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COMPUTING ASYMPTOTIC INVARIANTS WITH THE RICCI TENSOR

ON ASYMPTOTICALLY FLAT AND HYPERBOLIC MANIFOLDS

MARC HERZLICH

Abstract. We prove in a simple and coordinate-free way the equivalence bteween the classical
definitions of the mass or the center of mass of an asymptotically flat manifold and their alternative
definitions depending on the Ricci tensor and conformal Killing fields. This enables us to prove an
analogous statement in the asymptotically hyperbolic case.

Introduction

Mass is the most fundamental invariant of asymptotically flat manifolds. Originally defined in
General Relativity, it has since played an important role in Riemannian geometric issues. Other
interesting invariants, still motivated by physics, include the energy momentum, the angular mo-
mentum or the center of mass (which will be of interest in this note). Moreover, they have been
extended to other types of asymptotic behaviours such as asymptotically hyperbolic manifolds.

One of the main difficuties when handling the mass of an asymptotically flat or hyperbolic
manifolds (or any of its companion invariants) comes from the fact that they are defined as a limit
of an integral expression on larger and larger spheres, and depending on the first derivatives of the
metric tensor written in a special chart where the metric coefficients are asymptotic to those of the
model (flat, hyperbolic) metric at infinity.

It seems unavoidable that a limiting process is involved in the definitions. But finding expres-
sions that do not depend on the first derivatives but on rather more geometric quantities is an old
question that has attracted the attention of many authors. It was suggested by A. Ashtekhar and
R. O. Hansen [1] (see also P. Chruściel [6]) that the mass could be rather defined from the Ricci
tensor and a conformal Killing field of the Euclidean space. Equality between the two definitions,
as well as a similar identity for the center of mass, has then been proved rigorously by L.-H. Huang
using a density theorem [12] due to previous work by J. Corvino an H. Wu [10] for conformally
flat manifolds, and by P. Miao and L.-F. Tam [13] through a direct computation in coordinates.

The goal of this short note is twofold: we shall provide first a simple proof of the equality
between both sets of invariants. Although similar in spirit to Miao-Tam [13], our approach com-
pletely avoids computations in coordinates. Moreover, it clearly explains why the equality should
hold, by connecting it to a natural integration by parts formula related to the contracted Bianchi
identity. As a corollary, we shall extend the definition of the mass through the Ricci tensor to the
asymptotically hyperbolic setting.
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1. Basic facts

We begin by recalling the classical definitions of the mass and the center of mass of an asymp-
totically flat manifold, together with their alternative definitions involving the Ricci tensor. In all
that follows, the dimension n of the manifolds considered will be taken to be at least 3.

Definition 1.1. An asymptotically flat manifold is a complete Riemannian manifold (M, g) such
that there exists a diffeomorphism Φ (called a chart at infinity) from the complement of a compact
set in M into the complement of a ball in Rn, such that, in these coordinates and for some τ > 0,

|gi j − δi j| = O(r−τ), |∂kgi j | = O(r−τ−1), |∂k∂ℓgi j| = O(r−τ−2).

Definition 1.2. If τ > n−2
2 and the scalar curvature of (M, g) is integrable, the quantity(1)

(1.1) m(g) =
1

2(n − 1)ωn−1
lim
r→∞

∫

S r

(−δeg − d tre g)(ν) dvole
sr

exists (where e refers to the Euclidean metric in the given chart at infinity, δ is the divergence
defined as the adjoint of the exterior derivative, ν denotes the field of outer unit normals to the
coordinate spheres S r, and ωn−1 is the volume of the unit round sphere of dimension n − 1) and
is independent of the chart chosen around infinity. It is called the mass of the asymptotically flat
manifold (M, g).

Definition 1.3. If τ > n−2
2 , the scalar curvature of (M, g) is integrable, m(g) , 0, and the following

so-called Regge-Teitelboim (RT) conditions are satisfied:

|godd
i j | = O(r−τ−1), |∂k

(

godd
i j

)

| = O(r−τ−2)

(where ·odd denotes the odd part of a function on the chart at infinity), the quantities

cα(g) =
1

2(n − 1)ωn−1m(g)
lim
r→∞

∫

S r

[

xα(−δeg − d tre g) − (g − e)(∂α, ·) + tre(g − e) dxα
]

(ν) dvole
sr

exists for each α in {1, ..., n}. Moreover, the vector C(g) = (c1(g), . . . , cn(g)) is independent of the
chart chosen around infinity, up to the action of rigid Euclidean isometries. It is called the center

of mass of the asymptotically flat manifold (M, g).

