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Introduction

Modelling time series using fractionally integrated processes with finite variance has been the purpose of many investigations. See for example, [START_REF] Granger | An introduction to long memory time series and fractional differencing[END_REF] and [START_REF] Hosking | Fractional Differencing[END_REF] who introduced the Gaussian FARIMA(p, d, q) model. However, most of time series in real life may display high variability, in addition to long-range dependence structure. To take into account these stylized facts, the theory of αstable FARIMA(p, d, q) process was introduced and developed by [START_REF] Kokoszka | Fractional ARIMA with stable innovations[END_REF]. Examples where such models appears to be appropriate have been found by [START_REF] Stanislavsky | FARIMA modeling of solar flare activity from empirical time series of soft X-ray solar emission[END_REF], who described solar flare activity, and [START_REF] Agnieszka | Robust Wavelet-Domain Estimation of the Fractional Difference Parameter in Heavy-Tailed Time Series: An Empirical Study[END_REF] or [START_REF] Ilow | Forecasting network traffic using FARIMA models with heavy-tailed innovations[END_REF] who analyzed network traffic data.

The parameter estimation is a crucial question for the use of these parametric models. The usual response to such difficulties is that the density functions of these processes cannot be written in a closed form in the sense that it is not expressible in terms of known elementary functions. As a result, Maximum Likelihood estimation is often very difficult (for detailed discussion, see [START_REF] Calder | Inferences for linear processes with stable noise[END_REF]). The estimation via alternative methods such as Quasi-Maximum Likelihood (QML) method and Generalized Method of Moments (GMM) also presents difficulties. For example, QML is infeasible because the variance of the error term may be infinite. For GMM care must be taken when choosing moment conditions because the stable distribution does not have a finite absolute moment of order higher than the tail index α.

To solve the parameter estimation problems of the stable FARIMA(p, d, q) process, [START_REF] Kokoszka | Parameter estimation for infinite variance fractional ARIMA[END_REF] have used a variant of Whittle's method. They show the consistency of the resulting estimators and derive its asymptotic distribution. Otherwise, [START_REF] Diongue | Estimation of k-Factor GIGARCH Process: A Monte Carlo Study[END_REF] have developed the theory of seasonal fractional ARIMA model with infinite variance innovations which is a direct generalization of stable FARIMA model. To achieve the parameter estimation of this model, [START_REF] Ndongo | Estimation of long-memory parameters for seasonal fractional ARIMA with stable innovations[END_REF] considered the semiparametric method studied in Reisen et al. (2006) and two Whittle approaches: the classical Whittle method (e.g. [START_REF] Embrechts | Modelling Extremal Events New York[END_REF], [START_REF] Mikosch | Parameter estimation for ARMA models with infinite variance innovations[END_REF], [START_REF] Kokoszka | Parameter estimation for infinite variance fractional ARIMA[END_REF]) and a method based on a Markov chains Monte Carlo (MCMC) procedure. The authors studied their performance using Monte Carlo simulations and show that the best results are obtained by the MCMC-Whittle method.

The main objective of this article is to propose two parametric estimation methodologies for α-stable FARIMA process. For instance, we consider the Minimum Hellinger Distance (MHD) estimator introduced by Beran (1977) and the Conditional Sum of Squares (CSS) approach developed by [START_REF] Chung | Estimating a generalized long memory process[END_REF]. The advantage of using these procedures is that they do not require any prior knowledge about the driving noise distribution. Monte Carlo simulations are performed to study the finite sample properties of the estimators. For comparison purpose, we consider also the MCMC Whittle method developed by [START_REF] Ndongo | Estimation of long-memory parameters for seasonal fractional ARIMA with stable innovations[END_REF].

The paper is organized as follows. The next section briefly reviews the α-stable FARIMA(p, d, q) model and its probabilistic properties. Section 3 presents the different parameter estimation techniques. Section 5 calibrates the performance of the estimation procedures through Monte Carlo experiments while Section 6 provides concluding remarks.

