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Spin density distribution in open-shell transition metal systems: A comparative

post-Hartree-Fock, Density Functional Theory and quantum Monte Carlo study of the

CuCl2 molecule

Michel Caffarel, Emmanuel Giner, Anthony Scemama, and Alejandro Ramı́rez-Soĺıs∗

CNRS-Laboratoire de Chimie et Physique Quantiques, IRSAMC. Université Paul Sabatier,

118 route de Narbonne, 31062 Toulouse Cedex, France

We present a comparative study of the spatial distribution of the spin density (SD) of the ground
state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-
Hartree-Fock wavefunction theory (WFT). A number of studies have shown that an accurate descrip-
tion of the electronic structure of the lowest-lying states of this molecule is particularly challenging
due to the interplay between the strong dynamical correlation effects in the 3d shell of the copper
atom and the delocalization of the 3d hole over the chlorine atoms. It is shown here that quali-

tatively different results for SD are obtained from these various quantum-chemical approaches. At
the DFT level, the spin density distribution is directly related to the amount of Hartree-Fock ex-
change introduced in hybrid functionals and, therefore, it is not possible to draw conclusive results.
At the QMC level, Fixed-node Diffusion Monte Carlo (FN-DMC) results for SD are strongly de-
pendent on the nodal structure of the trial wavefunction employed. In the case of this open-shell
system, the 3N-dimensional nodes are mainly determined by the 3-dimensional nodes of the singly
occupied molecular orbital (SOMO) and FN-DMC results are found to be strongly dependent on
the type of one-particle model used for generating the SOMO (here, Hartree-Fock or Kohn-Sham
with a particular amount of HF exchange). Regarding wavefunction approaches, HF and CASSCF
lead to strongly localized spin density on the copper atom, in sharp contrast with DFT. To get a
more reliable description and shed some light on the connections between the various theoretical
descriptions, Full CI-type (FCI) calculations are performed. To make them feasible for this case a
perturbatively selected CI approach generating multi-determinantal expansions of reasonable size
and a small tractable basis set are employed. Although semi-quantitative, these near-FCI calcula-
tions allow to clarify how the spin density distribution evolves upon inclusion of dynamic correlation
effects. A plausible scenario about the nature of the SD is proposed.

I. INTRODUCTION

In spite of much effort in the last 50 years, to de-
vise a general electronic structure approach that is both
computationally practical and accurate enough for all
types of molecular systems is still a challenging task. In-
deed, to provide a truly accurate account of the elec-
tronic structure of a molecule one must take into ac-
count in a balanced way several effects of different phys-
ical/chemical nature, a) electron-electron correlation ef-
fects (resulting from the 1/r12 interaction), b) exchange
effects (Pauli principle), c) delocalization (kinetic effects)
and, in some cases, d) quasi-degeneracy effects (quan-
tum entanglement of almost degenerate low-energy wave-
function components). All the present-day methods deal
with these aspects in different ways, sometimes with
not so-clear distinctions between them (e.g. the mix-
ture of exchange and non-dynamical correlation effects
within Kohn-Sham formulation of Density Functional
theory). Here, in our study we shall consider the two
most widely used electronic structure methods, namely
Density Functional Theory (DFT) and molecular orbital-
based or wavefunction theories (WFT) (post-Hartree-
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Fock approaches). We shall also consider quantumMonte
Carlo (QMC) methods that are potentially very accu-
rate but are still methods of confidential use in quantum
chemistry due to a number of practical/theoretical lim-
itations. Each type of method treats the various effects
cited above in different ways with particular strengths
and weaknesses.

Density functional theory (DFT) is nowadays the most
popular and widely used theory for the description of
electronic structure of atoms, molecules and condensed
phases (solids and liquids). Its success stems mainly
from the fact that it provides reasonable energetic and
structural properties at a moderate computational cost.
One of the most fundamental tenets of DFT is that it
expresses the general N -body interacting electronic sys-
tem into a much more simple effective one-body system
where electrons are immersed into a universal exchange-
correlation potential embodying all the complexity of the
N -body problem. Within this formalism all types of elec-
tronic systems, regardless of the strength and characteris-
tic length of the interactions involved (i.e. covalent, ionic,
hydrogen-bonded, metallic or van der Waals types) are
expected to be treatable, at least in principle. However,
many questions remain open in the DFT realm, mostly
due to the necessity of approximating in a coherent way
the unknown universal exact exchange-correlation func-
tional. In the last 20 years DFT has made very important
progress, mainly due to the improvements over Gener-
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alized Gradient Approximation (GGA-type) functionals:
The meta-GGA functionals[1–3] which use the kinetic en-
ergy densities (τ↑, τ↓) and/or the Laplacian of the density
as non-local variables, and hybrid adiabatic connection
functionals[4] that empirically mix Hartree-Fock (HF)
non-local exchange with GGA exchange. However, all
the hybrid functionals contain several adjustable semi-
empiric parameters. Some of the hybrid functionals have
become extremely popular since they yield, in general,
rather good energetic and structural results for main-
element molecules. Nevertheless, fundamental problems
still appear, for example the fact that many of these semi-
empirically adjusted exchange-correlation (xc) function-
als do not even provide the correct asymptotic exchange-
correlation potential for systems for which the exact be-
havior is known.[5]

In the case of WFT the quantum chemical description
passes through the construction of an explicit wavefunc-
tion with the need of accurately introducing static and
dynamic electronic correlation effects. Ideally this can
be achieved through the construction of the Full Config-
uration Interaction (FCI) wavefunction. However, since
for most molecules the FCI solution is readily out of
reach even with moderate basis sets (exponential increase
of the Hilbert space), approximate solutions are needed
and are achieved in practice by building increasingly
complex wavefunctions following one of several approx-
imations using either perturbation, truncated CI (CIS,
CISD, CISDQ, CISDTQ,...) or coupled cluster (CCSD,
CCSD(T), ..) techniques. Note hat, within the WFT
framework, the question of whether or not the elec-
tronic state in question can be correctly described using
single-reference methods also appears. In the negative
case the application of the Complete Active Space SCF
(CASSCF) method has become customary and the en-
suing CASSCF wavefunction is used as zeroth-order ref-
erence for further treatment of the dynamic correlation
effects, for instance, through the CASPT2 or the Aver-
aged Coupled Pair Functional (ACPF) methods. At this
point we emphasize that for the spectroscopic properties
of transition metal molecules such as the CuCl2 molecule
treated here, critical accuracy problems might arise due
to the quality of the atomic basis sets used or to the
quality of the electronic correlation treatment. Unfor-
tunately, the application of very accurate wavefunction
methods is still restricted to molecules with a few atoms
due to the rapid growth of the computational cost with
the number of electrons (or the number of atomic basis
functions).

