ≡ ξ0.
- a sink acts on a configuration of particles in the following way: if the value of a sink equals

k, then the k leftmost particles jump to this sink and disappear.
- we define the value of X1

t+1 with sources and sinks as the result of the successive actions
on X1

t of
- all crosses (ξt+1(x), x ∈ J1, nK) at time t+ 1 from the right to the left
- the sink ξt+1(0).

- we define the value of X2
t+1 with sources and sinks as the result of the successive actions

on X2
t of

- the sink ξt+1(0)
- all crosses (ξt+1(x), x ∈ J1, nK) at time t+ 1 from the left to the right.

Theorem 2 (Stationarity of Hammersley’s processes in a finite box, with sources and sinks).
For all n,

• Model 1. For all p, α ∈ (0, 1), the process (X1
t (x), x ∈ J1, nK)t≥0 is stationary if sources

are i.i.d. Ber(α) and sinks are i.i.d. Ber(α?) (and sinks independent from sources) with

α? =
p(1− α)

α+ p(1− α)
. (3)

• Model 2. For all p, α ∈ (0, 1) such that α > p, the process (X2
t (x), x ∈ J1, nK)t≥0 is

stationary if sources are i.i.d. Ber(α) and sinks are i.i.d. (Geo(α?) − 1) (i.e. P(ξt(0) =
k) = α?(1− α?)k for k = 0, 1, . . . ) (and sinks independent from sources) with

α? =
α− p
α(1− p) . (4)

(Note that α? ∈ (0, 1) if α > p.)

Remark 1. • For Model 1 (resp. Model 2), Theorem 2 should be compared to Lemma 2.1 in
[9] (resp. Proposition 1 in [10]) which states that Bernoulli product measures are stationary
for the analogous model on the infinite line.

• The condition α > p in Model 2 reminds the condition on the density of the initial config-
uration needed to define the process on Z in [10].

• The theorem states stationarity in time ( i.e. from bottom to top in our figures). In fact,
the proof also shows stationarity from left to right.

Let us collect a few consequences for further use. Let L(i),α,β
(n,m) be the number of Hammersley’s

lines in Model i with parameters α (sources), β (sinks) in the box {1, . . . , n} × {1, . . . ,m} and

let T (i),α,β
(n,m) be the number of Hammersley’s lines that leave the same box from the top. Then,

for i = 1, 2 and every α, β ∈ [0, 1]

L(i),0,0
(n,m) = T (i),0,0

(n,m)

d
= L

(i)
(n,m),

L(i),α,β
(n,m) = T (i),α,β

(n,m) + # {sinks between 1 and m} , (5)
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si
n
ks

∼
B
er
(α
?
)

sources ∼ Ber(α)

si
n
ks

∼
G
eo
(α
?
)-
1

sources ∼ Ber(α)

2

1

3

Model 1, L(1),α,β
n = 5 Model 2, L(2),α,β

n = 7

note that in the right-hand side the two terms are not independent. Moreover, L(i),α,β
(n,m) can

be interpreted as the longest weakly increasing or non-decreasing path. Let us give a precise

definition in the case, for example, of Model 1. The quantity L(1),α,β
(n,m) is the maximum of

max{L; (i1, 0), . . . , (ik, 0), (ik+1, jk+1), . . . , (iL, jL) ∈ ξ, i1 < · · · < iL and 0 < jk+1 < . . . jL)}

and

max{L; (0, j1), . . . , (0, jk), (ik+1, jk+1), . . . , (iL, jL) ∈ ξ, 0 < ik+1 < · · · < iL and j1 < . . . jL}.

In other words, the path can pick either sources either sinks before going into N × N. This
property can be proven directly. It can also be seen as a consequence of the similar property
without sinks or sources by seeing sinks and sources as crosses placed at a convenient location
outside N2 and by considering the longest increasing path from a conveniently chosen point in

(−N)2. A similar property holds L(2),α,β
(n,m) . Note that, in this case, the path can pick several sinks

at the same point.
Thanks to these properties, we obtain the following inequality

L
(i)
(n,m) ≤ L

(i),α,β
(n,m) . (6)

Moreover, Theorem 2 implies that

T (i),α,α?