The FARIMA(p, d, q)-SαS model

In order to model a time series with long memory behaviour and infinite variance components, [START_REF] Kokoszka | Fractional ARIMA with stable innovations[END_REF] proposed a class of models, the Fractional Autoregressive Integrated Moving Average (FARIMA, in short) time series with symmetric α-stable (SαS) innovations. These models, denoted hereafter by FARIMA(p, d, q)-SαS, where p, q ∈ N, d a fractional number and α ∈ (1, 2], are an infinite variance counterpart to the Gaussian FARIMA model introduced by [START_REF] Granger | An introduction to long memory time series and fractional differencing[END_REF] and [START_REF] Hosking | Fractional Differencing[END_REF]. In this Section, we examine the definition and the basic characteristics of an stable FARIMA model, and we refer to [START_REF] Kokoszka | Fractional ARIMA with stable innovations[END_REF] or [START_REF] Stoev | Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform[END_REF] for a full description. Thus, we assume that:

0 < d < 1 - 1 α , and 1 < α ≤ 2. (2.1)
We define a centered fractional ARIMA process (Y t ) t∈Z with SαS innovations, as the stationary solution to the back-shift operator equation:

Φ(B)Y t = Θ(B)(1 -B) -d Z t , t ∈ Z, (2.2)
where d is (fractional) differencing degree, Φ and Θ are autoregressive and moving average polynomials of degrees p, q, respectively:

Φ(z) = 1 -φ 1 z -φ 2 z 2 -• • • -φ p z p , and Θ(z) = 1 + θ 1 z + θ 2 z 2 + • • • + θ q z q . (2.3)
It is assumed that these polynomials have no common zeros, and have all its roots outside the unit disk. The innovations (Z t ) t∈Z in (2.2) are independently and identically distributed SαS random variables, with 1 < α ≤ 2. The tail exponent α determines the rate at which the tails of the distribution tape off. When α = 2, the Gaussian distribution is obtained and when α < 2, the variance is infinite. On the other hand, the probability density function of a symmetric standard α-stable random variable can be expressed as:

f (x; α) = 1 π +∞ 0 exp (-|t| α ) cos (tx) dt.
(2.4) Formula (2.4) does not have closed form expression, except in the three cases: Levy, Cauchy and Gaussian distributions corresponding respectively to the cases: α = 1/2, α = 1 and α = 2. However, it can be numerically integrated. All the relevant properties of stable distributions can be found in [START_REF] Samorodnitsky | Stable non-Gaussian random processes : Stochastic models with infinite variance[END_REF].

The following stationarity and invertibility conditions of model (2.2) are established and proved in [START_REF] Kokoszka | Fractional ARIMA with stable innovations[END_REF].

• Under condition (2.1), the process (Y t ) t∈Z is stationary and have a unique moving average representation

Y t = ∞ j=0 c j Z t-j .
(2.5)

The coefficients (c j ) j≥0 in (2.5) satisfy the following relation

c 0 = 1 and c j = b j (d) + min( j,p) i=1 φ i c j-i + min( j,q) i=1 θ i b j-i (d), j ≥ 1, (2.6)
where the weights (b j (d)) j≥0 are given by:

b 0 (d) = 1 and b j (d) = Γ( j + d) Γ(d)Γ( j + 1) , j = 1, 2, . . . . (2.7)
• In addition, if α > 1 and |d| < 1 -1 α the solution is invertible and we have:

Z t = ∞ j=0 c j Y t-j , (2.8) 
where the coefficients (c j ) j≥0 are defined by: c0 = 1 and c j = b j (-d) -

min( j,p) i=1 φ i b j-i (-d) + min( j,q) i=1 θ i c j-i , j ≥ 1.
(2.9)

• The power transfer function of the process (Y t ) t∈Z is

g(λ) = |Θ(e iλ )| 2 |Φ(e iλ )| 2 |1 -e iλ | -2d , for -π ≤ λ ≤ π.
(2.10)

Estimation methods

In this section, we discuss briefly the application of three methods to the estimation of fractional ARIMA model with α-stable distributions. The first one is the Markov Chains Monte Carlo (MCMC) Whittle approach, the second deals with the Conditional Sum of Squares (CSS) procedure while the third is based to the Minimum Hellinger Distance Estimator (MHDE).