The third type of methods considered here are the so-
called quantum Monte Carlo (QMC) approaches. QMC
are statistical methods for solving the Schrödinger equa-
tion. They are very attractive since they are poten-
tially exact methods (up to the statistical errors inher-
ent to any Monte Carlo approach). Unfortunately, in
practice we have to cope with the pathological fluctu-
ations of the wavefunction sign and a so-called fixed-
node approximation has been introduced to fix this prob-

lem. This approximation can be viewed as solving the
electronic Schrödinger equation but with a new addi-
tional constraint, namely, imposing the solution to van-
ish wherever a known trial wavefunction given as input
vanishes. In other words, the nodal hypersurface of the
fixed-node wavefunction (nodes= 3N -dimensional hyper-
surface where the wavefunction vanishes) are imposed to
be identical to those of the approximate trial wavefunc-
tion. Numerical experience has shown that the fixed-
node error is small according to the quantum chemistry
standards (typically, a small percentage of the correla-
tion energy for total energies) but, unfortunately, still
large enough to lead to potential difficulties when com-
puting the small energy differences involved in quantita-
tive chemistry. Stated differently, suitable cancellation of
fixed-node errors are needed. At this point, it is worth
emphasizing that the need of suitable cancellation of er-
rors in energy differences is of course not restricted to
QMC and is, unfortunately, one of the most critical issues
common to all computational chemistry approaches de-
veloped so far. In practice, it has been observed that the
nodal quality is directly related to the physical/chemical
content of the trial wavefunction. In short, the better the
trial wavefunction is, the smaller the fixed-node error is.
Let us emphasize that the need of having a rather good
trial wavefunction to start a QMC calculation brings back
some heuristics into the approach, a crucial point one has
to be aware of. This aspect will be exemplified in in the
case of the CuCl2 molecule treated in this work.

As seen, for different reasons none of these state-of-
the-art approaches are fully satisfactory to deal with all
types of molecular problems. Here, we propose to shed
some light on their theoretical and practical relationships
on a small molecule which is representative of a diffi-
cult molecular problem, namely, the ground state prop-
erties of the CuCl2 molecule. As shown in previous stud-
ies, even the determination of the nature of the ground
state and the proper energetic ordering of the low-lying
states of this molecule turns out to be particularly dif-
ficult. This is mainly due to a subtle interplay between
the delocalization of the Cu(3d) hole on the molecular
axis and the dynamic correlation effects. Here, in order
to investigate such relationships we focus on the spatial
distribution of the spin-density of the ground-state along
the molecular axis, which is the main physical quantity
associated to the relative stability of the lowest electronic
states in CuCl2. More precisely, we consider the differ-
ence of α and β spin densities integrated within the plane
perpendicular to the molecular axis (actually, a paral-
lelepiped of small thickness). Our working definition is

∆ρ(z) =

∫ z+ǫ/2

z−ǫ/2

dz

∫ ∫
dxdy[ρα(r)− ρβ(r)], (1)

where z is the coordinate along the molecular axis of
the linear centro-symmetric molecule, the copper atom
being at the origin, and ǫ is a small positive parame-
ter (here, chosen equal to 0.1 a.u.) corresponding to the
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thickness of the parallelepiped. For simplicity this par-
tially integrated difference of α and β densities will be
shortly referred to in the present work as the spin den-
sity (SD) distribution. Although the DFT approaches
lead to a slightly different optimized geometry (ca. 3.92-
3.97 a.u.), in what follows we shall use the equilibrium
centro-symmetric geometry fixed at a Cu-Cl distance of
3.9 a.u., closer to the experimental value of 3.85 a.u. for
the ground state.
The contents of the paper are as follows. In Sec. II

we summarize what is known about the nature of the
low-lying electronic states of CuCl2. Sections III,IV,V,
and VI present the results obtained for the spatial dis-
tribution of the spin density using DFT, WFT, QMC
and near-Full CI, respectively. Finally, in Sec. VII a de-
tailed summary and discussion of the results obtained is
presented. In particular, a plausible description of the
nature of the ground state is proposed.

II. WHAT IS KNOWN ABOUT CUCL2

The quantitative description of the electronic structure
of metal-containing systems is known to be a rather del-
icate problem. Regarding DFT studies, we can mention
three articles reporting extensive tests of a series of func-
tionals on transition metal (TM) containing molecules.
Schultz et al.[6] propose a data set of bond lengths for
8 selected TM dimers, their atomization energies and
use these for testing DFT, while Furche and Perdew[7]
also investigate the performance of contemporary semi-
local (GGA, meta) and hybrid density functionals for
bond energetics and structures of 3d transition-metal
compounds. In this direction, one of us reported[8]
a systematic study on the performance of local, semi-
local and non-local xc functionals for the lowest singlet-
triplet transition in AgI, showing that a rather unpre-
dictable and thus, unreliable, performance of the vari-
ous types of functionals appears for this singlet-triplet
transition. Although the CuCl2 molecule was not in-
cluded in these studies, its spectroscopy presents a par-
ticularly difficult case for ab initio and DFT methods,
since important correlation effects (arising mainly in the
3d shell of copper) are strongly coupled to charge trans-
fer effects via the 3p orbitals of the Cl ligands. For-
tunately, the low-lying transitions are experimentally
quite well known[9, 10] and two extensive benchmark
variational multireference Averaged Coupled Pair Func-
tional(CASSCF+ACPF) studies on the spectroscopy of
CuCl2 exist; there the attention was focused on the na-
ture of the three lowest electronic states[11, 12] that give
rise to the four observed transitions. The first three
ligand field (LF) states are thought to arise from d-d
transitions on the copper ion and they can be described
by a different orientation (σ, π or δ) of the singly occu-
pied HOMO, in principle, the localized Cu(3d) hole. So,
at this point one might ask why is this such a compli-
cated problem? In order to understand the complexity

in the spectroscopic description involving the five lowest
ligand-field (LF) and charge-transfer (CT) states note
that, at the doubly ionic limit, CuCl2 is described by
the Cl−Cu2+(3d9)Cl− structure, while in the covalent
ClCuCl description, the copper atom which is promoted
to the 3d94s2 excited state undergoes 4s-4p hybridization
and can establish covalent bonds with both Cl atoms. An
intermediate situation arises when one considers the res-
onant Cl−Cu+(3d94s1)Cl and ClCu+(3d94s1)Cl− ionic
structures. Near the equilibrium geometry, the exact
electronic structure for all states is a mixture of these
three valence situations. The first three LF states (2Σ+

