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In this paper, we introduce the class of seasonal ARFIMA models with bilinear GARCH (BL-GARCH) type innovations that are capable of capturing simultaneously four key properties of non-linear time series: long range dependence, seasonality, volatility clustering and leverage effects. Stationarity and invertibility conditions are derived and conditional sum of squares (CSS) estimation of the model is also considered. Under some assumptions, we show that the resulting estimators are consistent and asymptotically normally distributed. Monte carlo simulation results are presented to evaluate the small-sample performance of the CSS method for various models.

Introduction

When dealing with empirical time series arising from diverse fields of applications, we are confronted with the phenomenon of long memory or long range dependence. A popular way to analyze a long memory time series is to use fractionally integrated autoregressive moving average (FARIMA) processes introduced by Granger and Joyeux [START_REF] Granger | An intoduction to long memory time series and fractional differencing[END_REF] and Hosking [START_REF] Hosking | Fractional Differencing[END_REF]. Furthermore, most of time series in real life may have a persistent periodic behavior, in addition to long term structure. Unfortunately, the FARIMA model does not allow to take into account a periodic or cyclical behavior. Thus, models dedicated to take seasonal or cyclical components with long memory have been developed. Recent contributions related to the seasonal FARIMA model are Porter-Hudak [START_REF] Porter-Hudak | An application of the seasonal fractionally differenced model to the monetary aggegrates[END_REF], Hassler [START_REF] Hassler | Mis)specification of long memory in seasonal time series[END_REF], Arteche and Robinson [START_REF] Arteche | Semiparametric inference in seasonal and cyclical long memory processes[END_REF] and Reisen et al. [START_REF] Reisen | Estimation of seasonal fractionally integrated processes[END_REF]. All of the aforementioned works assume that the conditional variance of time series is a constant over time. However, non-constant variance in non-linear time series is a challenging modelling exercise, considered among many other things by Tong [START_REF] Tong | Non-linear Time Series: A Dynamical System Approach[END_REF]. In particular, the stylized fact that the volatility of financial time series is non-constant has been long recognized in the literature (see e.g. Bollerslev [START_REF] Bollerslev | Generalized Autoregressive Conditional Heteroskedasticity[END_REF], Bollerslev, Engle and Woodridge [START_REF] Bollerslev | A Capital As-set Pricing Model With Time-Varying Covariance[END_REF], and Weiss [START_REF] Weiss | ARMA Models With ARCH Errors[END_REF]). Thus, the methodology for modeling time series with long memory behavior has been extended to long memory time series with a time-varying conditional variance. See for instance, Ling and Li [START_REF] Ling | On Fractionally Integrated Autoregressive Moving-Average Time series Models with Conditional Heteroscedasticity[END_REF] who developed the ARFIMA model with GARCH type innovations, and recently Reisen et al [START_REF] Reisen | Modeling and forecasting daily average PM 10 concentrations by a seasonal ARFIMA model with volatility[END_REF] examine the daily average PM 10 concentrations using a seasonal ARFIMA model with GARCH errors. Given that, these models cannot allow to capture asymmetries or non-linearities (Black [3]), we introduce in this paper a new class of seasonal ARFIMA with BL-GARCH type innovations. This approach allows to model simultaneously: long memory, seasonality, volatility clustering and leverage effects, often observed in financial or economics time series. The stationarity and invertibility of the proposed model are analyzed and, the conditional sum of squares (CSS) estimation of the model parameters is considered, and we study its asymptotic properties. Also, the small-sample performance of the CSS approach is illustrated, using Monte Carlo simulations.

The article is organized as follows. In Section 2, the class of SARFIMA-BL-GARCH model is introduced with some important properties concerning the positivity of the conditional variance, as well as, for stationarity and invertibility. In Section 3, the conditional sum of squares estimation is presented, and we derive its asymptotic properties. Finally, Section 4 calibrates the performance of the estimation procedure through Monte Carlo simulations, while Section ?? provides concluding remarks.

Model and probabilistic properties

In this section, we introduce the model, we will work with, and we give conditions of existence and invertibility.

Model

Let B be the back shift operator satisfying BY t = Y t-1 for any process (Y t ) t∈Z , and s ∈ N * the seasonal period, then the polynomial of non-seasonal orders p and q, seasonal orders P and Q are respectively defined by:

φ(B) = 1 -φ 1 B -φ 2 B 2 -• • • -φ p B p θ(B) = 1 + θ 1 B + θ 2 B 2 + • • • + θ q B q Φ(B s ) = 1 -Φ s B s -Φ 2s B 2s -• • • -Φ Ps B Ps Θ(B s ) = 1 + Θ s B s + Θ 2s B 2s + • • • + Θ Qs B Qs .
It is assumed that these polynomials have no common zeros and satisfy the conditions Φ(z s )φ(z) 0 and Θ(z s )θ(z) 0 for |z| = 1. Furthermore, in the above equations, (Φ i ) 1≤i≤P , (φ j ) 1≤ j≤p , (Θ k ) 1≤k≤Q and (θ l ) 1≤l≤q are unknown parameters.

