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Abstract

We have developed an algorithm for the estimation of cardiac motion from medical images. The algorithm exploits monogenic signal theory,

recently introduced as an N-dimensional generalization of the analytic signal. The displacement is computed locally by assuming the conservation

of the monogenic phase over time. A local affine displacement model replaces the standard translation model to account for more complex motions

as contraction/expansion and shear. A coarse-to-fine B-spline scheme allows a robust and effective computation of the models parameters and a

pyramidal refinement scheme helps handle large motions. Robustness against noise is increased by replacing the standard pointwise computation

of the monogenic orientation with a more robust least-squares orientation estimate. This paper reviews the results obtained on simulated cardiac

images from different modalities, namely 2D and 3D cardiac ultrasound and tagged magnetic resonance. Wealso show how the proposed algorithm

represents a valuable alternative to state-of-the-art algorithms in the respective fields.

1. Introduction

The monogenic signal has been recently introduced by Fels-

berg and Sommer [1] as an extension of the analytic signal

concept to multiple dimensions. Similarly to the latter, the

monogenic signal provides the local amplitude and local phase

signal features. It also contains information on the local orienta-

tion. These three local features are pointwise orthogonal, which

means that they represent independent information: the local

amplitude represents the local intensity or dynamics, the local

phase describes the local symmetry or grey value transition, and

the local orientation describes the direction of the highest signal

variance.

Decoupling the local energy from the image structure,

accounted for by phase and orientation, has made it possible

to derive effective solutions to a number of image-processing

problems, in particular when the more traditional pixel intensity

cannot be considered as a reliable feature. In this context, we

have recently proposed an original optical flow algorithm for

the analysis of heart motion based on the monogenic phase [2].
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Temporal brightness variations are indeed the norm in many

medical imaging modalities such as ultrasound and MRI, and

this fact negatively affects the performance of intensity based

algorithms [2].

Thanks to its general formulation, the proposed algorithm is

suitable for images from several imaging modalities. In par-

ticular, we summarize in this paper some of the results we

have obtained on 2D and 3D cardiac ultrasound and on tagged

MRI. In all cases, the proposed algorithm was shown to be

competitive with state-of-the-art algorithms in the respective

fields and extremely effective from a computational point of

view.

The paper proceeds as follows. In Section 2.1, themonogenic

signal theory is briefly resumed. In Section 2.2, the optical flow

estimation algorithm presented in [2] is described. In Section 3,

the results are presented. Concluding remarks are left to Section

4.

2. Proposed optical flow estimation algorithm

2.1. Monogenic signal computation

Only the most basic aspects of the monogenic signal compu-

tation are given here, the reader is otherwise addressed to [3] and

the references therein for a theoretically founded derivation.



Themonogenic signal provides the features local phase φ (x),

orientation θ (x) and amplitude A(x) of an image I(x), where

x =
[

x, y
]T

is the pixel position. These quantities are computed

pointwise from the responses to three 2D spherical quadrature

filters (SQF) obtained as follows: one even rotation invariant

bandpass filter and two odd filters, computed from the Riesz

transform of the even one. Among the existing SQF families,

we adopt in this work difference of Poisson (DoP) [3].

Alternatively to the standard pointwise estimate we employ

a more robust least-squares technique for the computation of

θ [4]. This is obtained by maximizing the directional Hilbert

transform HθI (x) averaged over a local neighborhood, here a

Gaussian kernel with variance σ2, denoted by υσ :

θ (x) = arg max
θ′ ∈ [−π,π]

∫

R2
υσ

(

x′ − x
)

·
∣

∣Hθ′I
(

x′
)∣

∣

2
dx′. (1)

As shown in [4], the optimization problem is solved by the

eigenvector associated to the maximum eigenvalue of the Riesz-

transform counterpart of the image structure tensor.

2.2. Optical flow computation

Following [3], we compute the displacement d = [d1, d2]
T

between two frames assuming the conservation of the mono-

genic phase over time φ (x, t + 1) = φ (x − d (x) , t). Then,

assuming all points translate of the same quantity d0 within a

local window w centered in x0, the following linear system of

equations is obtained:

〈J〉wd0 = −〈rt〉w, J = fnnT (2)

where 〈v〉w =
∫

w (x − x0) v (x) dx, rt is the time derivative

of the phase vector r = φ · n, n = [cos (φ) , sin φ]T and f is the

monogenic frequency, computed as f = (∇φ)T n, with ∇ =
[

∂x, ∂y

]T
. The expressions for the computation of rt and f from

SQF filter outputs can be found in [3].

Instead of the simple translation model, we adopt a more

general affine model for the local displacement. In addition to

translation, this accounts for rotation, expansion, compression

and shear.Considering awindowcentered at the origin, the affine

model is expressed as:

d (x) = A (x) u, A =

[

1 0 x y 0 0

0 1 0 0 x y

]

(3)

where u =
[

d10, d20, d1x, d1y, d2x, d2y
]T

is the new unknown

vector: d10 and d20 correspond to the translation of the window

center and dik = ∂kdi. Plugging (3) into (2) leads to an under-

determined system of equations, whose least-squares solution is

b =Mu, with b = −
〈

AT JT rt w
and M =

〈

AT JT JA
w
.