g ,
2Πg,

2∆g) correspond to d-d transitions on the copper ion
and it is generally thought that they can be described by
the σ, π or δ orientations of the singly occupied Cu(3d)
orbital. It is known that a correct description of elec-
tronic structures, and even more with such close lying
states, must include a correct description of correlation
effects especially important for the d shell, but also must
allow for large repolarization differential effects between
localized d-d states and charge transfer states. We stress
that single-reference methods like Coupled Pair Func-
tional(CPF) and CCSD(T) can be used here, since the
HF wavefunctions are excellent zeroth-order approxima-
tions for the lowest electronic states of CuCl2 [13]. From
the DFT perspective, this feature is also very convenient,
since standard Kohn-Sham based methods are, in prin-
ciple, well adapted to describe transitions where only a
change in the orientation of the 3d-hole in the central
metal atom is involved. We stress that the 2Πg →2 Σ+

g

transition in CuCl2 represents a most difficult problem
from the quantum theoretical point of view, since it has
been predicted to range from -2495 to 6930 cm−1.[14]

On the other hand, since the lowest five electronic
states (all doublets) of CuCl2 belong to different spatial
symmetries, it has been possible to study these states
through the ∆SCF approach in the DFT framework[14–
16]. In this approximation each state, which is the
ground state for a given spin and space symmetry, is op-
timized independently. Therefore, the main goal of[14]
was to perform a coherent assessment of DFT results
with benchmark ab initio calculations, eliminating the
discrepancies found in previous studies so that the com-
parison was restricted to the basic ideas of DFT. The
DFT calculations were done with the same relativistic ef-
fective core potentials (RECPs) and optimized extended
basis sets used in Refs.[11] and [12]. Table I presents
some selected DFT (LDA,GGA, hybrid and meta) and
the ab initio 2Πg →2 Σ+

g transition energies along with
the corresponding spin densities on the central Cu atom.
Note that, within the ab initio framework, the dynamic
correlation effects that control the nature of the Cu 3d-
hole in the ground state are extremely difficult to obtain
correctly since the SCF, the SDCI, and even the usu-
ally very accurate SDCI+Q (with Davidson’s approxi-
mate size-consistent correction) schemes, all wrongly lead
to a 2Σ+

g ground state. Only more sophisticated size-
consistent ab initio methods like the Coupled Pair Func-
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Method 2Πg →
2 Σ+

g
2Πg SD 2Σ+

g SD

LDA(S+VWN5) 6539 0.316

BLYP 4802 0.429 1.04

PBE96 4699 0.43 1.03

HCTH407 4345 0.420

OPTX-LYP 3963

TPSS 4065 0.406

M06-2X 3251 0.648

B3LYP 1703 0.57 1.07

B97-2 1465 0.54 1.03

PBE0 756 0.64 1.08

NR-SCFa -2495 0.962

CASSCF(21,14) 6930 0.94 1.00

CASSCF+ACPF 232

CASPT2 3861

NR-SDCIa -2116

NR-SDCI+Qa -1856

CCSD(T) 859

NR-Coupled Pair Functionala 659

Theor.b 900

Exp.c 253, 303, 475

TABLE I: DFT, ab initio and experimental transition
energies in wavenumbers, Mulliken spin densities (SD) on
the Cu atom where available.
a Non-relativistic calculations from [13].
b Theoretical spin-orbit deconvoluted value from [11].
c Experimental fine-structure transition energies; see corre-
sponding references in [14].

tional (CPF), CCSD(T) or CASSCF+ACPF are able
to correctly predict a 2Πg ground state, lying 659, 859
and 232 cm−1 (respectively) below the 2Σ+

g one with-
out spin-orbit (SO) effects. Note that, at the purely
electronic level, transition energies must be compared
with the theoretical SO-deperturbed value, estimated to
be 900 cm−1.[11] We also stress that Bauschlicher and
Roos[13] showed that the Darwin and mass-velocity rel-
ativistic effects cancel out nicely for the spectroscopy of
this molecule and, for this reason, they were able to use
all-electron non-relativistic (NR) calculations ; in what
follows we shall also make use of this fact. From the
DFT perspective, most functionals (GGA, hybrid and
even meta-ones) like HCTH407, BLYP, PBE96, OptX-
LYP, TPSS and M06-2X largely overestimate this tran-
sition, all yielding values above 3200 cm−1. Note that
up to date, it is impossible to decide a priori which func-
tional is to be used and which one can be trusted to
yield reliable transition energies for an arbitrary metal-
lic molecule. The delicate issue of the parametrization
of most exchange-correlation functionals without the in-
clusion of transition metal containing systems has been
discussed[14] in this context. It is somewhat ironic that
much less expensive and sophisticated descriptions such
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FIG. 1: 2Πg →
2 Σ+

g transition energy (wavenumbers) with
B3LYP as a function of the HF exchange percentage em-
ployed; positive values correspond to a 2Πg ground state, in
agreement with experiment.

as those given by the PBE0 (750 cm−1) and the B97-2
(1400 cm−1) functionals yield better approximations to
this transition energy than the very computational de-
manding benchmark CASSCF+ACPF one at 232 cm−1.
So the natural question arises: Are these hybrid PBE0
and B97-2 densities correctly describing each electronic
state, therefore providing truly accurate total energies, or
is this energy difference hiding some cancellation of er-
rors associated with physically relevant quantities, such
as the spatial distribution of charge and spin densities?

Although the various results presented in Table I may
appear rather diverse, a clear trend can be perceived in
the DFT subset, namely the role of the amount of HF
exchange in the relative stability of both states. The
larger the percentage of HF exchange in the functional
the more stable the 2Σ+

g state becomes. In the extreme
case of SCF-HF, we find the largest (negative) transition
energy with 2Σ+

g state as the ground-state. In the oppo-
site case where no HF exchange is included (BLYP, for
instance), the 2Π+

g state becomes the ground state with
a large (positive) transition energy. In between, one can
see that for functionals having a fraction of HF exchange,
this transition energy is still positive but smaller. To il-
lustrate quantitatively this idea we present in Figure 1,
for the B3LYP functional with variable HF exchange, the
evolution of the transition energy vs. the HF exchange
percentage.
This figure illustrates in a particularly striking way

the high level of arbitrariness present when using hybrid
functionals, such as B3LYP, for this system. Clearly,
there is no rational way to decide which is the “right”
amount of HF non-local exchange to be used.