A zero-mean process (X t ) t∈Z is said a seasonal ARFIMA model with bilinear GARCH type errors, denoted hereafter as SARFIMA(p, d, q) × (P, D, Q) s -BL-GARCH(r, m), if the following equation is satisfied

φ(B)Φ(B s )(1 -B) d (1 -B s ) D X t = θ(B)Θ(B s )ε t , (2.1) 
where the long-memory parameters d and D are fractional parameters at the zero (or long-run) and seasonal frequencies, respectively . The process (ε t ) t∈Z in equation (2.1) is a BL-GARCH(r, m) model defined by:

ε t = h t Z t (2.2) h 2 t = a 0 + r i=1 a i ε 2 t-i + m j=1 b j h 2 t-j + r * k=1 c k ε t-k h t-k , (2.3) 
where a 0 , a i , b j and c k are constant parameters, r, m and r * are non-negative integers with r * = min(r, m), h 2 t is the conditional variance of the process (ε t ) t∈Z given the σ-fields I t-1 generated by the past information {ε t-1 , ε t-2 , . . .}. In above, the process (Z t ) t∈Z is a sequence of independent identically normally distributed random variables with mean 0 and variance 1. This model has the advantage of being characterized by a more flexible parametric structure. In this model, leverage effects are explained by the interactions between past observations and volatilities. More precisely, for c k < 0 a positive quantity is added to

h 2 t if ε t-k < 0 while the same quantity is subtracted if ε t-k > 0. If c k = 0 for all k, the model in (2.1)-(2.
3) is the seasonal fractional ARIMA model with generalized autoregressive conditional heteroscedasticity disturbances (SARFIMA(p, d, q) × (P, D, Q) s -GARCH(r, m)) introduced by Reisen et al [START_REF] Reisen | Modeling and forecasting daily average PM 10 concentrations by a seasonal ARFIMA model with volatility[END_REF]. In addition, if D = P = Q = 0, we obtain the fractionally integrated process with GARCH erros (ARFIMA(p, d, q)-GARCH(r, m)) proposed by Baillie et al [START_REF] Baillie | Analyzing industrialized countries inflation by the fractionally integrated ARFIMA-GARCH model[END_REF] and Ling and Li [START_REF] Ling | On Fractionally Integrated Autoregressive Moving-Average Time series Models with Conditional Heteroscedasticity[END_REF].

According to Giraitis and Leipus [START_REF] Giraitis | A generalized fractionally differencing approach in long memory modelling[END_REF] or Reisen et al. [START_REF] Reisen | Estimation of seasonal fractionally integrated processes[END_REF], one can easily show that

(I -B) d (I -B s ) D = [ s 2 ] j=0 (1 -e iλ j B)(1 -e -iλ j B) d j = [ s 2 ] j=0 (1 -2 cos(λ j )B + B 2 ) d j , (2.4) 
with

d 0 = d+D 2 , d j = D, for j = 1, . . . , [ s 2 ] -1, d [ s 2 ] = D 2
, and λ j = 2π j s , for j = 0, . . . , [ s 2 ], where [x] is the greatest integer small than or equal to x, and i is the complex number such that i 2 = -1. Otherwise, by means of the expansion we have:

[ s 2 ] j=0 (1 -2cosλ j B + B 2 ) d j = +∞ j=0 ψ j (d, ν)B j ,
where the coefficients ψ j (d, ν) j≥0 are given by:

ψ j (d, ν) = 0≤l 0 ,••• ,l [ s 2 ] ≤ j, l 0 +•••+l [ s 2 ] = j C l 0 (d 0 , ν 0 ) • • • C l [ s 2 ] d [ s 2 ] , ν [ s 2 ] , (2.5) 
and where d = (d 0 , . . . ,

d [ s 2 ] ), ν = (ν 0 , . . . , ν [ s 2 ]
) with ν j = cos(λ j ), for j = 0, . . . , [ s 2 ]. The weights (C l (d i , ν i )) l∈Z are the Gegenbauer polynomials and they can be computed using the following recursion formula:

           C 0 (d i , ν i ) = 1 C 1 (d i , ν i ) = 2d i ν i C j (d i , ν i ) = 2ν i d i -1 j + 1 C j-1 (d i , ν i ) -2 d i -1 j + 1 C j-2 (d i , ν i ) , ∀ j > 1.

Probabilistic properties

We now specify some probabilistic properties of the model 2.1 -2.3. First, we give the conditions for which the conditional variance h 2 t , defined in (2.3), is non-negative. It is important in practice for estimation theory (using quasi-maximum likelihood methods) that a model as in (2.2) and (2.3) does not generate negative conditional variance h 2 t in sample, since the log quasi-likelihood involves a term in log(h 2 t ), which explodes to -∞ as h 2 t approaches 0, and is ill-defined for h 2 t ≤ 0. The second set of conditions concerns the second-order stationary of the BL-GARCH process and the stationary for a seasonal fractional ARIMA model. The BL-GARCH model with gaussian distributions was recently proposed by Storti and Vitale [START_REF] Storti | BL-GARCH models and asymmetries in volatility[END_REF]. This study was extended by Diongue et al [START_REF] Diongue | BL-GARCH models with elliptical distributed innovations[END_REF], considering elliptical distributions, and they give new probabilistic results concerning the stationarity of the process and the moments.

