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Abstract

In this paper the Verchery’s polar method is extended to the conceptual framework
of the First-order Shear Deformation Theory (FSDT) of laminates. It will be proved
that the number of independent tensor invariants characterising the laminate consti-
tutive behaviour remains unchanged when passing from the context of the Classical
Laminate Theory (CLT) to that of the FSDT. Moreover, it will also be shown that,
depending on the considered formulation, the elastic symmetries of the laminate shear
stiffness matrix depend upon those of membrane and bending stiffness matrices. As
a consequence of these results a unified formulation for the problem of designing the
laminate elastic symmetries in the context of the FSDT is proposed. The optimum
solutions are found within the framework of the polar-genetic approach, since the ob-
jective function is written in terms of the laminate polar parameters, while a genetic
algorithm is used as a numerical tool for the solution search. In order to support the
theoretical results, and also to prove the effectiveness of the proposed approach, some
novel and meaningful numerical examples are discussed in the paper.

Keywords:
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Notations

CLT, Classical Laminate Theory

FSDT, First-order Shear Deformation Theory

GA, Genetic Algorithm

I' ={O;x1, 29,23}, local (or material) frame of the elementary ply
I'"' = {O0;z,y, 2 = 23}, global frame of the laminate

0, rotation angle

{11,22,33,32,31,21} & {1,2,3,4,5,6}, correspondence between tensor and Voigt’s (ma-

trix) notation for the indexes of tensors (local frame)

{zz,yy, 22, 2y, zx,yx} < {x,y,2,q,r,s}, correspondence between tensor and Voigt’s (ma-

trix) notation for the indexes of tensors (global frame)

Zij, (i,j = 1,2 or i,j = x,y), second-rank plane tensor using tensor notation (local and

global frame)

Lijwi, (i,7,k,1 = 1,2 or i,j,k,l = x,y), fourth-rank plane tensor using tensor notation

(local and global frame)
Ui, (i=1,...,7) parameters of Tsai and Pagano

[Q], 3 x 3 in-plane reduced stiffness matrix of the constitutive lamina (Voigt’s notation)



-~

[Q], 2x2 out-of-plane reduced stiffness matrix of the constitutive lamina (Voigt’s notation)

To,T1, Ro, R1, @y, $1, polar parameters of a fourth-rank plane tensor (also used for the

lamina in-plane reduced stiffness matrix [Q])

T, R, &, polar parameters of a second-rank plane tensor (also used for the lamina out-of-

plane reduced stiffness matrix [Q])
{N}, 3 x 1 vector of membrane forces (per unit length), Voigt’s notation
{M}, 3 x 1 vector of bending moments (per unit length), Voigt’s notation
{F}, 2 x 1 vector of shear forces (per unit length), Voigt’s notation
{e0}, 3 X 1 vector of in-plane strains of the laminate middle plane, Voigt’s notation
{xo0}, 3 x 1 vector of curvatures of the laminate middle plane, Voigt’s notation

{70}, 2 x 1 vector of the out-of-plane shear strains of the laminate middle plane, Voigt’s

notation

[A], [B], [D], 3 x 3 matrices of laminate membrane, membrane/bending coupling and bend-

ing stiffness, respectively (Voigt’s notation)

[A*], [B*],[D*], 3 x 3 matrices of laminate homogenised membrane, membrane/bending

coupling and bending stiffness, respectively (Voigt’s notation)
[H], 2 x 2 matrix of laminate out-of-plane shear stiffness, (Voigt’s notation)
[H*], 2 x 2 matrix of laminate homogenised out-of-plane shear stiffness, (Voigt’s notation)
[C*], 3 x 3 laminate homogeneity matrix
Toa«,Th g+, Roax, R1a, Poax, P14+, polar parameters of [A*]
Tog+, T1 g+, Rop, R1B+, Pog+, P1 g+, polar parameters of [B*]
Top+, Th p+, Rop+, R1p+, Pop«, P1p+, polar parameters of [D*]
Ty+, Ry, @+, polar parameters of [H*]
E;, (i =1,2,3), Young’s moduli of the constitutive lamina (material frame)
Gij, (1,7 =1,2,3), shear moduli of the constitutive lamina (material frame)
vij, (i,j =1,2,3), Poisson’s ratios of the constitutive lamina (material frame)

tply, thickness of the constitutive lamina



n, number of layers
{0x} (k=1,...,n), vector of the layers orientation angles
h, overall thickness of the laminate