2.2.1. Multiscale choice of the window size

The choice of the window size is a tedious issue connected

with local techniques: the assumed motion model (translational

or affine) may not hold when the window is too big, otherwise,

the adoption of an excessively small window may result in the

well-known aperture problem. To circumvent this issue, in [5]

Sühling et al. proposed amultiscale strategy for locally choosing

the most consistent window size. This is based on the possibility

of computing the image moments, i.e., the entries of the system

matrixMand the vector b, atmultiple scales, by using an efficient

B-spline coarse-to-fine strategy. In particular, they are obtained

from window functions w that are progressively scaled and sub-

sampled by a factor 2 in each dimension. Among the considered

scales considered, the uj producing the smallest residual error
∥

∥Muj − b
∥

∥

ℓ2
/|w|ℓ1 is retained as the final displacement esti-

mate. With this strategy, the scale providing the most consistent

motion estimate is selected.

2.2.2. Iterative displacement refinement

The hypothesis of small displacements employed in differen-

tial techniques may be inadequate whenever the displacement is

big or the image intensity profile is non-linear. To overcome this

limitation we adopt an incremental coarse-to-fine refinement of

the motion estimate: the coarsest scale provides a first estimate

of the displacement, this estimate is then used to undo themotion

and then the estimator is reapplied to the warped signals at the

finer scale to find the residual motion.

3. Results

Weevaluated the proposed algorithmonmedical images from

different modalities. In order to have a benchmark to compare

to, we made use of synthetic sequences in all cases. Endpoint

error:

EE =
∥

∥d − d
∥

∥

ℓ2
(4)

was used for the evaluation, where d and d denote estimated

displacement and benchmark respectively. Unless explicitly

mentioned, the displacement has to be intended as the one

between two consecutive frames.

For display purposes, we adopted a color encoding of the

velocities (Fig. 1), where the color indicates the direction of the

displacement and the brightness expresses the magnitude.

Since what is of clinical interest is evaluating the mechanical

properties of the cardiac muscle, in all cases we will measure

the estimation error within the myocardium only (Fig. 2).

Fig. 1. Color encoding of velocities: x and y axes report the horizontal and

vertical component of the velocity vector.



Fig. 2. Frames from a synthetic short-axis sequence during ventricular filling

(diastole) (a) and ventricular ejection (systole) (b). The benchmark displacement

field is superimposed. Note that the benchmark field reflects the physiological

expansion and contraction during these two phases of the cardiac cycle.

3.1. 2D cardiac ultrasound

We evaluated our algorithm on custom made realistic syn-

thetic cardiac ultrasound sequences, generated as described in

[6]. Briefly, the simulated sequences are obtained by mimicking

the aspect and themotion of a real echocardiographic acquisition

taken as a template. For our evaluation, we considered simulated

sequences from the two views the most commonly employed in

the clinical practice, namely short-axis (SaX) and apical four

chambers (A4C). Fig. 2 presents two frames from the simulated

SaX sequence along with the benchmark motion.

We have compared our algorithm with the ones of Sühling

et al. [5] and Felsberg [3]. Sühling’s algorithm exploits the

standard intensity conservation assumption and, as in our case,

employs an affine displacement model and a multiscale win-

dow selection. Differently, Felsberg’s algorithm makes use of

the monogenic phase but employs a simple translation model

and a window of fixed size.

Table 1 reports the average errors obtained on the entire sim-

ulated sequences (45 frames for the SaX view and 50 frames for

the A4C). From Table 1 all the monogenic phase-based algo-

rithms considered perform better than Sühling’s algorithm. This

confirms that the monogenic phase is a more reliable feature

than pixel intensity as far as medical ultrasound is concerned.

Also, thanks to the affine model, the multiresolution window

selection procedure and the pyramidal refinement, the proposed

algorithm outperforms Felsberg’s one. For further results on 2D

cardiac ultrasound we address the reader to [2,7].

3.2. 3D cardiac ultrasound

Despite our algorithm has been described in this paper for

the displacement estimation from 2D images, an extension to

Table 1

Endpoint error in pixels (µ ± σ).

ALGORITHM SEQUENCE

Apical 4 chambers Short axis

Sühling 0.395 ± 0.338 0.396 ± 0.346

Felsberg 0.315 ± 0.257 0.364 ± 0.293

Proposed 0.264 ± 0.190 0.313 ± 0.242
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Fig. 3. Tracking error obtained with the proposed algorithm. Lower and upper

limits of the box represent 25th and 75th percentile while the whiskers the 5th

and 95th.