Let Y 1 , . . . , Y T be an observed finite sequence generated by a stationary and invertible symmetric αstable FARIMA process defined by equation (2.2). Assume that the tail index parameter α is known and denote by ψ = d, φ 1 , . . . , φ p , θ 1 , . . . , θ q the (p + q + 1)-dimensional vector of interest, where φ 1 , . . . , φ p and θ 1 , . . . , θ q are the coefficients of the autoregressive and moving average polynomials respectively, and d is the long memory parameter. Assume that ψ 0 is the true value of ψ and is in the interior of the compact set Ψ ⊆ R p+q+1 .

The MCMC Whittle method

This estimation method is developed by [START_REF] Ndongo | Estimation of long-memory parameters for seasonal fractional ARIMA with stable innovations[END_REF] to estimate the long memory parameters for seasonal fractional ARIMA model with SαS innovations, which is a direct generalization of FARIMA-SαS model. It is an alternative to the classical Whittle approach used by Klüppelberg andMikosch (1993, 1994), [START_REF] Mikosch | Parameter estimation for ARMA models with infinite variance innovations[END_REF] and [START_REF] Kokoszka | Parameter estimation for infinite variance fractional ARIMA[END_REF]. The procedure is based on approximation of the Whittle likelihood function using Bayesian approach. In this work, this estimator is denoted by ψ W and can be obtained by minimizing the following likelihood function:

L W (ψ) = 1 N N j=1 1 g(λ j , ψ) , (3.11)
where g(λ, ψ) is the power transfer function of the process defined by equation (2.10). The sequences λ 1 , . . . , λ N are generated using a Metropolis-Hastings algorithm. A detailed revision of this procedure is found in Section 3.2 of [START_REF] Ndongo | Estimation of long-memory parameters for seasonal fractional ARIMA with stable innovations[END_REF].

The CSS method

The CSS approach is studied by [START_REF] Chung | Small sample bias in conditional sum-of-squares estimators of fractionally integrated ARMA models[END_REF] to estimate the parameters of Gaussian FARIMA model. As remarked by [START_REF] Chung | Estimating a generalized long memory process[END_REF], the advantage of using the CSS estimation is that the normality assumption is not essential. Hence, this method can overcome difficulties arising from the lack of closed expression for the likelihood. Consequently, it seems to be a better alternative to the estimation of stable FARIMA process. Thus, the conditional sum of squares estimator ψ CS S of ψ 0 is the value of ψ which minimizes

S (ψ) = T t=1 Z t (ψ) 2 .
However, given the observation Y 1 , . . . , Y T the innovation (Z t ) t=1,...,T cannot be directly computed, since an infinite sample would be needed. Nevertheless, they may be estimated by:

Z t (ψ) = t-1 j=0 c j (ψ)Y t-j , t = 1, . . . , T, (3.12) 
where the coefficients (c j (ψ)) j≥0 can be determined by equation (2.9).

Minimum Hellinger Distance Estimator

The Minimum Hellinger Distance (MHD in short) method is initially introduced by Beran (1977) for parametric models, in the i.i.d case. The procedure based on dependent data is studied in [START_REF] Hili | On the estimation of nonlinear time series models[END_REF]. Recently, Kamagate and Hili (2012) use the MHD method to estimate the parameters of Gaussian FARIMA process. The basic idea for this approach is to minimize the Hellinger distance between the probability density function of the innovations of the process and a parametrized random function. In this section, we investigate the MHD procedure to estimate the parameters of stable FARIMA model. To do so, let's denote by f (.) = f ψ 0 (.) the probability density function of the innovation (Z t ) t∈Z . In order to construct a MHD estimator of ψ 0 , we need a nonparametric estimator of the density function f ψ 0 (.), which can be obtained using the nonparametric kernel estimator of form:

f ψ, T (x) = 1 T h T T t=1 K       x -Z t (ψ) h T       , (3.13)
where Z t (ψ) is an estimate of Z t (ψ) for t = 1, . . . , T , given by equation (3.12), (h T ) is a sequence of bandwidths and K is a kernel function on R.