¥, overall objective function for the problem of designing the elastic symmetries of the

laminate
{f}, 21 x 1 vector of partial objective functions
[W], 21 x 21 positive semi-definite diagonal weight matrix
]/%BA*,I/%\IA*, s/ﬁ\om, 55\1,4* imposed values for the polar parameters of matrix [A*]
]/%BD*,]/%;D*, g/ﬁ\OD*, 7!5\117* imposed values for the polar parameters of matrix [D*]
Npop, number of populations
Ning, number of individuals
Ngen, maximum number of generations
Deross, Crossover probability

Pmut, Mutation probability

1 Introduction

The problem of designing a composite structure is quite cumbersome and can be considered
as a multi-scale design problem. The complexity of the design process is actually due to
two intrinsic properties of composite materials, i.e. the heterogeneity and the anisotropy.
Although the heterogeneity gets involved mainly at the micro-scale (i.e. the scale of con-
stitutive “phases”, namely fibres and matrix), conversely the anisotropy intervenes at both
meso-scale (that of the constitutive lamina) and macro-scale (that of the laminate). It is
well known that the material properties (and more generally the mechanical response) of
an anisotropic continuum depend upon the direction. A consequence of anisotropy con-
sists in the fact that the mechanical response of the material depends upon a considerable
number of parameters (i.e. 21 for a general triclinic material, 13 for the monoclinic case,
nine for the orthotropic one, five for the transverse isotropic case and two for an isotropic
material).

Normally the Cartesian representation of tensors is employed to describe the behaviour
of an anisotropic material in terms of Young’s moduli, shear moduli, Poisson’s ratios,
Chentsov’s ratios and mutual influence ratios, see [1|. While on one hand the Cartesian

representation seems to be the “most natural” representation to describe the anisotropy, on



the other hand it shows a major drawback: the above material parameters depend upon
the coordinate system chosen for characterising the mechanical response of the continuum.
As a consequence, the anisotropy of the material is described by a set of parameters which
are not (tensor) invariant quantities and that represent the response of the material only
in a particular frame and not in a general one.

Several alternative analytical representations can be found in literature. Some of them
rely on the use of tensor invariants which allow for describing the mechanical behaviour of
an anisotropic continuum through intrinsic material quantities. Of course, such representa-
tions do not imply a reduction in the number of parameters needed to fully characterise the
material behaviour. Nevertheless, since these intrinsic material quantities are tensor invari-
ants on one hand they allow to describe the mechanical response of the material regardless
to the considered reference frame and on the other hand they let to better highlight some
physical aspects that cannot be easily caught when using the Cartesian representation.

In the framework of the design of composite materials several analytical representations
of (plane) anisotropy were developed in the past and among them the most commonly
employed is that introduced by Tsai and Pagano [2|. In the context of this approach
they introduce seven parameters U;, (i = 1,...,7) which are expressed in terms of the six
independent Cartesian components of a fourth-rank elasticity-like plane tensor (i.e. a tensor

having both major and minor symmetries) written in the local frame I' = {O; 21, 2, x3}:

3L1111 + 2L1122 + 3L2220 + 411212

Ul — 3 3
U, = Li111 ; L9999 ’
U. — L1111 — 2L1122 + Laogoo — 4L1212

3 - ] )
U, — L1111 + 6L1122 + Logoo — 4L1212

4 — ] ) (1)
U — Li111 — 2L1192 + Lagos + 4L1212

5 ] )
Us = L1112 ;— L1220 7

L — L

U 1112 . 1222

The main drawbacks of this representation are basically three: firstly not all parameters U;
are tensor invariants, secondly they do not have a simple and immediate physical meaning
and, finally, they are not all independent. Indeed, Us can be expressed in terms of U; and

U, as:

vy = B0 ©)



In 1979 Verchery [3] introduced the polar method for representing fourth-rank elasticity-
like plane tensors. This representation has been enriched and deeply studied later by
Vannucci and his co-workers [4-8]. The polar method relies upon a complex variable
transformation by taking inspiration from a classical technique often employed in analytical
mechanics, see for instance the works of Kolosov [9] and Green and Zerna [10]. As it will be
briefly described in Sec. 2, the main advantages of the polar formalism are at least three:
a) it is a representation of anisotropy which is based on tensor invariants, b) such invariants
have an immediate physical meaning which is linked to the different (elastic) symmetries
of the tensor and c) the change of reference frame can be expressed in a straightforward
way.