(n,m)

d
= Binom(n, α). (7)

Proof. We first prove for both models a local balance property, in Lemmas 1 and 2. These
lemmas are elementary but do not seem to be written elsewhere, and form the heart of our
proof.
Model 1.
We first focus on what happens around a single point (x, t). Recall that ξt(x) is a Bernoulli(p).
Denote by X (resp. Y,X ′, Y ′) be the indicator that a Hammersley’s line hits (x, t) from the
bottom (resp. left,top,right).
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Lemma 1 (Local balance for Model 1). The random variables (X ′, Y ′) are measurable with
respect to (X,Y, ξt(x)) and we have(

(X,Y, ξt(x))
(d)
= Ber(α)⊗ Ber(α?)⊗ Ber(p)

)
⇒
(

(X ′, Y ′)
(d)
= Ber(α)⊗ Ber(α?)

)
where α? is as in (3).

X ∼Ber(α)

Y ∼Ber(α?)

X ′ ∼Ber(α)

Y ′ ∼Ber(α?)

ind.

ind.

ξt(x)

Proof of Lemma 1. Recalling that, in Model 1, Hammersley’s lines are non increasing lines which
do not touch each other and noticing that X ′ = Y ′ = 1 iff X = Y = 0 and ξt(x) = 1, we get
that

(X ′, Y ′) =


(X,Y ) if X 6= Y
(1, 1) if X = Y = 0 and ξt(x) = 1.
(0, 0) otherwise.

Hence, we see that (X ′, Y ′) ∈ σ(X,Y, ξt(x)) and one can easily check that if (X ′, Y ′) ∼ Ber(α)⊗
Ber(α?) with α? is as in (3), then (X ′, Y ′) ∼ Ber(α)⊗ Ber(α?).

We now explain how Lemma 1 proves Theorem 2 for Model 1. For every (x, 1) define the
corresponding (X ′(x), Y ′(x)) be the output of (x, 1). Independence of sources and sinks and
Lemma 1 ensure that the output of (1, 1) is independent of sources at (2, 0), (3, 0), . . . and sinks
at (0, 2), (0, 3), . . . . Then a simple induction on x proves that the random variables (X ′(x), x ∈
J1, nK) are distributed as Ber(α).
Model 2. The strategy is similar:

Lemma 2 (Local balance for Model 2). The random variables (X ′, Y ′) are measurable with
respect to (X,Y, ξt(x)) and we have(

(X,Y, ξt(x))
(d)
= Ber(α)⊗ (Geo(α?)− 1)⊗ Ber(p)

)
⇒
(

(X ′, Y ′)
(d)
= Ber(α)⊗ (Geo(α?)− 1)

)
where α? is as in (4).

X ∼Ber(α)

Y ∼Geo(α?)− 1

X ′ ∼Ber(α)

Y ′ ∼Geo(α?)− 1

ind.

ind.

ξt(x)

Proof of Lemma 2. Recall that X,X ′ ∈ {0, 1} whereas Y, Y ′ ∈ Z+. Besides, using that Ham-
mersley’s lines are non-increasing, the balance between incoming and outcoming lines at a site
yields X ′ + Y = X + Y ′. Moreover, X ′ = 1 iff (ξt(x) = 1 or (X,Y ) = (1, 0)).
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We observe that the different cases can be summed up in

(X ′, Y ′) =

{
(1, 0) if (X,Y ) = (1, 0)
(ξt(x), Y −X + ξt(x)) otherwise.

One can easily check that this equality implies Lemma 2. For instance, for k ≥ 1, P(X = 1, Y =
k) = αα?(1− α?)k should be equal to

P(X ′ = 1, Y ′ = k) = P(ξt(x) = 1, X = 0, Y = k − 1) + P(ξt(x) = 1, X = 1, Y = k)

= p(1− α)α?(1− α?)k−1 + pαα?(1− α?)k

= p(1− α?)k−1α? [(1− α) + α(1− α?)] ,

which requires (4).

Theorem 2 for Model 2 then follows from Lemma 2 in the same way as before Theorem 2
for Model 1 follows from Lemma 1.

4 Law of Large Numbers in Hammersley’s processes

In this section, we explain how Theorem 2 on the stationary measure of the processes with
sources and sinks implies Theorem 1. In fact, we are going to prove the following proposition.