For the positivity of the conditional variance, Storti and Vitale [START_REF] Storti | BL-GARCH models and asymmetries in volatility[END_REF] show that, for a 0 > 0 and s i > 0 (i = 1, . . . , max(r, m)r * ), with s i = a r * +i if r > m, or s i = a r * +i if r < m, a sufficient conditions for h 2 t > 0 is given by:

c 2 i < 4a i b i , for i = 1, . . . , r * . (2.6)
They give also the condition of second-order stationary for the BL-GARCH model, restricting to the case r = m. Here, we extend this result to the more general case in which r m. The result is stated in the following corollary.

Corollary 2.1. The BL-GARCH(r, m) process, defined by equations (2.2) and (2.3), is stationary in widesense if and only if all the roots B i of the polynomial

Π (B) = 1 - r * i=1 π i B i - max(r,m) i=r * +1 α i B i , (2.7) 
with B being the Backward operator, π i = a i + b i , for i = 1, . . . , r * , lie outside the unit circle. Note that in (2.7), we set

α i = a i if r > m, α i = b i if r < m.
In other words, the condition can be expressed as follows:

Π (B) = 0 for |B i | > 1, i = 1, . . . , max(r, m). (2.8)
Proof. The proof of Corollary 2.1 follows mainly the lines of the proof of Theorem 2 in Storti and Vitale [START_REF] Storti | BL-GARCH models and asymmetries in volatility[END_REF].

Concerning the seasonal fractional ARIMA model, Reisen et al. [START_REF] Reisen | Estimation of seasonal fractionally integrated processes[END_REF] (see also Giraitis and Leipus [START_REF] Giraitis | A generalized fractionally differencing approach in long memory modelling[END_REF]) show that it is stationary and invertible if and only if the following conditions hold:

|D + d| < 1 2 and |D| < 1 2 .
(2.9)

Therefore, using the model properties in Reisen et al. [START_REF] Reisen | Estimation of seasonal fractionally integrated processes[END_REF] and the conditions listed in Storti and Vitale [START_REF] Storti | BL-GARCH models and asymmetries in volatility[END_REF], the following theorem is established for the SARFIMA(p, d, q) × (P, D, Q) s -BL-GARCH(r, m) model.

Theorem 2.2. Let (X t ) t∈Z be generated by equations (2.1), (2.2) and (2.3). We assume that the conditions (2.6) and (2.8) hold. We suppose that the polynomials Φ(z s )φ(z) and Θ(z s )θ(z) have no common zeros, and the long memory parameters d and D satisfy condition (2.9). Then, the following statements hold: a) if Φ(z s )φ(z) 0, for |z| = 1, then (X t ) t∈Z is second-order stationary and has the following representation

X t = ∞ j=0 ψ j (d, ν) Θ(z s )θ(z) Φ(z s )φ(z) ε t-j . (2.10)
Hence, (X t ) is strictly stationary and ergodic.

b) If Θ(z s )θ(z) 0, for |z| ≤ 1, then (X t ) is invertible, and that is, (ε t ) can be written as

ε t = ∞ j=0 π j (d, ν) Φ(z s )φ(z) Θ(z s )θ(z) X t-j , (2.11) 
where the weights π j (d, ν)

j≥0 are such that π j (d, ν) = ψ j (-d, ν), with the coefficients ψ j (d, ν) j≥0
given by equation (2.5).

Proof. The proof of this theorem is given in the appendix.

Under stationarity and invertibility conditions, MA(∞) and AR(∞) representations are respectively:

X t = ∞ j=0 c j ε t-j and ε t = ∞ j=0 c j X t-j , (2.12) 
where the coefficients (c j ) j≥0 and (c j ) j≥0 are determined respectively by:

Θ(z s )θ(z) ∞ j=0 ψ j (d, ν)z j = Φ(z s )φ(z) ∞ j=0 c j z j , |z| ≤ 1 (2.13)
and

Φ(z s )φ(z) ∞ j=0 π j (d, ν)z j = Θ(z s )θ(z) ∞ j=0 c j z j , |z| ≤ 1. (2.14)
In the particular case where P = Q = 0, it is easy to verify that the coefficients (c j ) j≥0 and (c j ) j≥0 can be computed using the following recursion formula:

c 0 = 1 and c j = ψ j (d, ν) + min( j,p) i=1 φ i c j-i - min( j,q) i=1 θ i ψ j-i (d, ν) , ∀ j ≥ 1 (2.15) and c0 = 1 and c j = π j (d, ν) - min( j,p) i=1 φ i π j-i (d, ν) + min( j,q) i=1 θ i c j-i , ∀ j ≥ 1.
(2.16)

Conditional Sum of Squares estimation

Chung [START_REF] Chung | Estimating a generalized long memory process[END_REF] proposed a method based on maximization of the CSS function. In this section, we define the CSS method in the estimation of the SARFIMA(p, d, q) × (P, D, Q) s -BL-GARCH(r, m) process defined by equations (2.1), (2.2) and (2.3), and we establish the asymptotic properties of the CSS estimator.