The Hellinger distance between the density function f ψ 0 and the nonparametric kernel estimator f ψ,T is defined as the L 2 -norm of the difference square root of these two functions, i.e.

HD T f ψ,T , f ψ 0 = f 1 2 ψ,T -f 1 2 ψ 0 2 = R f 1 2 ψ,T (x) -f 1 2 ψ 0 (x) 2 dx 1/2 . (3.14)
The minimum Hellinger distance estimator of ψ 0 is the value ψ MHD that minimizes (3.14), with respect to ψ ∈ Ψ, that is,

ψ MHD = arg min ψ∈Ψ HD T f ψ,T , f ψ 0 .
To implement the MHD estimator, we take the kernel function K to be the density of N(0, 1) distribution.

For the choice of the bandwidth h T , we consider the bandwidth proposed in Wu and Mielniczuk (2002) for long-range dependence sequences, that is:

h T = T ν L(T ), (3.15)
where -1 < ν < 0 and L(.) is a slowly varying function at ∞. However, it is important to recognize that when using the bandwidth in (3.15), an additional choice needs to be made, which is that the optimal value of ν. The simulation in this paper (Section 5.1) show that the MHD method is sensitive to the choice of ν. Thus, a data-driving selection method of ν would be necessary. Ideally, ν should be selected so that it minimizes the mean-square error (MSE) of the MHD estimator. Precisely, let ψ (ν) be the MHD estimator for a given ν in ] -1, 0[. Then, we look for ν opt such that:

ν opt = arg min ν 1 R R j=1 ψ (ν) j -ψ 0 2 , (3.16)
where R is the number of replications, ψ 0 is the nominal value of ψ, and ψ (ν) j is the estimate for sample j.

4. Asymptotic properties of the MHD estimator

Monte Carlo simulations

In this section, we provide numerical assessment of the estimation techniques discussed in Section 3, using Monte Carlo experiments. To appreciate the precision of the estimators, we evaluate the mean, the root mean square error (RMSE) and the mean absolute error (MAE) of the estimation procedures. The α-stable FARIMA models are generated using the Fast Fourier Transform algorithm described in [START_REF] Stoev | Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform[END_REF]. All calculations are carried out using an R programming environment.