Proposition 1. For a, b > 0, let L
(i)
(an,bn) denote the number of Hammersley’s lines in the

rectangle {1, . . . , banc} × {1, . . . , bbnc} for Model i. Then, when n→ +∞,

L
(1)
(an,bn)

n

a.s.→


√
p(2
√
ab− (a+ b)

√
p)

1− p if p < min{a/b, b/a},
min{a, b} otherwise,

(8)

L
(2)
(an,bn)

n

a.s.→
{

2
√
abp(1− p) + (a− b)p if p < a/(a+ b),

a otherwise.
(9)

Proof. Trivial case.

We first consider Model 1 in the case p ≥ min{a/b, b/a}. The upper bound is straightforward.
The lower bound can be proven as follows. Let us consider for example the case p ≥ ab−1. We
have to prove:

lim inf
n→∞

L
(1)
(an,bn)

n
≥ a. (10)

One can build an increasing path as follows. The first point (1, y1) of the path is the lowest
point of ξ having first coordinate equal to 1. The second point (2, y2) of the path is the lowest
point of ξ having first coordinate equal to 2 and second coordinate strictly larger than y1. The
other points are defined in a similar fashion. As pb ≥ a, a study of this path easily provides
(10). The case p ≥ ba−1 can be handled in a similar way.

The same strategy treats the case p ≥ a/(a+ b) in Model 2.
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Non trivial case

We only need to compute lim 1
nE[L

(i)
(an,bn)] since almost sure convergence follows from superad-

ditivity.
Model 1. Upper bound. We assume that p ≥ min{a/b, b/a}. For any α ∈ (0, 1), taking α?

as in (3) and using (5), (6) and (7), we get

1

n
E[L

(1)
(an,bn)] ≤

1

n
E[L(1),α,α?

(an,bn) ] ≤ 1

n
E[T (1),α,α?

(an,bn) ] +
1

n
E[# {sinks between 1 and bn}]

= aα+ bα? = aα+ b
p(1− α)

α+ p(1− α)
=: φ(1)(a, b, α). (11)

The latter is minimized for

α(a, b) :=

√
p
√

b
a − p

1− p , α?(a, b) :=

√
p
√

a
b − p

1− p , (12)

which both are in (0, 1) if p < min{a/b, b/a}. This yields

1

n
E[L

(1)
(an,bn)] ≤ φ

(1)(a, b, α(a, b)) =

√
p(2
√
ab− (a+ b)

√
p)

1− p .

Model 2. Upper bound. We assume that p ≥ a/(a + b). Using (7) with α? = α−p
α(1−p) and

that E[Geo(α?)− 1] = 1
α? − 1, we get

1

n
E[L

(2)
(an,bn)] ≤

1

n
E[T (i),α,α?

(an,bn) ] +
1

n
E[# {sinks between 1 and bn}]

= aα+ b(
1

α?
− 1) = aα+ b

p(1− α)

α− p .

We minimize the latter by taking

α = p+

√
b

a
p(1− p).

Note that this choice is allowed since for p ∈ (0, a/(a+ b)) then 0 < p < α < 1.

Model 1 and 2. Lower bound.
In [9, 10] the lower bound was obtained with a convexity argument on the scaling limit.

Instead, we adapt a more probabilist argument due to Rolla et al. (proof of Theorem 4.1 in [8])
for the closely related model of last passage percolation with geometric weights. Here, we only
give the details for Model 1 but the same argument applies for Model 2.

Let us consider Model 1 on the rectangle [0, an]× [0, bn] with sinks and sources with optimal

source intensity α = α(a, b) and α? = α?(a, b). For ε ∈ [0, 1], denote by L
(1)
(an,bn)(ε) the length of

the largest non-decreasing subsequence defined by

L
(1)
(an,bn)(ε) = max {L; (i1, 0), . . . , (ik, 0), (ik+1, jk+1), . . . , (iL, jL) ∈ ξ,

i1 < · · · < ik ≤ anε < ik+1 < . . . < iL ≤ an and 0 < jk+1 < · · · < jL ≤ bn} .

Here is an example where L
(1)
(an,bn)(ε) = 4. Note that because of the constraint L

(1)
(an,bn)(ε) is

smaller than the number of Hammersley’s lines L(1),α,α?

(an,bn) .
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ik ik+1anε

Lemma 3 (Largest subsequence using some sources). There exist positive and non-decreasing
functions f , g on (0, 1], which depend on a, b, such that

P
(
L

(1)
(an,bn)(ε) ≥ n

(
φ(1)(a, b, α(a, b))− f(ε)

))
≤ exp(−ng(ε)).