Definition of the estimator

Suppose that X 1 , . . . , X n are generated by the model (2.1), (2.2) and (2.3). Denote by γ = (d, D, φ 1 , . . . , φ p , θ 1 , . . . , θ q , Φ 1 , . . . ,

Φ P , Θ 1 , . . . , Θ Q ) T , δ = (a 0 , a 1 , . . . , a r , b 1 , . . . , b m , c 1 , . . . , c r * ) T ,
and ω = (γ T , δ T ) T the parameter vector to be estimated. We assume that the parameter ω satisfies the stationary conditions given in Theorem 2.2, and ω 0 = (γ T 0 , δ T 0 ) T is the true value of ω and is in the interior of the compact set Λ ⊆ R p+q+P+Q+r+m+r * +3 . Under the assumption of normality of the standardized innovation (Z t ) t∈Z , the likelihood function is equal to

L(ω) = L(ω | Z 1 , . . . , Z n ) = n t=1 g(Z t , ω),
where g(Z t , ω) is the conditional Gaussian distribution function. Thus, the conditional sum of squares estimator ωn of ω in Λ maximizes the conditional log-likelihood on I 0 , (ignoring the constant)

L(ω) = 1 n n t=1 l t , l t = - 1 2 log(h 2 t ) - ε 2 t 2h 2 t .
(3.17)

Asymptotic properties

The following theorem provides some results related to the asymptotic properties of the SARFIMA-BL-GARCH process estimators, obtained by the CSS approach.

Theorem 3.1. Suppose that (X t ) t∈Z are generated by equations (2.1), (2.2) and (2.3). Assume that the hypothesis of Theorem 2.2 holds. Then, the conditional sum of squares estimator ωn of ω, obtained by maximizing the conditional log-likelihood function (3.17 

Ω 0 = diag(Ω γ 0 , Ω δ 0 )
, Ω γ 0 and Ω δ 0 are values of Ω γ and Ω δ at ω = ω 0 , with

Ω γ = E 1 h 2 t ∂ε t ∂γ ∂ε t ∂γ T + 1 2h 4 t ∂h 2 t ∂γ ∂h 2 t ∂γ T and Ω δ = E 1 2h 4 t ∂h 2 t ∂δ ∂h 2 t ∂δ T .
(c) Further, the information matrix Ω γ and Ω δ can be estimated consistently by: 

Ωγ = 1 n n t=1

Proof. The proof is given in Appendix

It is important to not that ε t , h t all depend on the theoretically infinite past history of (X t ) or (ε t ). We choose the presample estimates of h t and ε 2 t to be n t=1 ε 2 t /n. As noted in Ling and Li [START_REF] Ling | On Fractionally Integrated Autoregressive Moving-Average Time series Models with Conditional Heteroscedasticity[END_REF], this will not affect asymptotic efficiency and other asymptotic properties (see also Bollerslev [4] and Weiss [START_REF] Weiss | ARMA Models With ARCH Errors[END_REF]).

Monte Carlo Simulation

In this section, we study the finite sample performance of the CSS method described previously, to estimate the parameters of SARFIMA(p, d, q) × (P, D, Q) s -BL-GARCH(r, m) process. The simulation results give the average values, the root mean square error (RMSE) and the mean absolute error (MAE) of the estimation procedure based on 1000 replications. All calculations were carried out using an R programming environment (see [START_REF] Development | R: A language and environment for statistical computing[END_REF]) on a Pentium (R) Dual-Core CPU, 2.60 GHz (2 CPUs) computer.

Because there is no known technique for generating an exact Seasonal ARFIMA model with BL-GARCH type innovations, we adapt the method developed by Stoev and Taqqu [START_REF] Stoev | Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform[END_REF] for ARFIMA time series with stable innovations. Thus, we approximate the path X t , t = 1, . . . , n by the truncation moving average

X t = M j=0 c j ε t-j , (4.18) 
where M is the truncation parameter and fixed in this study to 10 000, and the non random constants (c j ) j≥0 are determined by equation (2.13). The sum in (4.18) is computed using the Fast Fourier Transform (FFT) algorithm, as suggested by Stoev and Taqqu [START_REF] Stoev | Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform[END_REF]. The BL-GARCH innovations (ε t ) are generated using the method developed in Diongue et al. [START_REF] Diongue | BL-GARCH models with elliptical distributed innovations[END_REF]. The simulation algorithm generates n + 500 observations for each series, saving only the last n. This operation is performed in order to avoid dependence on initial values.

Thus, for fixed value of the seasonal period (s = 4), we carry out an experiment of 1000 samples for the four processes summarized in Table 1. For each model, we use four different sample sizes (n = 100, n = 300, n = 500 and n = 1000). The simulation results are presented in Tables 2345. In these tables, the sample sizes are given in the first columns. The estimations of the parameters are given in the next columns, the root mean square error (RMSE) is given in the row below (in parentheses) and the mean absolute error (MAE) is given under the row of the RMSE (in brackets).

• In the first experiment, a SARFIMA(0, d, 0)×(0, D, 0)-BL-GARCH(1, 1) model is considered (i.e. the model without short memory parameters). The simulation results are summarized in Table 2. Results reveal that parameter estimates are satisfactory, even for small sample sizes (n = 100, n = 300), in the sense that the RMSE and also the MAE are small. We can also remark that the impact of the sample size n on the estimation method. Indeed, when the sample size increases (n = 1000), the results improve significantly too. Figure 1 displays the corresponding boxplots2 and shows the relative scatter of the 1000 estimates. The vertical axis in the figure indicates the deviation from the nominal value of the parameters. This figure confirms the previous results since we observe that confidence intervals are small, and shows also that the impact of the sample sizes on this dispersion.