Existence and invariance of the mass have been proved by R. Bartnik [2] or P. T. Chruściel
[5]. The center of mass has been introduced by Regge and Teitelboim [15, 16], and Beig and Ó
Murchadha [3], see also the more recent works of J. Corvino and R. Schoen [8, 9]. We shall recall
here the basic idea, following the approach due to B. Michel [14]. Let g and b be two metrics on a
complete manifold M, the latter one being considered as a background metric. Let also F g (resp.
F b) be a (scalar) polynomial invariant in the curvature tensor and its subsequent derivatives, V a
function, and (Mr)r>0 an exhaustion of M by compact subsets, whose boundaries will be denoted
by S r (later taken as large coordinate spheres in a chart at infinity). One then may compute:

∫

Mr

V
(

F g − F b
)

dvolb =

∫

Mr

V (DF )b(g − b) dvolb +

∫

Mr

V Q(b, g) dvolb

where Q denotes the (quadratic) remainder term in the Taylor formula for the functional F . Inte-
grating by parts the linear term leads to:
∫

Mr

V
(

F g − F b
)

dvolb =

∫

Mr

〈(DF )∗bV , g − b〉 dvolb +

∫

S r

U(V, g, b) +
∫

Mr

V Q(b, g) dvolb .

1The normalization factor in front of the integral is chosen here to give the expected answer for the so-called
generalized Schwarzschild metrics; the same applies to the definition of the center of mass below.
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This formula shows that lim
r→∞

∫

S r
U(V, g, b) exists if the following three natural conditions are satis-

fied: (1) g is asymptotic to b so that V
(

F g − F b
)

and V Q(b, g) are integrable; (2) the background
geometry b is rigid enough (this means that any two ‘charts at infinity’ where g is asymptotic to
b differ by a diffeomorphism whose leading term is an isometry of b); (3) V belongs to the kernel
of (DF )∗

b
(the adjoint of the first variation operator of the Riemannian functional F ). Moreover,

Michel proves in [14] that it always defines an asymptotic invariant, independent of the choice
of chart at infinity, as a consequence of the diffeomorphism invariance of the integrated scalar
invariant F g.

If one chooses F g = Scalg on an asymptotically flat manifold (hence b = e, the Euclidean
metric),

(D Scal)∗eV = Hesse V + (∆eV) e,

and its kernel consists of affine functions. Letting V ≡ 1, it is easy to check that the limit over
spheres above yields the classical definition of the mass:

2(n − 1)ωn−1 m(g) = lim
r→∞

∫

S r

U(1, g, e).

Thus,

(1.2) 2(n − 1)ωn−1 m(g) = lim
r→∞

∫

Mr

V Scalg dvole − lim
r→∞

∫

Mr

Q(e, g) dvole

Integrable scalar curvature yields convergence of the first term, whereas the integrand in the second
term is a combination of terms in (g − b)∂2g and g−1(∂g)2: it is then integrable since τ > n−2

2 .
Moreover, Michel’s analysis shows that it defines an asymptotic invariant, independent of the
choice of chart at infinity [14]. If one takes V = V (α) = xα (the α-th coordinate function in the
chart at infinity, for any α in {1, ..., n}), the integral over spheres now yields the classical definition
of the center of mass, i.e.

2(n − 1)ωn−1 m(g) cα(g) = lim
r→∞

∫

S r

U(V (α), g, e) for any α ∈ {1, ..., n}.

Under the RT conditions, these converge as well and the vector C(g) is again an asymptotic invari-
ant.

It now remains to state the alternative definitions of these asymptotic invariants via the Ricci
tensor.

Definition 1.4. Let X be the radial vector field X = r∂r in the chosen chart at infinity. Then we
define the Ricci version of the mass of (M, g) by

(1.3) mR(g) = −
1

(n − 1)(n − 2)ωn−1
lim
r→∞

∫

S r

(

Ricg −
1
2

Scalg g

)

(X, ν) dvolg

whenever this limit is convergent. For α in {1, . . . , n}, let X(α) be the Euclidean conformal Killing
field X(α) = r2∂α − 2xαxi∂i and define

(1.4) cαR(g) =
1

2(n − 1)(n − 2)ωn−1m(g)
lim
r→∞

∫

S r

(

Ricg −
1
2

Scalg g

)

(X(α), ν) dvolg

whenever this limit is convergent. We will call this vector CR(g) = (c1
R

(g), . . . , cn
R
(g)).