Concerning the problem of the design of a composite structure, the polar method has
been applied, up to now, only in the framework of the Classical Laminate Theory (CLT) for
different real-life engineering applications, see [11-17]|. Nevertheless, the results obtained
by using the polar method in the context of the CLT are not sufficiently accurate for
those applications involving moderately thick (or thick) composite parts. To overcome
this difficulty, in this work the polar method is extended and applied (for the first time)
for representing the classic laminate stiffness matrices in the framework of the First-order
Shear Deformation Theory (FSDT). In particular, depending on the assumed mathematical
formulation for the out-of-plane shear stiffness matrix of the laminate, the expressions of its
polar parameters will be analytically derived. Accordingly, the unified formulation for the
problem of designing the laminate elastic symmetries, initially introduced by Vannucci [18]
in the context of the CLT, has been modified and extended to the case of the FSDT. This
problem is formulated as an unconstrained minimisation problem in the space of the full
set of the laminate polar parameters (membrane, bending, membrane/bending coupling
and shear). Due to its particular nature (i.e. a high non-convex optimisation problem
in the space of the layers orientation angles), the solution search process is performed by
using the last version of the genetic algorithm (GA) BIANCA |11, 12, 19]. Finally, in order
to numerically prove and support the major analytical results found in this work, some
meaningful and non-conventional examples are presented.

The paper is organised as follows: Section 2 recalls the fundamentals of the polar
formalism and the related advantages. In Section 3 the polar method is applied in the
framework of the FSDT, by highlighting the major analytical results. Section 4 presents the
mathematical formulation of the problem of designing the elastic symmetries of a laminate
as an optimisation problem and the generalisation of this formulation when considering the
laminate behaviour in the context of the FSDT. Section 5 shows some numerical results
in order to prove the effectiveness of the polar formalism when it is applied to the FSDT.

Finally Section 6 ends the paper with some concluding remarks.



2 Fundamentals of the Polar Method

In this section the main results of the Polar Method introduced by Verchery in 1979 [3] are
briefly recalled. The polar method is substantially a mathematical technique that allows
for expressing any n-rank plane tensor through a set of tensor invariants. As a consequence,
such a representation can be applied not only to elasticity-like tensors but also to any other
asymmetric plane tensor, see for instance [20]. Mainly inspired by the work of Green and
Zerna [10], Verchery makes use of a (very classical) mathematical technique based upon
a complex variable transformation in order to easily represent the affine transformation
(in this case a rotation) of a plane tensor after a change of reference frame. For a deeper
insight in the matter the reader is addressed to [4].

In the framework of the polar formalism a second-rank (symmetric) tensor Z;;, (i,j =

1,2), within the local frame I', can be stated as:

Z11 = T 4+ Rcos29 ,

Zig = Rsin2¢ , (3)

Zoygy = T — Rcos29 ,
where T' is the isotropic modulus, R the deviatoric one and ¢ the polar angle. From Eq. (3)
it can be noticed that the three independent Cartesian components of a second-rank plane
symmetric tensor are expressed in terms of three polar parameters: among them only two
are tensor invariants, i.e. T" and R, while the last one, namely the polar angle @, is needed
to fix the reference frame. The converse relations (giving the polar parameters in terms of

Cartesian components) are:

T Zh1 + Zao
’ | (@)
. 711 — Z
R = SRR 4z

where i = y/—1 is the imaginary unit. For a second-rank plane tensor the only possible
symmetry is the isotropy which can be obtained when the deviatoric modulus of the tensor
is null, i.e. R = 0. Moreover, as stated in the introduction, when using the polar formal-
ism the components of the second-rank tensor can be expressed in a very straightforward
manner in the frame I'' (turned counter-clock wise by an angle @ around the z3 axis) as
follows:

Zyw = T + Rcos2(P—-10),

Zpy = Rsin2(® —0) (5)

Zy = T — Rcos2(P—0).
Indeed the change of frame can be easily obtained by simply subtracting the angle 6 from
the polar angle .