• In the second experiment, we consider the preceding model (Model 1) with short memory part. Consequently, this experiment is designed to examine the relative performances of the estimators when there are long-memory and short memory components simultaneously. The results are presented in Tables 345. We observe that, when short memory components are introduced in the model, the estimation of long memory parameters is disturbed. Indeed, the RMSE and MAE obtained in Tables 3, 4 and 5 are larger than those presented in Table 2. This phenomenon is already observed in the literature (e.g. Boutahar et al. [START_REF] Boutahar | Estimation Methods of the Long Memory Parameter: Monte Carlo and Application[END_REF], Diongue and Guégan [START_REF] Diongue | Estimation of k-Factor GIGARCH Process: A Monte Carlo Study[END_REF]). However, we observe a significant improvement when the sample size becomes large (n = 500, n = 1000). We remark also that the estimators of the parameters for the BL-GARCH errors seem not to be affected by the presence of the AR and MA components, particularly for larger sample sizes (n = 500, n = 1000). q q q q q q q q q q q q q q q q 0.0 0.1 0.2 0.3 0.4 d n=100 n=300 n=500 n=1000

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.1 0.2 0.3 0.4 0.5 D n=100 n=300 n=500 n=1000 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 a0 n=100 n=300 n=500 n=1000 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 a1 n=100 n=300 n=500 n=1000 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 b1 n=100 n=300 n=500 n=1000 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.0 0.2 0.4 0.6 c1 n=100 n=300 n=500 n=1000 

Empirical study

The daily returns of the kenyan stock market index are used for the empirical study in this article to illustrate both the usefulness and the applicability of the proposed model and estimation method.

The raw series has a sample size of 6181 observations, measured form March 1st of 1991 to January 31st of 2008. Table ?? gives the summary statistics of the returns of kenyan stock index for the full sample.

For modeling purpose, the time series is divided into two parts; learning and prediction sets. The 5816 observations from March 1st of 1991 until January 31st of 2007 are considered as learning set and the remaining 365 observations are considered for the prediction study.

Conclusion

In this article, we have developed the family of seasonal ARFIMA process with BL-GARCH type errors, which should prove useful in many fields of time series analysis. It is much more flexible in the simultaneous modeling of long-memory behaviour, seasonal components, volatility clustering and leverage effects; often encountered in financial data. Under some assumptions, the model is shown to be stationary and invertible. The parameter estimation problem is addressed to the conditional sum of squares procedure proposed by Chung [START_REF] Chung | Estimating a generalized long memory process[END_REF], and under some regularly conditions we establish the asymptotic properties of the resulting estimates. Finite sample behaviours of this method were studied using Monte Carlo simulations. It indicate that the approach can yield asymptotic efficient estimates. Consequently, it is reasonable method to deal with seasonal long-range dependent data containing volatility clustering and leverage effects.

Since the results from the model presentation and the estimation methodology are encouraging, it will be interesting to examine the empirical application of the SARFIMA-BL-GARCH model in financial data. We raise also the question of the "best" estimation procedure. This issue appears to be further investigated.

X t = Θ(B s )θ(B) Φ(B s )φ(B) (1 -B) -d (1 -B s ) -D ε t = Ψ 1 (B)ε t ,
where

Ψ 1 (z) = Θ(z s )θ(z) Φ(z s )φ(z) (1 -z) -d (1 -z s ) -D . Now the power series expansion (1 -z) -d (1 -z s ) -D converges
for all |z| ≤ 1, when |D + d| < 1/2 and |D| < 1/2 (see Reisen et al. [START_REF] Reisen | Estimation of seasonal fractionally integrated processes[END_REF] for more details). The series Θ(z s )θ(z) converge also for all z, since it is a polynomial, and that 1/Φ(z s )φ(z) converges for all |z| ≤ 1 when all the roots of the equation Φ(z s )φ(z) = 0 lie outside the circle |z| = 1. Thus, the power series expansion of Ψ 1 (z) converges for all |z| ≤ 1, and so (X t ) t exists with representation (2.10). From Corollary 2.1, the process (ε t ) t is second-order stationary and hence E(ε 2 t ) < ∞. Similar to the proof of Theorem 2.2 in Ling and Li [START_REF] Ling | On Fractionally Integrated Autoregressive Moving-Average Time series Models with Conditional Heteroscedasticity[END_REF], we can show that (X t ) t is also second-order stationary. Indeed, we have

E X 2 t = E                ∞ k=0 c k ε t-k        2         (6.19) = ∞ k=0 c 2 k E ε 2 t-k + k 1 ,k 2 =0, k 1 <k 2 c k 1 c k 2 E ε t-k 1 ε t-k 2 , (6.20) 
where the coefficients (c k ) k≥0 are determined by equation (2.13). By representation (2.2), we have (ε t ) t is a measurable function of i.i.d. random variables Z t 's with mean zero and variance 1. Hence, the second term of equation (6.20) is equal to zero. Thus, we have:

E X 2 t = ∞ k=0 c 2 k E ε 2 t-k =        ∞ k=0 c 2 k        2 E ε 2 t . (6.21) 
Under the conditions (2.9), we have c 2 k < ∞, and we know that the right side of equation (6.21) is finite, and so (X t ) t is second-order stationary. If (ε t ) t is a function of i.i.d random variables, hence so is (X t ) t . Consequently, (X t ) t is strictly stationary and ergodic.

b) The proof is similar to a) except that the conditions are required on the convergence of

Ψ 2 (z) = Φ(z s )φ(z) Θ(z s )θ(z) (1 -z) d (1 -z s ) D , for all |z| ≤ 1.
A similar argument as in a) can be used to show that the power series expansion of Ψ 2 (z) is convergent for all |z| ≤ 1, and so (X t ) t is invertible and we know that (2.11) Proof. The proof of Lemma 6.1 follows mainly the lines of the proof of Theorem 3.1. in Ling and Li [START_REF] Ling | On Fractionally Integrated Autoregressive Moving-Average Time series Models with Conditional Heteroscedasticity[END_REF].