Another quantity related to this aspect (via the local-
ization of the 3d hole) is the spin-density on the central
copper atom. In Table I, we present the values of sev-
eral LDA, GGA and hybrid DFT-derived Mulliken spin-
densities (SD) on the central Cu atom and the ab initio

CASSCF values for both states, each at its equilibrium
geometry. Note that both CASSCF wavefunctions were
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optimized considering 21 active electrons (11 from Cu
and 5 from each Cl atom) in 14 active orbitals, leading
to large expansions with about 23 000 CSF. Clearly, a
rather different picture of the spin-density distribution is
obtained with the DFT-derived methods vs. the corre-
sponding ab initio ones, especially for the 2Πg state. It is
quite remarkable that the quality of the excitation spec-
trum obtained with these functionals can be related to
the magnitude of the spin-density on the central metal
atom, since although all the functionals yield SD(Cu)
values close to 1.0 for the 2Σ+

g state, the correspond-

ing value for the 2Πg ground state shows large variations
between the good and bad-performing functionals. The
PBE0 SD(Cu) value is 0.64, while the BLYP and PBE96
spin-densities on copper are only 0.43. An intermediate
situation arises for the next two best performing func-
tionals, B3LYP and B97-2, with larger values of 0.57 and
0.54. The CASSCF(21,14) spin-densities are both very
close to 1 for both electronic states, and this is precisely
why it is generally thought that these ligand states ac-
tually present a much more localized hole on the central
copper atom than any of the DFT descriptions provide.
We shall address this important point in more detail in
what follows.

III. GROUND-STATE SPIN DENSITY WITH

DFT

Having in mind the previous results, we start our anal-
ysis of the ground state spin density along the molecular
axis with the DFT approaches. Note that the essential of
chemical/physical properties of the molecule takes place
via the singly-occupied molecular orbital (SOMO). It is
so since in the spin-restricted Kohn-Sham formalism the
contribution to the spin density resulting from all lower-
lying orbitals cancels out and the local spin density is
directly written as the square of the singly occupied or-
bital (other orbitals also contribute but in an indirect
way through the Kohn-Sham optimization). The σ or
π symmetry of the SOMO defines the overall symme-
try of the ground state. In Figure 2 the SOMO orbital
obtained with B3LYP for the 2Πg ground state as a func-
tion of the internuclear axis z for different values of HF
exchange percentage are shown, along with the ROHF
orbital (100% of HF exchange). The basis set used is
that optimized in a previous work.[11] Since these or-
bitals are centro-antisymmetric with respect to the cen-
tral Cu atom, only the z > 0-region is shown. In this
figure, the y coordinate is fixed to zero and x to 0.15, a
value close to the maximum of the highest peak of the or-
bital. Recall that in the present case of a one-determinant
restricted KS or HF representation, the spin density as
defined in Eq.1 reduces to the integrated value over (x, y)
of the square of this latter orbital. Figure 3 gives the
B3LYP spin-densities obtained as a function of the HF
exchange percentage together with the HF spin density.
The two-peak structure of the SOMO (Figure 2) and SD
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FIG. 2: Plot of the singly occupied molecular orbital along
the nuclear axis z > 0 (copper at origin and chlorine at z=3.9
a.u.) for the 2Πg ground-state using B3LYP as a function of
the HF exchange percentage used in the hybrid functional.
The values of x and y are fixed to 0. and 0.15, respectively.
The inset is a blow-up of the region in the middle of the bond
where the SOMO vanishes. See discussion in Sec.V.
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FIG. 3: Ground-state spin density with B3LYP as a function
of the HF exchange percentage. Cu at the origin and Cl atoms
located at z=± 3.9 a.u.; only the positive z axis is shown

.

(Figure 3) is clearly seen, one peak localized very close to
the central Cu atom and the other on the chlorine atom.
The relative height between the two maxima is strongly
dependent on the percentage of HF exchange considered.
In the case of HF (100% of HF exchange) the main peak
is the highest one while the secondary peak on Cl is 20
times smaller. This indicates a highly localized character
for the 3d hole at the HF level. When decreasing the
percentage of HF exchange in B3LYP, the level of local-
ization is found to decrease uniformly. Note also that the
location of the zero (node) of the SOMO in the middle of
the bond (see blow-up in Figure 2) is very dependent on
the level of HF exchange. This result will be discussed
in the context of the FN-DMC results (see Sec.V). As
in the case of the 2Σg-

2Πg transition energy presented
above, there is no physically meaningful reason to decide
which amount of non-local HF exchange should be used
in B3LYP for this metallic system.
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FIG. 4: 2Πg state spin density along the molecular axis (in
a.u.) at the HF-SCF and CASSCF levels.

IV. GROUND-STATE SPIN DENSITY WITH

WFT: HF AND BEYOND

Let us now turn our attention to the spin densities ob-
tained from wavefunction approaches (WFT) at different
levels of theory. Figure 4 shows ∆ρ(z) obtained for the
2Πg ground-state using both ROHF and CASSCF cal-
culations. In the later case the active space chosen in-
cludes 14 orbitals (3s and 3p shells of both Cl, 4s and
3d shells for Cu) and 21 valence electrons (5 from each
Cl and 11 from Cu) are distributed among them. In the
resulting CASSCF(21,14) expansion the HF coefficient is
found to be rather large (0.95), thus indicating a strong
single-reference character of the ground-state wavefunc-
tion. Therefore, dynamic correlation effects largely dom-
inate this problem. Note that the CASSCF spin-density
distribution presented has been obtained by considering
only the first one hundred determinants corresponding
to the largest coefficients in the expansion. As seen in
Figure 4 and expected from the single-reference nature
of the wavefunction, HF and CASSCF spin-densities are
almost identical. In both cases the 3d hole is found to
be strongly localized on the copper atom and almost no
SD is present on the chlorine atoms. As shown in Table
I, only the use of highly correlated methods (CCSD(T),
CPF or ACPF) can recover the correct energetic ordering
of the two lowest electronic states. Unfortunately, given
the huge number of CSF (ca. 7×109) considered in these
approaches, the spin density distributions at these levels
of theory are not available.