Proof of Lemma 3. We write L
(1)
(an,bn)(ε) = I1 + I2 with

I1 := max {k; (i1, 0), . . . , (ik, 0) ∈ ξ, i1 < · · · < ik ≤ anε}
I2 := max {k; (i1, j1), . . . , (ik, jk) ∈ ξ, anε < i1 < · · · < ik ≤ an and 0 < j1 < · · · < jk ≤ bn} .

The random variables I1 and I2 are independent, I1 is binomially distributed with parameters

(banεc, α(a, b)). The random variable I2 has the law of L
(1)
(an(1−ε),bn), thus is dominated by a

random variable I3 with law L(1),α(a(1−ε),b),α?(a(1−ε),b)
(an(1−ε),bn) . Using (11), we get:

1

n
E
[
L

(1)
(an,bn)(ε)

]
≤ 1

n
E [I1 + I3]

≤ aεα(a, b) + φ(1)
(
a(1− ε), b, α(a(1− ε), b)

)
,

where, by convention, α(a′, b′) = 1 when p ≥ a′/b′ and α(a′, b′) = 0 when p ≥ b′/a′. One can
check that for p < min{a/b, b/a} and a′, b′ > 0 such that a/b 6= a′/b′ we have

φ(1)(a′, b′, α(a, b)) > φ(1)(a′, b′, α(a′, b′)).

This is due to the fact that α(a, b) 6= α(a′, b′) and that there is a unique α ∈ [0, 1] which
minimizes φ(a′, b′, α). Thus,

aεα(a, b) + φ(1)
(
a(1− ε), b, α(a(1− ε), b)

)
< aεα(a, b) + φ(1)

(
a(1− ε), b, α(a, b)

)
= aεα(a, b) + a(1− ε)α(a, b) + bα?(a, b)

= aα(a, b) + bα?(a, b)

= φ(1)(a, b, α(a, b)).

Denote by d(ε) the difference between the right and left hand side of the inequality. The
function d is positive on (0, 1] and continuous. We set f(ε) = 1

2 min{d(δ), δ ∈ [ε, 1]} which is
non-decreasing and positive. Then, we have

P
(
L

(1)
(an,bn)(ε) ≥ n

(
φ(1)(a, b, α(a, b))− f(ε)

))
≤ P

(
I1 + I3 ≥ E(I1 + I3) + n

(
d(ε)− f(ε)

))
≤ P (I1 + I3 ≥ E(I1 + I3) + nf(ε)) .

10



Recalling that I1 is binomially distributed and I3 is the sum of two binomial random variables,
function g is obtained by applying Hoeffding’s inequality to I1 and I3.

We still consider Model 1 on the rectangle [0, an]×[0, bn] with sinks and sources with optimal

source intensity α = α(a, b) and α? = α?(a, b). Let πn be an optimal path for L(1),α,α?

(an,bn) . If there
are several optimal paths, we choose one of them in an arbitrary way. Define Dn as the number
of points (i, j) ∈ πn with j = 0.

Lemma 4 (Optimal paths do not take many sources). There exists a positive function h on
(0, 1] such that for and any δ ∈ (0, 1] and for any n large enough

P (Dn > anδ) ≤ exp(−nh(δ)).

In particular Dn/n converges to 0 in L1.

Proof of Lemma 4. By definition, if Dn > anδ then for some ε ≥ δ such that εn ∈ N and ε ≤ 1

• there are more than anδ sources in {1, . . . , εan};

• L(1)
(an,bn)(ε) = L(1),α,α?

(an,bn) = T (1),α,α?

(an,bn) + # {sinks between 1 and bn}.

Therefore

P {Dn > anδ} ≤ P
(
T (1),α,α?

(an,bn) ≤ n(aα− 1

2
f(δ))

)
+ P

(
# {sinks} ≤ n(bα? − 1

2
f(δ))

)
+ P

(
L(1)
n (ε) > n (aα+ bα? − f(δ)) for some ε ≥ δ

)
≤ exp(−ng̃(δ)) +

∑
1≥ε≥δ; εn∈N

P
(
L(1)
n (ε) > n (aα+ bα? − f(δ))

)
≤ exp(−ng̃(δ)) +

∑
1≥ε≥δ; εn∈N

P
(
L(1)
n (ε) > n (aα+ bα? − f(ε))

)
≤ exp(−ng̃(δ)) +

∑
1≥ε≥δ; εn∈N

exp(−ng(ε))

≤ exp(−ng̃(δ)) + n exp(−ng(δ))

for large n, where we used Lemma 3 and where g̃ is some positive function. This implies the
first part of the lemma. The convergence of Dn/n to 0 in probability and in L1 follows, since
the sequence is bounded.