To prove the consistency and asymptotic normality of the CSS estimator, we will check the conditions listed by Basawa et al. [START_REF] Basawa | Asymptotic Properties of Maximum Likelihood Estimators for Stochastic Processes[END_REF]. They have analyzed the asymptotic properties of ML estimator in process with dependent observations, by given a set of sufficient conditions. Thus to prove condition (a), we need to check the following three conditions:

(1) -n -1 ∂l t (ω 0 ) ∂ω P -→ 0;

(2) There exists a nonrandom matrix M(ω 0 ) > 0 such that for all ε > 0,

P -n -1 ∂ 2 l t (ω 0 ) ∂ω∂ω T ≥ M(ω 0 ) > 1 -ε, for all n ≥ n 1 (ε);
(3) There exists a constant M < ∞ such that

E ∂ 3 l t (ω) ∂ω i ∂ω j ∂ω k < M, for all ω ∈ Λ,
where ω i is the ith component of ω.

Consider the first-order derivatives of the function l t with respect to the parameters. Thus, we have for each t:

∂l t ∂γ = 1 2h 2 t ε 2 t h 2 t -1 ∂h 2 t ∂γ - ε t h 2 t ∂ε t ∂γ and ∂l t ∂δ = 1 2h 2 t ε 2 t h 2 t -1 ∂h 2 t ∂δ . (6.22) 
These derivatives involve that of ε t and h 2 t , which we now specify as follows:

∂ε t ∂d = - ∞ k=1 1 k ε t-k ; ∂ε t ∂D = - ∞ k=1 1 k ε t-ks ; ∂ε t ∂φ j = -φ -1 (B)ε t-j , j = 1, . . . , p; ∂ε t ∂θ j = -θ -1 (B)ε t-j , j = 1, . . . , q; ∂ε t ∂Φ j = -Φ -1 (B s )ε t-js , j = 1, . . . , P; ∂ε t ∂Θ j = -Θ -1 (B s )ε t-js , j = 1, . . . , Q; ∂h 2 t ∂γ = 2 r i=1 a i ε t-i ∂ε t-i ∂γ + m j=1 b j ∂h 2 t-j ∂γ + r * k=1 c k ε t-k ∂h t-k ∂γ + r * k=1 c k h t-k ∂ε t-k ∂γ ,
and similarly, we have

∂h 2 t ∂δ = εt + m j=1 b j ∂h 2 t-j ∂δ + r * k=1 c k ε t-k ∂h t-k ∂δ , where εt = (1, ε 2 t-1 , . . . , ε 2 t-r , h 2 t-1 , . . . , h 2 t-m , ε 2 t-1 h 2 t-1 , . . . , ε 2 t-r * h 2 t-r * ) T .
Using the expression in equation (6.22), we have E ∂l t ∂ω ω=ω 0 = 0. According the assumptions of Theorem 2.2 and Corollary 2.1, the process (X t ) t∈Z and (ε t ) t∈Z are strictly stationary and ergodic. Hence, applying the ergodic theorem, we obtain condition (1). To check condition (2), we need to compute the derivatives of order two as follows:

∂ 2 l t ∂γ∂γ T = - 1 h 2 t ∂ε t ∂γ ∂ε t ∂γ T - 1 2h 4 t ∂h 2 t ∂γ ∂h 2 t ∂γ T ε 2 t h 2 t + ε 2 t h 2 t -1 ∂ ∂γ 1 2h 2 t ∂h 2 t ∂γ T - 2ε t h 2 t ∂ε t ∂γ ∂h 2 t ∂γ T + ε t h 2 t ∂ 2 ε t ∂γ∂γ T , and 
∂ 2 l t ∂δ∂δ T = - 1 2h 4 t ∂h 2 t ∂δ ∂h 2 t ∂δ T ε 2 t h 2 t + 1 2 ε 2 t h 2 t -1 ∂ ∂δ 1 h 2 t ∂h 2 t ∂δ T .
Similarly, we find (∂ 2 l t )/(∂γ∂δ T ) and (∂ 2 l t )/(∂δ∂γ T ).