V. GROUND-STATE SPIN DENSITY WITH

QUANTUM MONTE CARLO

In this section we report all-electron quantum Monte
Carlo (QMC) calculations of spin-densities. Several ver-
sions of QMC have been introduced in the literature;
however, they all rely on the very same ideas and differ
only by technicalities. Here we employ a variant of the
Fixed-Node Diffusion Monte Carlo (FN-DMC) method

defined with a constant number of walkers. For details
the interested reader is referred to the original work.[17]
In FN-DMC we are faced with two main sources of er-
ror: the statistical error inherent to any Monte Carlo
approach and the fixed-node error. Other sources of er-
rors are also present but they can be easily controlled and
made negligible (see, [18]). By increasing the number N

of Monte Carlo steps the 1/
√
N -statistical error can be

decreased as much as desired, at least in principle. In
each application presented below, this error has been re-
duced to a level sufficient for our purposes. In contrast,
the fixed-node approximation is much more challenging
and its control is a crucial issue of present-day QMC ap-
proaches. It is known that the magnitude of the fixed-
node error is directly related to the quality of the nodal
structure of the approximate trial wavefunction used in
the simulation [the nodes are the (3N − 1)-dimensional
zeroes of the 3N -dimensional wavefunction, N being the
number of electrons]. Exact total energies can be ob-
tained only when using trial wavefunctions having the
nodes of the exact (unknown) wavefunction. It should
be emphasized that, in contrast with the statistical er-
ror which can be reduced as desired by increasing Monte
Carlo statistics, the fixed-node error is a systematic error

(i.e., a bias) that survives even for infinite statistics. Nu-
merical experience has shown that, although fixed-node
energies are very accurate, non-negligible errors on en-
ergy differences may still occur due to improper can-
cellation of fixed-node errors. Unfortunately, in some
cases this error can be large enough to lead to quali-

tative wrong conclusions. When considering closed-shell
systems with a strong single-reference nature, nodal hy-
persurfaces resulting from single-determinant represen-
tations (e.g., Hartree-Fock or Kohn-Sham type) are ex-
pected to be of sufficient quality. As we shall see, in
the CuCl2 case considered here, the situation is differ-
ent. Although the exact wavefunction has a strong single-
reference character, the presence of an open-shell makes
the nodal structure of the wavefunction more difficult to
describe. In this case the nodes of the 3N -dimensional
wavefunction turn out to be very sensitive to the 3-
dimensional nodal pattern chosen for the singly-occupied
molecular orbital (SOMO). Note that it is an interesting
case where the highly-complicated 3N -dimensional nodes
usually so difficult to visualize can be reduced, in a good
first approximation, to a much simpler 3D-pattern.

A last point to specify is the way spin-densities are
computed here. In the case of total energies it is known
that the only systematic error is the fixed-node one, de-
spite the fact that the stationary diffusion Monte Carlo
distribution is not exact. DMC actually samples the so-
called mixed distribution given by the product of the trial
wavefunction and the exact wavefunction, see [18]. In the
case of properties other than energies, this is no longer
true and some additional error related to the trial wave-
function contribution in the mixed distribution is present.
This error can be removed in different (costly) ways, see
e.g. [19] and [20]. However, such a possibility was not
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considered here since, as we shall see later, the dominant
source of error is the fixed-node approximation. Spin-
densities are thus calculated in a standard way using a
hybrid second-order estimate. For a general observable
O it is expressed as[21]

〈O〉 ∼ 2〈O〉DMC − 〈O〉VMC (2)

where averages are taken either over the mixed distri-
bution sampled in DMC or over the squared trial wave-
function density sampled in a variational Monte Carlo
(VMC) simulation. Here, the properties to be computed
are the α and β spin densities and the quantities to av-
erage are merely the number of α or β electrons falling
within histogram bins.
The all-electron Fixed-Node DMC spin-density for the

2Πg ground-state using a Hartree-Fock wavefunction as
trial wavefunction (complemented with a standard Jas-
trow factor to reduce statistical fluctuations for the en-
ergy) is presented in Figure 5. The basis set used is
that optimized in a previous work.[11] For comparison,
the Hartree-Fock SD is also given. Although some dif-
ferences between the two curves exist, they should essen-
tially be considered as the same when compared to the
typical differences present in the DFT-SD curves, Fig-
ure 2. The small differences include a slight increase of
the main DMC peak and a small “spin-density wave”
around Cl atoms. In this calculation the total energies
obtained at the SCF and FN-DMC levels are -2558.1050
and -2560.719(2), respectively. To get an assessment of
the accuracy reached here with QMC a rough estimate
of the exact total energy of the molecule can be done.
For that we add to the sum of atomic energies the at-
omization energy calculated at the SCF level. Taking for
Cl the value from Davidson et al.,[22] for Cu the HF en-
ergy of Bunge,[23] plus the correlation energy estimate
of Clementi et al.[24], the exact energy of separate atoms
is found to be about -2560.868. Adding the SCF at-
omization energy we get a total ground-state energy for
CuCl2 of about -2561.045 a.u.. The percentage of cor-
relation energy recovered by FN-DMC with HF nodes is
thus quite large, roughly ∼ 89%. Thus, with this highly-
correlated description of the wavefunction but imposing
HF nodes, it is found that the shape of the SD is not
quantitatively changed with respect to that obtained at
the SCF level. Let us now consider the FN-DMC spin-
densities obtained when using KS determinants instead
of the Hartree-Fock one as trial wavefunctions. The KS
determinants were obtained with standard B3LYP and
with B3LYP with a variable amount of HF exchange. In
Figure 6 the corresponding FN-DMC spin-densities are
presented. As clearly seen, the overall shapes of FN-
DMC spin-densities are tightly correlated with those ob-
tained at the corresponding DFT level, see Figure 3. The
results are thus similar to what has just been obtained for
the SCF case: No qualitative change of the spin densities
is obtained when passing from the variational to the FN-
DMC level. These results strongly suggest that the key
factor determining the SD shape is the nodal structure
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FIG. 5: 2Πg state spin density along the molecular axis (in
a.u.) at the FN-DMC level with a HF trial wavefunction
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FIG. 6: 2Πg state FN-DMC spin densities along the molecular
axis (in a.u.) using as trial wavefunction B3LYP-KS determi-
nants obtained with different amounts of HF exchange

of the trial wavefunction used. The situation can thus
be summarized as follows: i.) The amount of Hartree-
Fock exchange in B3LYP determines the relative weight
of 3pCl and 3dCu atomic contributions to the SOMO ii.)
the nodes of the SOMO are directly related to this rel-
ative weight iii.) the nodal pattern of the whole trial
wavefunction is dominated by the SOMO nodes. In the
inset of Figure 2 a blow-up of the SOMO in the region
around its node located at the middle of the Cu-Cl bound
is presented; the two other nodes close to the secondary
peak are weakly dependent on the level of exchange and
will not be discussed here. The position of the central
node is seen to be very sensitive to the percentage of
HF exchange. Its location ranges from Rnode = 2.5 for
the Hartree-Fock wavefunction to about 2.05 for the KS
determinant corresponding to the lowest HF percentage
of 10%. In short, the nodes of the trial wavefunction
are very sensitive and directly related the amount of HF
exchange chosen. At this point, the situation is clearly
not satisfactory since the overall shape of spin distribu-
tions is determined by the specific choice of nodes of the
SOMO. Said differently, FN-DMC is not able to change
qualitatively the global features of the spin-density as-
sociated with the approximate trial wavefunction given
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FIG. 7: Total FN-DMC 2Πg ground state energy obtained
with a B3LYP determinant as a function of the HF exchange
percentage for CuCl2.