Monte Carlo study comparing CSS, MHDE and Whittle

As data generating processes, we use three α-stable FARIMA models listed in Table 1, with α = 1.2. For each model, we generate R = 1500 replications of lengths T = 250, T = 500 and T = 1500. For the MHD estimator, we set L(T ) = log(T ) and we use several values of ν in the interval ] -1, 0[ with a step of 0.02, and we determine the optimal value of ν suitable for each model in Table 1, via the criteria given in (3.16). Thus, the MHD estimates obtained with this optimal value of ν are compared to the CSS and the MCMC Whittle procedures. All the results are presented in Tables 234. In these tables, the sample sizes are given in the first columns, the estimations of the parameters in the next columns, the root mean square error (RMSE) in the row below (in parentheses) and the mean absolute error (MAE) under the row of the RMSE (in brackets). • In the first experiment, we focus our attention to the estimation of long memory parameter. In this design, we consider Model 1 in Table 1. To show the impact of the bandwidth on the MHD estimation, we select some values of ν = {-0.9, -0.5, -0.3, -0.2, -0.1} and compare it with the CSS and Whittle methods in Table 2. Tables for other values of ν are available upon request. We observe that all these three methods perform well, since the RMSE and MAE of the estimates are in general small. We note that the MHD estimator can be worse or better than the CSS and Whittle estimators depending on the values of ν considered. Indeed, the MHD procedure is the best only for ν = -0.3, ν = -0.2 and ν = -0.1. The simulation results show the impact of the bandwidth on the MHD estimator. In terms of RMSE and MAE, the optimal bandwidth is obtained for ν = -0.1. However, the gain from ν = -0.1 to ν ≥ -0.2 is marginal, as it can be seen in Figure 1 which represent the RMSE of the estimates dMHDE for a given value of ν and sample size T = 250. We remark also that the CSS method performs better than the MCMC Whittle procedure. The Monte Carlo experiments indicate also the impact of the sample sizes on these estimation methods. Indeed, when the the sample size increases, the results improve significantly too. To check the asymptotic distribution of d, we plot in Figure 2, the boxplot of the 1500 estimates. The vertical axis indicates the deviation from the nominal value of d. From this figure, we observe that the scatter of the CSS and Whittle methods is larger than those in the MHD estimator. However, this dispersion improves when the sample size T increases. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 0.05 0.10 0.15 0.20 0.25 0.30 deviation from nominal value • Now consider the previous model in which we introduce a short memory part (i.e. Model 2 and Model 3 in Table 1). This experiment is designed to examine the relative performance in the estimation techniques, when there are long memory and short memory components simultaneously. As in the previous experiment, we choose at first the optimal bandwidth for the MHD estimator, and compare the results to CSS and Whittle procedures. Thus using the criteria in (3.15), we take ν = -0.1 and ν = -0.2 for Model 2 and Model 3, respectively. The results are gathered in Tables 3 and4. They show that, when short memory components are introduced in Model 1, the estimation of the long memory parameter is disturbed. Indeed, the RMSE and MAE obtained in Tables 3 and4 are larger than those presented in Table 2. This phenomenon is already observed in the literature (see for example [START_REF] Boutahar | Estimation Methods of the Long Memory Parameter: Monte Carlo Analysis and Application[END_REF] or Diongue and Gégan (2008)). However, we can note a significant improvement when the sample size becomes larger (T = 500, T = 1500), only for the MMHD and CSS methods. Concerning the MHD estimator, we see that the averages of dMHDE are closed to the true values, moreover it is always better than the CSS method, and it dominates the Whittle procedure. Hence, the MHD estimator shows more resistance to the presence of the short memory components than the CSS and Whittle approaches. For the Whittle estimator, there is a wide different between the true value of d and the average dW , and the results still remain bad, even for larger sample sizes (T = 500, T = 1500). Consequently, the AR and MA components can be a source of the bias of the Whittle estimator. It is important to note that the results obtained for the CSS method are acceptable. 

Parameters

MHDE CSS Whittle d d d d d d d sizes ν = -0.9 ν = -0.5 ν = -0.3 ν = -0.2 ν = -0.

Robustness of the MHD estimator

Here, we investigate the robustness of the MHD estimator. The most commonly accepted mathematical method for treating contaminated data comes from to Huber (1964[START_REF] Huber | Robust Statistics[END_REF]; it is this model upon which much of the robustness approach is based. Broadly speaking, the contaminated model addresses outliers by positing that the observed data belongs to a mixture of two distributions. The mixture is of the form:

f (λ) ψ, T (r) = (1 -λ) f ψ, T (r) + λ U [0, 1] (r), for ψ ∈ Ψ, where 0 < λ < 1, f (λ)
ψ, T (r) is the contaminated density function and U [0, 1] (r) is the uniform density function on the interval [0, 1]. Then, we next replaced f ψ, T (.) by f (λ) ψ, T (.) in equation (3.14) and we calculated the MHD estimator using several values of λ. In this experiment, we consider an FARIMA(0, d, 0)-SαS model, with α = 1.6, d = 0.2. We set the sample size to T = 250 and we choose λ = {0.1, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5}. The results are summarized in Table 4. Noticeably, the MHD estimator provides good estimates of d, when we use a contaminated density. Indeed, we can see that the averages of d are closed to the true value of d for all value of λ. Thus, the MHD method is robust to the perturbation. This properties of the MHD estimate is also pointed in Beran (1977). 