According to Lemma 6.1, the matrix Ω 0 is positive definite, and hence for any constant vector C 0, 

lim n→+∞ P n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C + C T Ω 0 C ≤ ∆ = 1.
In other words, we have ∀ ε > 0, there exists n 1 = n 1 (ε) such that ∀ n ≥ n 1 :

P n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C + C T Ω 0 C ≤ ∆ -1 < ε =⇒ P n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C + C T Ω 0 C ≤ ∆ > 1 -ε 14 
=⇒ P n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C + C T Ω 0 C ≤ C T Ω 0 C 2 > 1 -ε =⇒ P n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C ≤ - C T Ω 0 C 2 > 1 -ε =⇒ P -n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C ≥ C T Ω 0 C 2 > 1 -ε
So the condition ( 2) is satisfied. To prove condition (3), we remark that:

∂ 3 ε t ∂d 3 = ln 3 (1 -B)ε t =        - ∞ k=1 1 k B k        3 ε t . =⇒ E ∂ 3 ε t ∂d 3 2 = E         k 1 ,k 2 ,k 3 =1 1 k 1 k 2 k 3 ε t-k 1 -k 2 -k 3         2 = k 1 ,k 2 ,k 3 =1 1 k 2 1 k 2 2 k 2 3 E ε 2 t-k 1 -k 2 -k 3 = π 2 6 3 E ε 2 t < ∞
Similarly, we can show that E ∂ 3 ε t ∂ω 3 i 2 < ∞, where ω i is the ith component of ω. Thus, differentiating ∂ 2 l t /∂ω∂ω T and using the preceding discussion, we obtain condition (3).

Finally, using the first-order Taylor expansion of the expression ∂ L(ω) ∂ ω at ω = ω 0 , and the conditions (1), ( 2) and (3), we obtain the existence and the consistency of the CSS estimator ωn .

To prove condition (b) of Theorem 3.1, we remark at first, by Lemma 6.1, we have: where η 0 is an arbitrary constant vector with η T 0 η 0. We have

E η T 0 ∂l t (ω 0 ) ∂ω = η T 0 E ∂l t (ω 0 ) ∂ω = 0.
Then η T 0 ∂l t (ω 0 ) ∂ω t are a sequence of martingale differences and S n is the sum of martingale difference.

Hence S n is a martingale and we have 1 n E(S 2 n ) = η T 0 Ω 0 η > 0. From the stationarity and the ergodicity of (X t ) and (ε t ), we have: Using the first-order Taylor expansion of the expression ∂ L(ω) ∂ ω at ω = ω 0 , and the conditions (6.23), (6.24) and (6.25), we have:

1 n E S 2
√ n ( ωn -ω 0 ) D -→ N(0, Ω -1 0 ), as n -→ +∞. The condition (c) of Theorem 3.1 is directly obtained from Lemma 6.1.

  ), has the following properties (a) The CSS estimator ωn exists and satisfies: ∂L(ω) ∂ω = 0 and ωn P -→ ω 0 , as n -→ +∞. (b) For such a sequence, √ n ( ωn -ω 0 ) D -→ N(0, Ω -1 0 ), as n -→ +∞, where P -→ and D -→ denote respectively convergence in probability and in distribution. Furthermore,
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 1 Figure 1: Boxplot of estimates of d = 0.1, D = 0.3, a 0 = 0.01, a 1 = 0.09, b 1 = 0.9 and c 1 = 0.15 in Model 1, with sample size n = 100, n = 300, n = 500 and n = 1000, based on 1000 replications.

  2 l t (ω 0 ) ∂ω ∂ω T C a.s -→ -C T Ω 0 C. For any given C, let 0 < ∆(C) < C T Ω 0 C/2. Then ∀ ε > 0, lim n→+∞ P n -1 C T ∂ 2 l t (ω 0 ) ∂ω ∂ω T C + C T Ω 0 C > ε = 0Particularly, we have for ε = ∆:

  (0, Ω 0 ), as n -→ +∞.(6.25) 

Table 1 :

 1 Data generating processes (DGPs).

	DGPs	d	D	φ	θ	a 0	a 1	b 1	c 1
	Model 1	0.10	0.30	-	-	0.01	0.09	0.9	0.15
	Model 2	0.10	0.30	0.50	-	0.01	0.09	0.9	0.15
	Model 3	0.10	0.30	-	0.30	0.01	0.09	0.9	0.15
	Model 4	0.10	0.30	0.50	0.30	0.01	0.09	0.9	0.15

Table 2 :

 2 CSS estimation for Model 1.

	sizes	d	D	a 0	a 1	b 1	c 1
	100	0.0980	0.3137	0.0617	0.0825	0.8156	0.1844
		(0.0732)	(0.0893)	(0.1022)	(0.0945)	(0.2286)	(0.1187)
		[0.0605]	[0.0727]	[0.0557]	[0.0750]	[0.1433]	[0.0903]
	300	0.1013	0.3158	0.0190	0.0857	0.8883	0.1552
		(0.0503)	(0.0520)	(0.0246)	(0.0490)	(0.0721)	(0.0529)
		[0.0408]	[0.0419]	[0.0119]	[0.0378]	[0.0462]	[0.0415]
	500	0.1019	0.3125	0.0140	0.0897	0.8926	0.1541
		(0.0387)	(0.0413)	(0.0102)	(0.0335)	(0.0383)	(0.0409)
		[0.0305]	[0.0326]	[0.0060]	[0.0261]	[0.0289]	[0.0320]
	1000	0.0996	0.3097	0.01148	0.0896	0.8972	0.1499
		(0.0264)	(0.0280)	(0.0042)	(0.0198)	(0.0211)	(0.0251)
		[0.0213]	[0.0223]	[0.0030]	[0.0158]	[0.0164]	[0.0202]

Table 3 :