in input for the diffusion Monte Carlo process. We thus
need to resort to alternative approaches capable of chang-
ing the nodes when electronic correlation effects are in-
cluded. This will be the subject of the following section.
Before that, let us nevertheless note that there exists in
FN-DMC an internal criterion for estimating the nodal
quality. It is based on the variational principle stating
that the “better” the nodes are, the lower the fixed-node
energies are expected to be.[21] Figure 7 presents the
variation of the total FN-DMC ground-state energy as a
function of the amount of exchange considered. The ba-
sis set employed in these calculations is that of Weigend
and Ahlrichs,[25] which leads to significantly lower fixed-
node energies than those obtained with the basis set pro-
posed in Refs.[11] and [12]. Quite remarkably, a mini-
mum is observed for a HF exchange percentage around
45%. This result is interesting and may be understood as
a first indication of the typical amount of HF exchange
that should be employed. However, let us stress that
this result must be considered with lot of caution since
the sensitivity of the FN-DMC results on nodal choice is
high and optimizing only the one-dimensional nodes of
the SOMO could be insufficient. Furthermore, optimiz-
ing nodes via minimization of the total energy is not a
guarantee of improvement for other properties like spin
density distributions.

VI. GROUND-STATE SPIN DENSITY WITH

NEAR-FCI

In this section we report near-Full Configuration In-
teraction (FCI) calculations for total energies and spin-
densities. To achieve converged results on this system
including 63 electrons, a small 6-31G basis set is em-
ployed for both atoms, leading to a molecular basis of
51 orbitals. Although the accuracy reached with such a
modest basis set can be questioned, it will allow us to
investigate the major trends obtained when using multi-
determinantal wavefunctions whose nodal structure may

change when correlation effects are introduced which, as
we have shown, is not possible to do with FN-DMC. To
realize FCI-type calculations for this system we use the
CIPSI approach (Configuration Interaction with Pertur-
bative Selection done Iteratively), a method proposed
more than four decades ago (see, [26],[27], and more
references in [28]) and very recently introduced in the
context of QMC approaches.[28] For a detailed presenta-
tion of this approach the reader is referred to the orig-
inal works. In short, CIPSI is a variational and mul-
tireference perturbational configuration interaction ap-
proach in which determinants that are to be included
in the variational space are selected iteratively accord-
ing to an energy criterion. Determinants perturbation-
ally generated are added to the variational wavefunction
when their perturbative contribution to the total energy
is greater than a given threshold. In contrast with stan-
dard CI approaches where a whole set of particle-hole
excitations are considered (single-excitations, single- and
double-excitations, etc.), only excitations having a signif-
icant impact on the wavefunction expansion are selected
as variational contributions. The relevance of a partic-
ular excitation is decided by comparing its energy con-
tribution with the pre-fixed threshold. This procedure
is applied iteratively until a given target number of de-
terminants is reached. In practice, this leads to rather
compact variational expansions consisting of a limited
number of determinants in each type of excitations. Fur-
thermore, higher-degree excitations not usually present
in standard CI expansions may also be naturally intro-
duced in the variational space with the CIPSI approach.
Finally, let us note that several applications for a vari-
ety of metal-containing molecules have been realized dur-
ing the 90’s, see e.g. [29],[30],[31]. The major difference
between these applications and the present study is the
size of the variational space that is taken much larger
here (up to a million of determinants). The second-order
perturbational correction is thus much reduced and an
accuracy close to the FCI limit can be reached in the
present application. In Figure 8 the convergence of the
ground-state energy as a function of the number of de-
terminants kept in the variational space is presented. To
reduce the size of the variational CI calculation, molecu-
lar orbitals of the neon and argon cores for the chlorine
and copper atoms, respectively, have been kept frozen.
Calculations have been performed using 36 active molec-
ular orbitals and 25 valence electrons. We stress that
the size of the full CI space is about 1018 determinants.
With the present basis set the maximum number of deter-
minants in the variational space considered here is 106.
The three upper curves of Figure 8 are the variational
energy curves corresponding to the multi-determinantal
expansion,|Ψ0〉 built using either SCF, DFT-B3LYP, or
natural molecular orbitals. The latter were constructed
from the variational CIPSI wavefunction obtained with
106 determinants. As seen on the figure, all curves are
found to converge almost to the same value, as it should
be when approaching the full CI limit. The lower curve
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FIG. 8: Total variational (three upper curves) and variational
+ perturbational (lower curve) ground-state energy as a func-
tion of the number of determinants kept in the CIPSI selection
process. SCF, B3LYP and natural orbitals are used.
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FIG. 9: 2Σg −
2 Πg energy gap as function of the number of

determinants in the variational space.

shows the so-called CIPSI energy obtained by adding to
the variational energy E0 the second-order perturbative
contribution defined as

EPT2 = −
∑
i∈P

〈Ψ0|H |Di〉2
〈Di|H |Di〉 − E0

. (3)

where P denotes the set of all determinants not present in
the multi-determinantal expansion |Ψ0〉 but connected to
it by the Hamiltonian H (single- and double-excitations).
For clarity only the CIPSI curve obtained with HF or-
bitals is shown, the other CIPSI curves have a similar
behavior. EPT2 can be considered as a measure of the
energy difference between the variational energy and FCI
limit. As seen on the figure, the convergence of CIPSI en-
ergy is particularly rapid, we consider the limit has been
attained with about 20 000-50 000 determinants in the
variational space. For a large enough number of deter-
minants, the perturbative correction EPT2 becomes quite
small, this being a reliable indicator of the convergence to
the FCI limit. In Figure 9 the energy difference between
the 2Σg and 2Πg states as a function of the number of de-
terminants is presented (note the logarithmic scale for the
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FIG. 10: 2Πg state. Spin density around the chlorine atom
with HF, B3LYP and CIPSI with varying number of deter-
minants. The basis set employed is 6-31G.

number of determinants). The evolution of the energy
difference is shown both for the variational energies and
the CIPSI energies (variational + EPT2). At the purely
variational level the 2Σg-

2Πg gap starts with a negative
value (as it should be for one-determinant SCF wavefunc-
tions, see Table I) and then changes sign when about
6 000 determinants are variationally included. With a
larger number of determinants the energy gap is found
to converge to a value close to about 1 000 cm−1. At the
CIPSI level, the convergence is even faster and better be-
haved. The CIPSI limit is close to the variational one.
Note that for a small number of determinants the second-
order energy correction is large and unphysical. CIPSI
results are only meaningful in the large number of deter-
minants regime, where the second-order contribution is
indeed a correction.