3D volumes can be almost straightforwardly derived [8]. Also

in this case we evaluated our algorithm on synthetic 3D cardiac

ultrasound data. In particular, the latter were provided as part of

the “Tracking Challenge” promoted by the MICCAI conference

[8].

The heart motion was simulated by displacing a set of

point scatterers according to the electromechanical model of the

myocardium proposed by Sermesant et al. [9]. From the time

varying scatter map the ultrasound image formation was then

simulated with the COLE software developed by Gao et al. [10].

Each simulated sequence realized a full cardiac cycle from one

end-diastole to the next end-diastole. The algorithm evaluation

was then performed by measuring the accuracy in tracking the

scatterers employed in the simulation.Note that, differently from

the previous cases, this implies computing the global displace-

ment from the first frame of the sequence (end-diastole). The

global field is therefore computed by accumulating the frame-

by-frame displacements returned by the proposed algorithm.

In particular, we report here the result on one of the pro-

vided sequences representing a healthy heart. On Fig. 3 the error

behavior over time is represented as a boxplot. As expected, the

largest estimation error corresponds to the end-systolic instant,

where the maximum displacement from the rest condition hap-

pens. Nevertheless, lets note that the average error remainsmuch

smaller with respect to the true maximum displacement that in

the end-systolic instant reaches the value of 11.2mm, also Fig. 4.

Fig. 4. Error maps at end-systole, when the displacement is the largest. (a) Real

displacement of the scatterers with respect to the first frame of the sequence

(end-diastole). This information provides the full-scale of the displacement to

be estimated. (b) Estimation error obtained with the proposed algorithm. Note

how it is considerably smaller than the maximum displacement reported in (a).



Table 2

Endpoint error (µ ± σ) in pixels on nine simulated sequences.

SEQUENCE ALGORITHM

Proposed SinMod

D30 0.152 ± 0.121 0.215 ± 0.145

D30F20 0.082 ± 0.072 0.128 ± 0.112

D30R10T01P0 0.264 ± 0.149 0.363 ± 0.199

D30R20T01P0 0.462 ± 0.239 0.970 ± 1.129

D30R20T01P0F20 0.209 ± 0.139 0.344 ± 0.224

D30R20T01P3 0.419 ± 0.228 0.911 ± 1.099

R20F20 0.244 ± 0.164 0.416 ± 0.264

R10 0.161 ± 0.087 0.220 ± 0.090

R20 0.104 ± 0.072 0.174 ± 0.122

For a more detailed description of the 3D extension of our

algorithm and a more comprehensive performance evaluation

we address the reader to [8].

3.3. Tagged MRI

Theproposed algorithm is comparedwithSinMod [11], avail-

able in the InTag plugin for OsiriX. SinMod was shown to

perform better than the state-of-the-art HARP in [11]. The eval-

uation was made on synthetic tMRI sequences, generated with

the ASSESS software [12]. The synthetic motion is established

on the basis of a 2D analytical model taking typical contrac-

tion, relaxation, torsion and thickening of the cardiac muscle

into account.

The results obtained on nine simulated sequences are summa-

rized in Table 2. These results show that the proposed algorithm

systematically returns the estimate with the smallest mean value

and variance, which is a proof of precision and reliability.

To better appreciate the difference in performance, it is useful

to analyze the local behavior of each algorithm. This is repre-

sented on Fig. 5, where the error images obtained on the 4th

frame of the two sequences D30F20 and R20F20, implemen-

ting a pure contraction/expansion and pure rotation respectively,

is displayed. At that instant, the displacement reaches the

Fig. 5. Error map for the 4-th frame of R20F20 (first row) and D30F20 (second

row). (a) and (d) denote the benchmark field.

maximum average value and the greatest spatial variation in

both cases: in the first case (first row on the Fig. 5) the angu-

lar velocity decreases linearly, passing from the endocardial to

the epicardial contour; in the second (second row on the Fig. 5)

the radial contraction is null on the epicardium and maximal on

the endocardium. As shown by the previous results, SinMod is

outperformed by the proposed algorithm.

For further results on tMRI sequences we address the reader

to [2,13].

4. Conclusion

We have described a novel algorithm for the analysis of

heart motion from medical images. The displacement is esti-

mated from the monogenic phase and is therefore robust to

possible variations of the local image energy. A local affine

model accounts for the typical contraction, torsion and shear of

myocardial fibers. An effective B-spline multiresolution strat-

egy automatically selects the scale returning the most consistent

velocity estimate. The multiresolution strategy together with a

least-squares estimate of the monogenic orientation make the

algorithm robust under image noise. Due to its general for-

mulation, the proposed algorithm is well suited for measuring

myocardial motion from images from different modalities. In

particular, we have presented an evaluation on simulated 2D and

3D cardiac ultrasound and tagged MRI sequences. The results

have shown that the proposed algorithm is a valid alternative to

state-of-the-art techniques in the two fields.

The code for the algorithm presented in this paper is

freely online available at the url http://www.creatis.insa-lyon.fr/

ustagging/node/13.
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