Notice that these definitions of the asymptotic invariants rely on the Einstein tensor, which
seems to be consistent with the physical motivation.
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2. Equality in the asymptotically flat case

In this section, we will prove the equality between the classical expressions m(g),C(g) of the
mass or the center of mass and their Ricci versions mR(g),CR(g). The proof we will give relies
on Michel’s approach described above together with two elementary computations in Riemannian
geometry.

Lemma 2.1 (The integrated Bianchi identity). Let h be a C3 Riemannian metric on a smooth

compact domain with boundary Ω and X be a conformal Killing field. Then
∫

∂Ω

(

Rich −
1
2

Scalh h

)

(X, ν) dvolh
∂Ω =

n − 2
2n

∫

Ω

Scalh
(

δhX
)

dvolh
Ω ,

where ν is the outer unit normal to ∂Ω.

Proof. – This equality is a variation of the well known Pohozaev identity in conformal geometry,
as stated by R. Schoen [17]. Our version has the advantage that the divergence of X appears in
the bulk integral (the classical Pohozaev identity is rather concerned with the derivative of the
scalar curvature in the direction of X).The proof being very simple, we will give it here. From the
contracted Bianchi identity δh

(

Rich − 1
2 Scalh h

)

= 0, one deduces that
∫

∂Ω

(

Rich −
1
2

Scalh h

)

(X, ν) dvolh
∂Ω =

∫

Ω

〈Rich −
1
2

Scalh h, (δh)∗X〉h dvolh
Ω

where (δh)∗ in the above computation denotes the adjoint of the divergence on vectors, i.e. the
symmetric part of the covariant derivative. Since X is conformal Killing, (δh)∗X = − 1

n
(δhX)h and

∫

∂Ω

(

Rich −
1
2

Scalh h

)

(X, ν) dvolh
∂Ω = −

1
n

∫

Ω

trh

(

Rich −
1
2

Scalh h

)

(δh)X dvolh
Ω

=
n − 2

2n

∫

Ω

Scalh(δhX) dvolh
Ω

and this concludes the proof. �

Lemma 2.1 provides a link between the integral expression appearing in the Ricci definition of
the asymptotic invariants (see 1.3) and the bulk integral

∫

Scalh
(

δhX
)

. This latter quantity also
looks like the one used by Michel to derive the definitions of the asymptotic invariants, provided
that some connection can be made between divergences of conformal Killing fields and elements
in the kernel of the adjoint of the linearized scalar curvature operator. Such a connection stems
from our second Lemma:

Lemma 2.2. Let h be a C3 Riemannian metric and X a conformal Killing field. If h is Einstein

with Einstein constant λ(n − 1), then δhX sits in the kernel of (D Scal)∗
h
; more precisely:

(2.1) Hessh δhX = −λ (δhX) h.

Proof. – Recall that (D Scal)∗
h
V = Hessh V + (∆hV)h − V Rich [4, 1.159(e)], so that its kernel is

precisely the set of solutions of (2.1) if Rich = λ(n−1)h. Let φt be the (local) flow of X, which acts
by conformal diffeomorphisms, and e2ut the conformal factor at time t > 0, with u0 = 0. Hence
Ricφ

∗
t h = λ(n− 1)φ∗t h, which can be translates as Rice2ut h = λ(n− 1) e2ut h as φt is conformal. From

[4, 1.159(d)],

Rice2ut h = Rich − (n − 2)
(

Hessh ut − dut ⊗ dut

)

+
(

∆hut − (n − 2) |dut |
2
h

)

h,



ASYMPTOTIC INVARIANTS AND THE RICCI TENSOR 5

from which one deduces that

−(n − 2)
(

Hessh ut − dut ⊗ dut

)

+
(

∆hut − (n − 2)|dut |
2
h

)

h = λ(n − 1)
(

e2ut − 1
)

h.

We now differentiate at t = 0. Denoting by u̇ the first variation of ut, which is related to X through
δhX = −n u̇, and taking into account that u0 = 0, one gets:

(2.2) − (n − 2) Hessh u̇ + (∆hu̇) h = 2(n − 1)λ u̇ h.

Tracing this identity yields 2(n − 1)∆hu̇ = 2n(n − 1) λ u̇, so that ∆hu̇ = nλ u̇. Inserting this in
Equation (2.2) leads to Hessh u̇ = −λ u̇ h, which is the desired expression. �

We now have all the necessary elements to prove the equality between the classical expressions
of the asymptotic invariants and their Ricci versions in the asymptotically flat case.