We now conclude the proof of the lower bound noticing that we have

L(1),α,α?

(an,nb) −Dn −D′n ≤ L(1)
(an,bn)

where D′n is the number of points (i, j) ∈ πn with i = 0. By the previous lemma we know that
Dn/n tends to 0 in L1. By symmetry, the same result holds for D′n/n. Taking expectations of
both sides in the previous inequality we get

lim inf
n→+∞

1

n
E[L

(1)
(an,bn)] ≥ aα+ bα? = φ(1)(a, b, α(a, b)).

11



Back to Ulam’s constant

We observe that if we take p = 1/n, Theorem 1 for Model 1 suggests L
(1)
n ≈ 2

√
n, which is

consistent with the asymptotics of Ulam’s problem, since ξ is then close, after renormalization,
to a Poisson point process with intensity n.

In fact, one can rigorously recover that c = 2 using our proof of Theorem 1. To do so,
consider a Poisson point process Ξ with intensity n in the unit square and denote by `(n) the
greatest number of points of Ξ an increasing path can go through. To get a lower bound and an
upper bound of `(n), we divide the square [0, 1]2 in two different ways.

First, we fix some k ≥ 1 and we divide it into small squares of length side 1/(k
√
n). Say that

ξj(i) = 1 if at least one point of Ξ is in the square with top-right corner (i/(k
√
n), j/(k

√
n))

and consider the quantity L
(1)

k
√
n

= L
(1)

(k
√
n,k
√
n)

associated to the family (ξj(i))i,j≤k
√
n. It is clear

that
`(n) ≥ L(1)

k
√
n
. (13)

Denoting
pk = P(ξj(i) = 1) = P

(
Poiss(1/k2) ≥ 1

)
= 1− e−1/k2 ,

Theorem 1 implies

L
(1)

k
√
n√
n

a.s.−−−−−→
n→+∞

2k
√
pk√

pk + 1
.

Using (13) and letting k tend to infinity, we get c := lim `(n)/
√
n ≥ 2.

To prove the upper bound, we divide now the square into small squares of length side 1/n4.
Say that ξj(i) = 1 if at least one point of Ξ is in the square with top-right corner (i/n4, j/n4)

and consider the quantity L
(1)
n4 associated to the family (ξj(i))i,j≤n4 . The parameter of these

Bernoulli random variables is now

p̃n = P
(
Poiss(1/n7) ≥ 1

)
= 1− e−1/n7

.

With probability higher than 1− n−2, all the columns and lines of width 1/n4 contain at most

one point of Ξ. On this event that we denote Fn, L
(1)
n4 coincides with `(n). We now use some

intermediate results of the proof of the upper bound for a = b = 1. Inequality (6) still holds
despite the dependence of p̃n on n i.e.

L
(1)
n4 ≤ L(1),αn,α?

n

n4 ,

with αn = α?n =
√
pn−pn
1−pn ∼ n−7/2. Using (11),we get

E[`(n)] ≤ E[|Ξ|1F̄n
] + E[L(1),αn,α?

n

n4 ]

≤
√
E[Poiss(n)2]/n2 + n4(αn + α?n),

where we used the Cauchy-Schwarz inequality. Dividing by n and letting n go to infinity, we
obtain c ≤ 2.

5 Stationary measures of Hammersley’s process on Z

In this section, which can be read independently from the rest of the article, we study the
analogous of Model 1 of the previous sections on the whole line Z. As before, (ξt(i))i∈Z,t∈N
denotes i.i.d. Bernoulli(p) random variables. As already noticed, the process Xt = (Xt(i))i∈Z ∈
{0, 1}Z on the whole line Z is well defined using the same construction as explained in the
introduction for Model 1 as soon as it starts with an initial configuration X0 ∼ µ such that
µ−almost surely, for all i there is j < i such that X0(j) = 1.

12



Xt+1

Xt

?

Theorem 3. The only extremal translation-invariant stationary measures of Hammersley’s pro-
cess on Z are measures Ber(α)⊗Z for all α ∈ (0, 1].