 3 CSS estimation for Model 2.

	sizes	d	D	φ	a 0	a 1	b 1	c 1
	100	0.1005	0.3116	0.4907	0.0763	0.0763	0.8114	0.1789
		(0.1068) (0.0991) (0.1414) (0.2127) (0.0964) (0.2406) (0.1214)
		[0.0906] [0.0789] [0.1100] [0.0694] [0.0763] [0.1476] [0.0917]
	300	0.0942	0.3083	0.4984	0.0211	0.0837	0.8825	0.1500
		(0.0870) (0.0548) (0.1002) (0.0316) (0.0467) (0.0932) (0.0531)
		[0.0767] [0.0431] [0.0842] [0.0134] [0.0368] [0.0519] [0.0409]
	500	0.0957	0.3074	0.4989	0.0135	0.0876	0.8957	0.1511
		(0.0771) (0.0413) (0.0856) (0.0096) (0.0331) (0.0381) (0.0375)
		[0.0671] [0.0326] [0.0719] (0.0056) [0.0256] [0.0278] [0.0296]
	1000	0.1004	0.3058	0.4973	0.0113	0.0901	0.8978	0.1529
		(0.0634) (0.0284) (0.07138) (0.0043) (0.0205) (0.0216) (0.0261)
		[0.0526] [0.0229] [0.0584] [0.0031] [0.0159] [0.0166] [0.0207]
					8			

Table 4 :

 4 CSS estimation for Model 3.

	sizes	d	D	θ	a 0	a 1	b 1	c 1
	100	0.1265	0.3116	0.2945	0.0760	0.0778	0.8061	0.1748
		(0.1050) (0.0973) (0.1366) (0.2014) (0.0987) (0.2481) (0.1191)
		[0.0863] [0.0779] [0.1090] [0.0692] [0.0773] [0.1514] [0.0886]
	300	0.1268	0.3064	0.3011	0.0199	0.0826	0.8882	0.1508
		(0.0792) (0.0518) (0.0844) (0.0271) (0.0466) (0.0778) (0.0522)
		[0.0658] [0.0413] [0.0686] [0.0123] [0.0363] [0.0470] [0.0400]
	500	0.1350	0.3061	0.3118	0.0135	0.0871	0.8961	0.1481
		(0.0738) (0.0409) (0.0758) (0.0086) (0.0325) (0.0357) (0.0366)
		[0.0612] [0.0323] [0.0612] [0.0056] [0.0257] [0.0270] [0.0289]
	1000	0.1381	0.3000	0.3181	0.0110	0.0896	0.8972	0.1446
		(0.0615) (0.0292) (0.0564) (0.0044) (0.0199) (0.0221) (0.0258)
		[0.0509] [0.0228] [0.0458] [0.0030] [0.0158] [0.0170] [0.0207]

Table 5 :

 5 CSS estimation for Model 4.

	sizes	d	D	φ	θ	a 0	a 1	b 1	c 1
	100	0.0904	0.3137	0.4753	0.2626	0.0790	0.0789	0.7974	0.1830
		(0.1081) (0.1003) (0.3194) (0.3437) (0.2122) (0.1002) (0.2625) (0.1277)
		[0.0931] [0.0805] [0.2336] [0.2599] [0.0721] [0.0785] [0.1603] [0.0947]
	300	0.0841	0.3107	0.4650	0.2453	0.0199	0.0810	0.8901	0.1555
		(0.0840) (0.0527) (0.2680) (0.2717) (0.0251) (0.0465) (0.0734) (0.0527)
		[0.0735] [0.0415] [0.1867] [0.1935] [0.0122] [0.0365] [0.0460] [0.0411]
	500	0.0880	0.3116	0.4728	0.2588	0.0139	0.0862	0.8963	0.1526
		(0.0775) (0.0421) (0.2332) (0.2302) (0.0090) (0.0320) (0.0355) (0.0378)
		[0.0672] [0.0334] [0.1603] [0.1602] [0.0058] [0.0255] [0.0269] [0.0297]
	1000	0.0924	0.3053	0.4560	0.2493	0.0116	0.0896	0.8964	0.1485
		(0.0679) (0.0303) (0.2216) (0.2016) (0.0047) (0.0197) (0.0224) (0.0262)
		[0.0582] [0.0238] [0.1459] [0.1347] [0.0032] [0.0155] [0.0170] [0.0211]

  holds.

		∂ε t ∂γ	∂ε t ∂γ T +	1 2h 4 t	∂h 2 t ∂γ	∂h 2 t ∂γ T	and	Ω δ = E	1 2h 4 t	∂h 2 t ∂δ	∂h 2 t ∂δ T ,
	where	a.s								

-→ denotes convergence almost surely.

Boxplot of estimates in Model 2, Model

and Model

are omitted in the paper but are available to authors upon request.

Appendix : Proofs of Theorems

Proof of Theorem 2.2

The proof of this theorem follows mainly the proof of Theorem 2.3 in Ling and Li [START_REF] Ling | On Fractionally Integrated Autoregressive Moving-Average Time series Models with Conditional Heteroscedasticity[END_REF]. a) The process in (2.1) can be written as Proof of Theorem 3.1 The proof of Theorem 3.1 uses the following lemma. Lemma 6.1. Suppose that (X t ) t∈Z are generated by equations (2.1), (2.2) and (2.3), and the assumptions of Theorem 3.1 hold. Then