Theorem 2.3. If (M, g) is a C3 asymptotically flat manifold with integrable scalar curvature and

decay rate τ > n−2
2 , then the classical and Ricci definitions of the mass agree: m(g) = mR(g). If

m(g) , 0 and the RT asymptotic conditions are moreover assumed, the same holds for the center

of mass, i.e. cα(g) = cα
R
(g) for any α ∈ {1, ..., n}.

Proof. – We shall give the complete proof for the mass only, the case of the center of mass being
entirely similar. Fix a chart at infinity on M. As the mass is defined asymptotically, we may freely
replace a compact part in M by a (topological) ball, which we shall decide to be the unit ball B0(1)
in the chart at infinity. The manifold is unchanged outside that compact region. For any R >> 1
we define a cut-off function χR which vanishes inside the sphere of radius R

2 , equals 1 outside the
sphere of radius 3R

4 and moreover satisfies

|∇χR| 6 C1R−1, |∇2χR| 6 C2R−2, and |∇3χR| 6 C3R−3

for some universal constants Ci (i = 1, 2, 3) not depending on R. We shall now denote χ = χR

unless some confusion is about to occur. We then define for each R > 4 a metric on the annulus
ΩR = A(R

4 ,R):
h = χg + (1 − χ)e,

and we shall also denote by h the complete metric obtained by gluing the Euclidean metric inside
the ball B0(R

4 ) and the original metric g outside the ball B0(R).

Let now X be a conformal Killing field for the Euclidean metric. From Lemma 2.2, V = δeX

sits in the kernel of the adjoint of the linearized scalar curvature operator (D Scal)∗e. Computing as
in Lemma 2.1 over the annulus ΩR = A(R

4 ,R),
∫

S R

(

Rich −
1
2

Scalh h

)

(X, νh) =
∫

ΩR

〈Rich −
1
2

Scalh h , (δh)∗X〉

=

∫

ΩR

〈Rich −
1
2

Scalh h, , (δh)∗0X −
δhX

n
h〉

= −
1
n

∫

ΩR

trh

(

Rich −
1
2

Scalh h

)

δhX

+

∫

ΩR

〈Rich −
1
2

Scalh h , (δh)∗0X〉 ,

where the volume forms and scalar products are all relative to h but have been removed for clarity
(notice moreover that all boundary contributions at R

4 vanish since h is flat there). Hence

(2.3)
∫

S R

(

Rich −
1
2

Scalh h

)

(X, νh) =
n − 2

2n

∫

ΩR

(δhX) Scalh +
∫

ΩR

〈Rich −
1
2

Scalh h, (δh)∗0X〉 .
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We now choose X = r∂r (the radial dilation vector field), and recall that δeX = −n in this
case. We can now replace the volume form dvolh, the divergence δh, and the the tracefree Killing
operator (δh)∗0 by their Euclidean counterparts dvole, δe, and (δe)∗0: from our asymptotic decay
conditions, our choice of cut-off function χ, and the facts that τ > n−2

2 and |X| = r, one has for the
first term in the right-hand side of (2.3):

∫

ΩR

(δhX) Scalh dvolh −

∫

ΩR

(δeX) Scalh dvole = O
(

Rn−2τ−2
)

= o(1)

as R tends to infinity (note that the second term in the left-hand side does not tend to zero at infinity
as the scalar curvature of h may not be uniformly integrable). As (δe)∗0X = 0, the last term in (2.3)
can be treated in the same way and it is o(1), too. One concludes that, in the case X is the radial
field,

(2.4)
∫

S R

(

Rich −
1
2

Scalh h

)

(X, νh) dvole
S R
=

n − 2
2n

∫

ΩR

(δeX) Scalh dvole + o(1).

It remains to apply Michel’s analysis over the annulus ΩR:
∫

ΩR

(δeX) Scalh dvole =

∫

S R

U(δeX, g, e) +
∫

ΩR

(δeX)Q(e, h) dvole + o(1)

(the boundary contribution at r = R
4 vanishes again since h = e there). Taking into account

δeX = −n, our asymptotic decay conditions, the assumptions on χ, and τ > n−2
2 , the Q-term tends

to 0 at infinity (for the very same reason that made it integrable in Michel’s analysis) and one gets

1
2(n − 1)ωn−1

∫

S r

(

Rich −
1
2

Scalh h

)

(r∂r, ν
h) dvolS r

=
2 − n

2
m(g) + o(1).