This theorem is precisely the discrete counterpart of ([1], Lemma 7). The fact that Bernoulli
product measures are stationary was proved by T.Seppäläinen ([9] Lemma 2.1). The reason for
which we only focus on Model 1 on the infinite line is that the analogous of Model 2 is much
more complicated to analyze. Indeed, the evolution of a particle in Model 2 depends on the
whole configuration on its left.

In order to prove that there are no other extremal measures we adapt a classical strategy
used to deal with exclusion processes (see for instance [5] p.17-20 and [7] Ch.VIII).

Proof of uniqueness. Let α ∈ (0, 1] and µ be an extremal translation-invariant stationary mea-
sure on {0, 1}Z with marginals µ(X(i) = 1) = α, we want to prove that µ = Ber(α)⊗Z.

The proof is made of the following steps:

1. we introduce a measure π on {0, 1}Z × {0, 1}Z which is a minimal coupling between
Ber(α)⊗Z and µ;

2. we prove (Lemma 6) that some patterns that would decrease card {i;xi 6= yi}, have π-
probability zero ;

3. we conclude: µ = Ber(α)⊗Z.

LetM? be the set of translation-invariant measures on {0, 1}Z×{0, 1}Z that are a coupling
of Ber(α)⊗Z and µ. The set M? is non-empty (it contains Ber(α)⊗Z ⊗ µ) and compact for the
weak topology.

We will prove that in M? there is a coupling ((X(i))i∈Z, (Y (i))i∈Z) such that X = Y a.s.
Set

D : M? → [0, 1]
π 7→ π (X(0) 6= Y (0)) .

The function D is continuous on the compact set M? and thus attains its minimum δ ≥ 0 at
some coupling π. If δ = 0, then the theorem is proved: by translation-invariance X = Y π-a.s.

Let (X0, Y0) ∼ π, we use the same random variables (ξt(i))i∈Z,t∈N to define the dynamics
of X and Y . We denote by (Xt, Yt) the pair of configurations at time t, its joint distribution
is denoted by πt. By construction, for every t, πt is translation-invariant. For every k ≥ 1 we
denote by

∆k(Xt, Yt)

the number of i ∈ {1, . . . , k} such that Xt(i) 6= Yt(i).
Let n ≥ 2 and t ≥ 0. We say that there is a n−forbidden pattern at location x ∈ Z at time

t if the configuration (Xt, Yt) between locations x and x+ n− 1 is either x x+ n− 1
Xt = ( 1 0 . . . 0 0 )
Yt = ( 0 0 . . . 0 1 )


or  x x+ n− 1

Xt = ( 0 0 . . . 0 1 )
Yt = ( 1 0 . . . 0 0 )

 .
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Lemma 5. For n ≥ 2, let Ex,n be the event ξ1(x) = 1, ξ1(x+1) = ξ1(x+2) = · · · = ξ1(x+n−1) =
0.

Let j ≥ 1, denote by F (n, j) the subset of locations of {0, n, 2n, . . . , (j − 1)n} at which is
located a forbidden pattern at time 0. Let

A(n, j) = card{x ∈ F (n, j), Ex,n occurs}.

Then:
∆jn(X1, Y1) ≤ ∆jn(X0, Y0) + 1− 2A(n, j).

Proof of Lemma 5. We let the crosses at time 1 act one by one from the right to the left. We
consider the impact of each cross action on the discrepancy ∆jn between the two configurations.
Let us note that, when a cross located at i acts on some configuration of particles, it changes
the value of at most two sites of the configuration: i and the leftmost 1 of the configuration in
the interval Ji,∞). Thus, we deduce the following facts:

• The crosses strictly to the right of jn have no impact on the discrepancy.

• A cross located at a point x in {1, . . . , jn} cannot increase the discrepancy. To check this
fact, one can study all the cases. They are all shown below, up to symmetries between X
and Y .  x

( 1 )
( 1 )

 ,

 x
( 1 ? · · · ? 1 )
( 0 0 · · · 0 1 )

 ,

 x
( 1 ? · · · ? 0 )
( 0 0 · · · 0 1 )

 ,

 x
( 0 · · · 0 1 )
( 0 · · · 0 1 )

 ,

 x
( 0 · · · 0 0 0 0 0 1 )
( 0 · · · 0 1 ? · · · ? 1 )

 ,

 x
( 0 · · · 0 0 0 0 0 1 )
( 0 · · · 0 1 ? · · · ? 0 )

 .