Conclusion

In this article, we have dealt with a special class of long-memory model with stable innovations. Three parameter estimation techniques for FARIMA(p, d, q)-SαS process have been considered. Our empirical Monte Carlo investigation indicates that the two estimators proposed in this work, namely the MHD and CSS methods perform well even for small sample sizes. Consequently, they are reasonable methods for dealing with long-range dependent data with infinite variance components. The comparison of the different estimators showed that the MHD estimator is the best one, in terms of RMSE and MAE. The simulation results carried out the fact that the estimator of the long memory parameter is disturbed when there is the presence of short memory components, for all three methods. In this context, the results improve when the sample size increases, only for the MHD and CSS procedures, and it still remain bad for the Whittle approach. This paper focuses on the estimation of long memory time series with stable innovations, via Monte Carlo experiments. It will be interesting to investigate the theoretical asymptotic properties for these estimation methods. These problems will be examined on a forthcoming paper.
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 2 Figure 2: Boxplot of estimates of d in Model 1 under MHD, CSS and MCMC Whittle estimators with sample sizes T = 250, T = 500 and T = 1500, based on 1500 replications.

Table 1 :

 1 Data generating processes for fixed α = 1.2.

		d	φ	θ
	Model 1	0.15	-	-
	Model 2	0.15	0.60	-
	Model 3	0.15	-	0.40

Table 2 :

 2 Monte Carlo study comparing CSS, MHDE and Whittle for FARIMA(0, d, 0)-SαS model, with d = 0.15, for α = 1.2.
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Figure 1: RMSE of estimates of d in Model 1, under MHD estimator and T = 250.

  On the other hand, this estimator has the advantage of being relatively simple to implement, compared to the MHD estimator which requires lot of times in order to minimize the objective function (3.14).

		MHDE		CSS		Whittle	
	Sizes	d	φ	d	φ	d	φ
	250	0.144	0.627	0.119	0.640	0.034	0.656
		(0.039) (0.086)	(0.071) (0.094)	(0.124) (0.116)
		[0.024] [0.042]	[0.048] [0.062]	[0.116] [0.101]
	500	0.149	0.617	0.126	0.630	0.050	0.637
		(0.031) (0.077)	(0.061) (0.081)	(0.109) (0.099)
		[0.018] [0.031]	[0.040] [0.050]	[0.100] [0.082]
	1500	0.152	0.604	0.139	0.611	0.061	0.622
		(0.017) (0.040)	(0.038) (0.043)	(0.095) (0.074)
		[0.010] [0.015]	[0.025] [0.027]	[0.089] [0.058]

Table 3 :

 3 

		MHDE		CSS		Whittle	
	Sizes	d	θ	d	θ	d	θ
	250	0.154	0.409	0.142	0.416	0.063	0.414
		(0.014) (0.050)	(0.033) (0.064)	(0.090) (0.064)
		[0.012] [0.022]	[0.022] [0.039]	[0.086] [0.046]
	500	0.154	0.407	0.147	0.406	0.069	0.405
		(0.012) (0.042)	(0.024) (0.046)	(0.082) (0.047)
		[0.009] [0.017]	[0.017] [0.025]	[0.080] [0.033]
	1500	0.152	0.403	0.150	0.4011	0.073	0.402
		(0.007) (0.038)	(0.015) (0.026)	(0.077) (0.033)
		[0.004] [0.008]	[0.010] [0.013]	[0.076] [0.023]

Monte Carlo study comparing CSS, MHDE (ν = -0.1) and Whittle for FARIMA(1, d, 0)-SαS model, with d = 0.15, φ = 0.6, for α = 1.2.

Table 4 :

 4 Monte Carlo study comparing CSS, MHDE (ν = -0.2) and Whittle for FARIMA(0, d, 1)-SαS model, with d = 0.15, θ = 0.4, for α = 1.2.

Table 5 :

 5 Robustness of the MHDE (ν = -0.1) with d 0 = 0.20, for α = 1.6 and T = 250