Results obtained for the energy are very satisfactory;
they demonstrate that nearly-FCI calculations are able to
describe the transition between the two lowest electronic
states despite the smallness of the basis set, since the con-
verged value obtained for the energy gap is very close to
the estimated SO-deperturbed value of about 900 cm−1.
For a deeper analysis we have also calculated the spin-
density obtained from the CIPSI variational wavefunc-
tion. Its evolution as a function of the number of se-
lected determinants is plotted in Figure 10. As usual, a
two-peak structure is observed. In the figure only data for
the secondary peak on the chlorine atoms are shown. For
comparison, the SD obtained at the SCF (nearly vanish-
ing small peak) and B3LYP levels (the highest peak) are
also plotted. Remark that the maximum of the B3LYP
peak is about 0.087, to compare with the value of 0.15 for
the very same quantity presented in Figure 3 (ordinary
B3LYP with 20% of HF exchange). We have checked
that this difference results from basis set incompleteness
due to the limitations of the 6-31G basis sets on both
atoms. The CIPSI spin densities lie between both ex-
treme curves and the height of the SD peak is found to
increase continuously with the number of determinants in
the variational space. For the maximum number of de-
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FIG. 11: 2Πg state. Convergence of the maximum of the
secondary peak of the spin distribution as a function of the
number of determinants in the variational space. Different
types of molecular orbitals were used.

terminants of 106 the height of the peak is not yet fully
converged but is large and represents about 40% of the
B3LYP peak. In Figure 11 we present a more complete
view of the convergence of the secondary peak as a func-
tion of the number of determinants selected, and with
various types of molecular orbitals used in CIPSI. When
using HF molecular orbitals, the spin density is found to
remain close to zero up to a thousand of determinants
and then begins to increase uniformly until it attains its
maximum value. With B3LYP molecular orbitals the
situation is qualitatively different. Starting from one de-
terminant from a high value of the peak (as shown above
with the B3LYP KS determinant), it decreases rapidly
to a value close to zero. This phenomenon can easily be
interpreted by noting that in a CI calculation the role
of the first determinants consists essentially in lowering
the energy via single-excitations whose effect is to opti-
mize in an effective way the (natural) one-body orbitals
(here, going from pure KS to SCF-type orbitals). Be-
cause of that, the SD is first found to almost vanish like
in a SCF calculation. Next, when more determinants are
added to the variational wavefunction, dynamical corre-
lation contributions begin to enter the game (typically,
through two-particle excitations) and then the SD starts
to increase. Directly using natural orbitals, a similar phe-
nomenon occurs but in a less marked way since the initial
SD value is smaller than in the DFT case. To support the
previous scenario regarding the role of single-excitations,
we present in Figure 12 the shape of the secondary peak
for a small number of determinants (about 50 determi-
nants) using natural orbitals and including or excluding
the SOMO-LUMO single-excitation that enters first in
the variational space. Using only one determinant built
with natural orbitals the maximum found for the peak
is about 0.035, the largest value of the figure. Now, a
short CIPSI calculation including only 50 determinants
in the variational space is performed. Two situations
are considered depending on the fact that the determi-
nant representing the SOMO-LUMO single-excitation is
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FIG. 12: Comparison of the secondary peak of the SD ob-
tained with a small number of determinants, including or ex-
cluding the SOMO-LUMO single-excitation.

removed or not from the variational expansion. In the
first case the peak is essentially unchanged. In sharp
contrast, in the second case the peak of the spin distribu-
tion is significantly reduced and many additional deter-
minants are needed to recover its original shape. These
results nicely illustrate the role of single-excitations re-
covering the Hartree-Fock nature of the orbitals when a
small number of determinants is considered in the refer-
ence space.

To conclude, results for the spin-density distribution
along the molecular axis obtained using near-FCI calcu-
lations with the small 6-31G basis set lead to a particu-
larly clear picture. At the SCF (or CASSCF) level, no
spin density is present on the chlorine atoms. The Cu(3d)
hole is strongly localized on the copper atom and the
ground-state is of symmetry 2Σg (i.e., a negative energy
gap with our definition). However, when introducing dy-
namical electron correlation contributions via a nearly
full-CI calculation, the situation changes dramatically.
The 2Πg becomes the ground-state and the Cu(3d) hole
is found to be partly delocalized over the chlorine atoms.
Quantitatively, the SD peak located on the Cl atoms is
roughly two times smaller than the peak obtained with
standard B3LYP (with 20% HF exchange contribution)
and is similar to that obtained using B3LYP but with a
higher percentage of HF exchange of about 40% (see, Fig-
ure 3). A remarkable point is that this result appears to
corroborate the fact that in FN-DMC optimal nodes were
obtained with KS orbitals built using about the same
percentage of HF exchange (see, Figure 7). Finally, we
have made some attempts to extend these near-full CI
calculations to larger basis sets (triple-ζ+polarization).
Unfortunately, given the much larger size of the full-CI
space, we were not able to reach a level of convergence
sufficient to get reliable information.
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VII. DISCUSSION AND SUMMARY

In this work calculations of the total energy and spin-
density for the 2Πg ground state of the CuCl2 molecule
have been presented using various quantum-mechanical
methods. Depending on the approach employed different
qualitative and quantitative descriptions of the spatial
distribution of the spin density along the molecular axis
have been found. At the root of such discrepancies lie
the different ways the electronic structure is described
and approximated.

At the DFT level the description of the low-lying
states of the molecule is very dependent on the type of
exchange-correlation functional chosen. Recalling that
hybrid functionals had been shown to provide the best
agreement with experimental data, the energy gap be-
tween the two lowest states, 2Πg and 2Σg, is found to
be very sensitive on the fraction of HF exchange used in
the functional. For B3LYP the gap is roughly linearly
dependent on this fraction, starting from a 2Σg ground-
state with 100% HF exchange to a 2Πg ground state with
a sufficiently low percentage (about 40% and less). Re-
garding the spatial distribution of the spin density a sim-
ilar strong dependence on the fraction of HF exchange
used in the hybrid functional is found. In the case of the
CuCl2 molecule having a single unpaired electron, the
DFT spin density is entirely determined by the square of
the SOMO orbital. By varying the HF exchange percent-
age, the shape of this orbital may be continuously varied
and so is the spin density. With the full HF exchange, the
DFT spin-density is almost entirely localized on copper,
while lower levels of HF exchange lead to increasingly de-
localized spin densities on both Cl ligands. Such results
are clearly disturbing, since there exists no internal crite-
rion within DFT to decide which amount of HF exchange
should be used and, thus, a meaningful chemical picture
of the electronic distribution is difficult to obtain. We
recall that in the DFT framework the self-interaction er-
ror (SIE) is known to be directly related to the exchange
part of the functional; in the case of the metal-containing
molecules with a high electronic density in the d shell this
error may be particularly important and not easy to con-
trol, thus leading to a potentially incorrect description of
the delocalization of electronic distributions.