• For a forbidden pattern at some in, if Ein,n occurs, the cross at in decreases the discrepancy
by 2.

• In the worst case, the right-most cross which is strictly to the left of 1 increases the
discrepancy by 1.

• The crosses to the left of the previous one have no impact on the discrepancy.

The result follows.

Lemma 6 (Forbidden patterns). Let n ≥ 2. The π0 probability of a n-forbidden pattern at any
location is 0.

Proof of Lemma 6. Let j ≥ 1. By Lemma 5 we have:

∆jn(X1, Y1) ≤ ∆jn(X0, Y0) + 1− 2A(n, j).

Note that the probability that, at some location in, there is a n-forbidden pattern and that Ein,n
occurs is ζp(1 − p)n−1 where ζ is the probability of a n-forbidden pattern at a given location.
We aim to prove ζ = 0. Taking expectation in the previous display we get

jnD(π1) ≤ jnD(π0) + 1− 2jζp(1− p)n−1.
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Dividing by nj and letting j →∞ we get:

D(π1) ≤ D(π0)− 2ζp(1− p)n−1

n
.

But the minimality of π yields D(π1) ≥ D(π0) and we get ζ = 0.

Lemma 7 (There is a forbidden pattern somewhere). Assume that δ > 0, there exists n such
that

π

 1 n
X = ( 1 ? . . . ? 0 )
Y = ( 0 ? . . . ? 1 )

 > 0 or π

 1 n
X = ( 0 ? . . . ? 1 )
Y = ( 1 ? . . . ? 0 )

 > 0

Proof. Let (X,Y ) ∼ π,

δ = π(X(0) 6= Y (0)) = π(X(0) = 1, Y (0) = 0) + π(X(0) = 0, Y (0) = 1).

The two terms on the right side are equal:

π(X(0) = 1, Y (0) = 0) = π(X(0) = 1)− π(X(0) = 1, Y (0) = 1)

= π(Y (0) = 1)− π(X(0) = 1, Y (0) = 1) (X,Y have same marginals)

= π(X(0) = 0, Y (0) = 1).

Then 0 < δ/2 = π(X(0) = 1, Y (0) = 0). Assume that the lemma is false (for every n), we have
π(A ∪B) = 1, where

A = {(x, y), xi ≤ yi for all i ∈ Z} ,
B = {(x, y), xi ≥ yi for all i ∈ Z} .

As seen above, δ > 0 implies then that π(A), π(B\A) > 0. Besides, it is easy to check that A
and B\A are preserved by the dynamics. Hence, considering the restriction of π on these two
subsets, πA := (νA, µA) and πB\A := (νB\A, µB\A), we see that νA (resp. µA) and νB\A (resp.
µB\A ) define two translation-invariant stationary measures such that

Ber(α)⊗Z = π(A)νA + π(B\A)νB\A.

µ = π(A)µA + π(B\A)µB\A.

The extremality of Ber(α)⊗Z and µ implies that Ber(α)⊗Z = νA = νB\A and µ = µA = µB\A.

But, by definition of A and B, νA 4 µA and µB\A 4 νB\A. Thus, necessarily, µ = Ber(α)⊗Z.

Now we can obtain our contradiction. Indeed, there exists an integer n such that

π

 1 n
X = ( 1 ? . . . ? 0 )
Y = ( 0 ? . . . ? 1 )

 > 0 or π

 1 n
X = ( 0 ? . . . ? 1 )
Y = ( 1 ? . . . ? 0 )

 > 0.

Without loss of generality we do the first case. We can assume that X,Y coincide between
2 and n − 1, otherwise we can decrease n. Let 1 < k < n be the leftmost position at which(X(k)
Y (k)

)
=
(

1
1

)
.

With positive probability we can turn this
(

1
1

)
into

(
1
0

)
:

× − − − − − −
1 k n

Xt = ( 1 0 . . . 0 1 ? 0 )
Yt = ( 0 0 . . . 0 1 ? 1 )

 t+1→

 1 k n
Xt+1 = ( ? 0 . . . 0 1 ? 0 )
Yt+1 = ( ? 0 . . . 0 0 ? 1 )
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We repeat this process between positions k and n and finally for some t, i, j we have

π

 i j
Xt = ( 1 0 . . . 0 0 )
Yt = ( 0 0 . . . 0 1 )

 > 0,

which contradicts Lemma 6.
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