If one now chooses X = X(α) = r2∂α − 2xαxi∂i, i.e. X is the essential conformal Killing field of Rn

obtained by conjugating a translation by the inversion map, one has δeX(α) = 2nxα = 2nV (α) and
one can use the same argument. Some careful bookkeeping shows that all appropriate terms are
o(1) due to the Regge-Teitelboim conditions and one concludes that

1
2(n − 1)ωn−1

∫

S r

(

Rich −
1
2

Scalh h

)

(X(α), νh) dvolS r
= (n − 2) m(g) cα(g) + o(1)

as expected. �

3. Asymptotically hyperbolic manifolds

The mass of asymptotically hyperbolic manifolds was defined by P. T. Chruściel and the author
[7] and independently by X. Wang [18]; we shall use here the definition of [7], see [11] for a
comparison.

Definition 3.1. An asymptotically hyperbolic manifold is a complete Riemannian manifold (M, g)
such that there exists a diffeomorphism Φ (chart at infinity) from the complement of a compact
set in M into the complement of a ball in R × S n−1 (equipped with the background hyperbolic
metric b = dr2 + sinh2 rgS n−1), satisfying the following condition: if ǫ0 = ∂r, ǫ1, ..., ǫn is some
b-orthonormal basis, and gi j = g(ǫi, ǫ j), there exists some τ > 0 such that,

|gi j − δi j| = O(e−τr), |ǫk · gi j| = O(e−τr), |ǫk · ǫℓ · gi j | = O(e−τr).
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Definition 3.2. If τ > n
2 and (Scalg +n(n − 1)) is integrable in L1(erdvolb), the linear map M(g)

defined by(2) :

V 7→
1

2(n − 1)ωn−1
lim
r→∞

∫

S r

[

V (−δbg − d trb g) + trb(g − b)dV − (g − b)(∇bV, ·)
]

(ν) dvolsr

is well-defined on the kernel of (D Scal)∗
b

and is independent of the chart at infinity. It is called the
mass of the asymptotically hyperbolic manifold (M, g).

Existence and invariance of the mass can be proven by using Michel’s approach [14]. The space
K = ker(D Scal)∗

b
consists of functions V solutions of Hessh V = V h. It is (n + 1)-dimensional

and is generated, in the coordinates above, by the functions V (0) = cosh r, V (α) = xα sinh r (for
α ∈ {1, . . . , n}), where (xα) = (x1, . . . , xn) are the Euclidean coordinates on the unit sphere induced
by the standard embedding S n−1 ⊂ Rn. Contrarily to the asymptotically flat case, the center of
mass is already included here and doesn’t need to be defined independently. Indeed, the space K
is an irreducible representation of O0(n, 1) (the isometry group of the hyperbolic space), so that all
functions V contribute to the single (vector-valued) invariant M(g). In the asymptotically flat case,
this kernel splits into a trivial 1-dimensional representation (the constant functions) which gives
rise to the mass, and the standard representation of Rn

⋊ O(n) on Rn (the linear functions), which
gives birth to the center of mass.

The hyperbolic conformal Killing fields are the same as those of the Euclidean space, but their
divergences must now be explicited with respect to the hyperbolic metric. In the ball model of
the hyperbolic space, one computes that δbX(0) = −nV (0) for the radial dilation vector field X(0),
whereas δbX(α) = −nV (α) for the (inverted) translation fields. We can now argue as above, but
starting with the modified Einstein tensor

G̃g = Ricg −
1
2

Scalg g −
(n − 1)(n − 2)

2
g .

The formula analogous to that of Lemma 2.1 reads
∫

∂Ω

G̃g(X, ν) dvolg

∂Ω
=

n − 2
2n

∫

Ω

(

Scalg + n(n − 1)
)

δgX dvolg

Ω
,

which is the expected expression to apply Michel’s approach for the mass. The argument is now
completely similar to the one given above, and we will skip the details. One concludes with the
following alternative definition of the mass involving the Ricci tensor:

Theorem 3.3. For any i ∈ {0, ..., n},

M(g)
[

V (i)
]

= −
1
n

M(g)
[

δbX(i)
]

= −
1

(n − 1)(n − 2)ωn−1
lim
r→∞

∫

S r

G̃g(X(i), ν) dvolS r
.

Acknowledgements. The author thanks Piotr Chruściel for useful comments.

2As in the asymptotically flat case, the normalization factor comes from the computation for a reference family of
metrics, which is the generalized Kottler metrics in the asymptotically hyperbolic case.
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