A common way of shedding light on a situation where
DFT leads to unpredictable results is to resort to highly-
correlated post-Hartree-Fock methods where the con-
struction of accurate 3N-dimensional wavefunctions al-
lows, in principle, a better control of the details of the
electronic structure but at a much higher computational
price. At the HF level, and in agreement with hybrid
DFT results with full HF exchange, the spin density is
found to be completely localized on the central copper
atom. At the CASSCF level including all Cl(3p) and
Cu(3d,4s,4p) orbitals as active orbitals, the wavefunction
is not significantly changed and is largely dominated by
the HF determinant. In other words, the dynamical cor-
relation effects are dominant here and the spin density

calculated with CASSCF is practically identical to that
of the HF description. Unfortunately, as illustrated by
a number of works, it is very difficult to reproduce with
sufficient accuracy the dynamical correlation effects and
thus to give a quantitative description of the low-lying
states; in particular, to obtain the correct energy dif-
ference between the two lower states requires very high
level calculations [e.g. CCSD(T) or ACPF] with large
optimized basis sets. Unfortunately, these methods do
not provide the final electronic density that would allow
us to conclude on the true chemical picture concerning
the spin density.

To escape from such limitations, we have proposed to
resort to QMC calculations that are known to be par-
ticularly accurate. Using different types of trial wave-
functions fixed-node DMC calculations of both ground-
state total energies and spatial distributions of the spin
density have been performed. Unfortunately, although
we get state-of-the-art total energies (we have estimated
that about 90% of the total correlation energy for the
ground-state energy is recovered), spin densities calcu-
lated within the fixed-node approximation are found to
be too dependent on the nodal structure of the trial wave-
function employed. To be more precise, in the present
case with a singly occupied molecular orbital (SOMO),
we have seen that the complex 3N-dimensional nodal hy-
persurface of the full trial wavefunction is dominated by
the 3-dimensional nodes of the SOMO and that the shape
of the FN-DMC spin densities calculated is directly re-
lated to the shape of this orbital. Stated differently,
qualitatively different spin density distributions can be
obtained even at the supposedly very accurate FN-DMC
level, depending on the choice of the singly-occupied or-
bital used in the trial wavefunction. Using a HF-type
wavefunction, the FN-DMC spin density closely resem-
bles to that obtained at the variational HF level. Sim-
ilarly, when using various SOMO KS orbitals obtained
with a variable exchange hybrid DFT method (here,
B3LYP), FN-DMC spin densities resembling to their KS
counterparts are obtained. As a consequence, it becomes
impossible to decide on such grounds what is the correct
chemical picture for the spin distribution. Nevertheless,
we have noted that, within the framework of FN-DMC
approaches, there exists an internal criterion allowing to
estimate the nodal quality: The lower the fixed-node en-
ergy is, the “better” the nodes are expected to be (vari-
ational property of the fixed-node energy, see [21]). We
have insisted on the fact that this criterion should be
taken with lot of caution for a property other than the
energy; however, it is worth noting that the nodes of the
SOMO minimizing the fixed-node energy are those cor-
responding to a contribution of HF exchange of about
40-45%, considerably higher than the ordinary B3LYP
but much smaller than pure HF.

In order to elucidate these various contradictory results
and to get a plausible description of the ground-state
spin-density distribution, we have proposed to perform
near-full Configuration Interaction calculations. Only
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such calculations can indeed yield a reliable balance be-
tween electron correlation and exchange effects. Obvi-
ously, in the present case where the molecule contains 63
electrons, ordinary FCI calculations using standard ba-
sis sets are just unfeasible. However, to circumvent this
difficulty we have proposed to greatly reduce the dimen-
sionality of the CI problem by employing the small 6-31G
basis sets on both atoms and then by performing selected
multireference CI calculations, which allowed us to avoid
huge intractable multi-determinantal variational FCI ex-
pansions. Clearly, by using a small basis set the quantita-
tive accuracy of the results can be questioned. However,
since all types of electronic excitations are considered[32],
it can be expected that chemically relevant trends regard-
ing the various aspects obtained above with other meth-
ods may emerge. The multireference CI used here is a
perturbatively selected CI scheme (CIPSI) that includes
in a hierarchical way the most important determinants
to asymptotically approach the FCI limit. Remarkably,
it has been shown that using CIPSI for both the ground
and first-excited state, these near-FCI calculations yield
transition energies and spin-densities that are almost con-
verged.
From the all set of data obtained for total energies,

energy gap, spin densities, and the dependence of the
various results on the number of determinants and types
of molecular orbitals used, a rather coherent chemical
picture emerges. At the uncorrelated (SCF) level, the
lowest state is of 2Σ+

g symmetry and the Cu(3d) hole is
completely localized on the copper atom. When dynam-
ical correlation effects are added the ordering between
the 2Σg and 2Πg states is reversed and the hole is found

to partly delocalize over the Cl ligands. At the ordinary
DFT-B3LYP level the Cu(3d) hole is too delocalized
over the chlorine atoms due to an improper balance
between the self-interaction and exchange effects. To
get a chemically meaningful description of electronic
distributions using B3LYP-DFT the percentage of HF
exchange used must be increased up to about 40%. At
the fixed-node DMC level, spin densities are found to be
intimately related to the shape of the singly occupied
molecular orbital, an orbital whose nodes are in turn
directly related to the level of HF exchange used to
derive it. Using as criterion the minimization of the
FN-DMC ground-state energy, the optimal nodes for the
SOMO are obtained for a HF exchange weight of about
40%, a result coherent with what has been obtained
with near-FCI. Finally, let us note that the fact that
DFT overestimates delocalization effects of magnetic
holes in molecular systems has already been noticed in
the literature by other authors (see, e.g. [33]).
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(1989); A. Ramı́rez-Soĺıs, J.P. Daudey, J. Phys. B 23:2277
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