Concerning a fourth-rank elasticity-like plane tensor Lk, (4,7,k,1 = 1,2) (expressed

within the local frame T'), its polar representation writes:

Ly = To + 277 + Rocosd®y + 4Rjcos2P;

Lij9e = — Ty + 217 — Rpcosddy ,

Li112 = Rosind®y + 2R;sin2®; ©)
Logos = To + 217 + Rgcosd®y — 4Rycos2d;

Lo = — Rgsind®y + 2R;sin2¢;

Lig12 = Ty — Rycos4ddy

As it clearly appears from Eq. (6) the six independent Cartesian components of L;ji; are
expressed in terms of six polar parameters: Ty and 77 are the isotropic moduli, Ry and
R, are the anisotropic ones, while &y and ¢; are the polar angles. Only five quantities
are tensor invariants, namely the polar moduli Ty, 71, Ry, R together with the angular
difference @y — @1. One of the two polar angles, @y or @1, can be arbitrarily chosen to fix

the reference frame. The converse relations can be stated as:

8To = L1111 — 2L1122 + 4L1212 + Logoo ;

817 = L1114+ 201122 + Lagoo )
8Roe? = L1111 — 2L1190 — 4L1912 + Logos + 4i(L1112 — Lao12) @
8R1e2?1 = Lyj11 — Laggo + 2i(La112 + Looi2)

Once again, thanks to the polar formalism it is very easy to express the Cartesian compo-
nents of the fourth-rank tensor in the frame I'', in fact it suffice to subtract the angle

from the polar angles @5 and @; as follows:

Lyzee = o + 217 4+ Rgcos 4(@0 — 0) + 4R; cos 2( ¢, — 0) ,

Lywyy = — To + 2T7 — Rocos4(Py—0) ,

Lzzzy = RO sin 4( @0 — 0) + 2R1 sin 2( @1 — 9) , (8)
Lyyyy = To + 217 + Rpcosd(Py—0) — 4Rjcos2(d; —0)

Lyyzy = — Rosind(® —0) + 2Rysin2(®; —0)

Layay = To — Rpcos4(Py—0)

In the case of a fourth-rank elasticity-like tensor the real plus-value of the polar method is
in the fact that the polar invariants are directly linked to the (elastic) symmetries of the
tensor, thus having an immediate physical meaning. Indeed the polar formalism offers an
algebraic characterization of the elastic symmetries, which can be seen as an alternative
to the classical geometrical approach to the problem of finding the elastic symmetries of a
material. In particular it can be proved that for a fourth-rank elasticity-like plane tensor

four different types of elastic symmetry exist. They are briefly recalled in the following.

e Ordinary orthotropy: this symmetry corresponds to the algebraic condition

¢O—¢1:K%, K=01. 9)



Indeed, for the same set of tensor invariants, i.e. Ty, 11, Ro, Ri, two different
shapes of orthotropy exist, depending on the value of K. Vannucci [4] shows that
they correspond to the so-called low (K = 0) and high (K = 1) shear modulus
orthotropic materials firstly studied by Pedersen |21|. However, this classification is
rather limiting since the difference between these two classes of orhtotropy concerns,

more generally, the global mechanical response of the material, see [4, 7].

o Ro— Orthotropy: the algebraic condition to attain this “special” orthotropy is
Ry=0. (10)
In this case the Cartesian components of the fourth-rank tensor L;;,; change (as a

result of a frame rotation) as those of a second-rank tensor, see Egs. (3),(6). The

existence of this particular orthotropy has been found also for the 3D case [22].

e Square symmetry: it can be obtained by imposing the following condition
Ry =0. (11)
This symmetry represents the 2D case of the well-known 3D cubic syngony.

e [sotropy: the fourth-rank elasticity-like tensor is isotropic when its anisotropic moduli

are null, i.e. when the following condition is satisfied

Ro=R; =0. (12)

3 Application of the Polar Formalism to the First-order Shear
Deformation Theory of laminates

For sake of simplicity in this section all of the equations governing the laminate mechanical
response will be formulated in the context of the Voigt’s (matrix) notation. The passage
from tensor notation to Voigt’s notation can be easily expressed by the following two-way

relationships among indexes (for both local and global frames):

{11,22,33,32,31,21} < {1,2,3,4,5,6}
{zx,yy, 2z, 2y, ze,yz} < {x,y,z,q,7,8} (13)
Let us consider a multilayer plate composed of n identical layers (i.e. layers having
same material properties and thickness). Let be 0y the orientation angle of the k-th ply
(k=1,...,n), tply the thickness of the elementary lamina and h = nt), the overall thickness
of the plate. In the framework of the FSDT theory [23] the constitutive law of the laminated

plate (expressed within the global frame of the laminate I'") can be stated as:

{N} (Al [B] {eo}
My (| B D {xo} [~



{F} = H] {70} , (15)
where [A], [B] and [D] are the membrane, membrane/bending coupling and bending stiff-
ness matrices of the laminate, while [H| is the out-of-plane shear stiffness matrix. {N},
{M} and {F} are the vectors of membrane forces, bending moments and shear forces per
unit length, respectively, whilst {eo}, {x0} and {79} are the vectors of in-plane strains,
curvatures and out-of-plane shear strains of the laminate middle plane, respectively. The

expressions of matrices [A], [B] and [D] are:

[A] = EZ[Q(%)] ;
k=1
B = (%) S (16)
1
= 5 (4) Sae
with
bk:2k:—n—1 N ibk—o s
Mol (17)
de=12k(k—n—1)+4+3n(n+2) , Sldy=n’
k=1

It can be noticed that in Eq. (16) [Q(d)] is the in-plane reduced stiffness matrix of the
k-th ply. Concerning Eq. (15), in literature one can find different expressions for the out-
of-plane shear stiffness matrix of the laminate [H]. In the following it will be considered

two different representations for this matrix, namely:

@)

15" Q) i)
[H] = sh . -
1213 z:: (3n? — di,)[Q(6)] (modified)

In Eq. (18) [Q(ék)] is the out-of-plane shear stiffness matrix of the elementary ply. The
first form of the matrix [H] is the basic one wherein the shear stresses are constant through
the thickness of each lamina. However, as widely discussed in |1, 23] this approximation
is not accurate at least for three reasons: a) a constant out-of-plane shear stress field
does not satisfy the local equilibrium equations of each lamina, b) the shear stresses are
discontinuous at the layers interfaces and c) the out-of-plane shear stresses must be null on
both top and bottom surfaces of the laminated plate if no tangential forces are applied. To
these purposes several modifications of the expression of [H] have been proposed by many
researchers in order to take into account the previous aspects, see [23]. In particular, the
second form of matrix [H| shown in Eq. (18) takes into account on one side the parabolic

variation of the shear stresses through the thickness of each lamina (which satisfies the

10



local equilibrium) and on the other side the fact that such stresses have to vanish on both
top and bottom faces of the plate. However, this modified form of [H] does not take into
account the continuity of the shear stresses at the interfaces of the plies. For a deeper
insight on such aspects the reader is addressed to [23].

It can be noticed that, when passing from the lamina material frame I' to the laminate
global frame I''| the terms of the matrix [Q(d;)] behave like those of a fourth-rank elasticity-
like tensor, while the components of [Q(ék)] behave like those of a second-rank symmetric

tensor, see [4, 19]. Therefore [Q(dx)] and [Q(dx)] can be expressed (within the laminate

global frame) by means of the polar formalism as follows:

Quz = To + 271 + Rocosd(Py+ ;) + 4Rjcos2(Py +0x)
Qxy = — Ty + 217 — Rgycos 4( by + 5]4) ,
Qzs = Ry Sin4(¢0 +5k) + 2Ry sin2(¢1 +5k) , (19)
Quy = To + 271 + Rocosd(Py+r) — 4Rjcos2(Py +6x)
st = — Ry Sin4(¢0 +5k) + 2Ry sin2(¢1 +5k) ,
Qss = To — Rycos4(Py + ) ,

and

9‘1‘1 = T + Rcos2(®+ ),
9‘17“ = Rsin2(® + o) , (20)
Qnr = T — Rcos2(P+0y) .
To be remarked that in the previous equations it is the material frame of the k-th lamina
(and not the global one) which is turned counter-clock wise by an angle ¢ around the 3
axis. In Egs. (19) and (20) Ty, T1, Ro, Ri, @9 and &; are the polar parameters of the
in-plane reduced stiffness tensor of the lamina, while T', R, and @ are those of the reduced
out-of-plane stiffness tensor: all of these parameters solely depend upon the ply material
properties (e.g. if the ply is orthotropic the polar parameters of [Q(dx)] depend upon Ej,
E5, G2 and vq9, while those of [Q(5k)] depend upon Gag and Gi3).
In order to better analyse and understand the mechanical response of the laminate it

is useful to homogenise the units of the matrices [A], [B], [D] and [H] to those of the ply

reduced stiffness matrices as follows:

(4% = 7[A] ,
2
B = [B] ,
D] = 33 D] , (21)
1
—[H]  (basic) ,
=9 " |
o [H] (modified)

11



In the framework of the polar formalism it is possible to express also matrices [A*],

[B*], [D*] and [H*] in terms of their polar parameters. In particular the homogenised mem-

brane, membrane/bending coupling and bending stiffness matrices behave like a fourth-

rank elasticity-like tensor while the homogenised shear matrix behaves like a second-rank

symmetric tensor.

Moreover, the polar parameters of these matrices can be expressed

as functions of the polar parameters of the lamina reduced stiffness matrices and of the

geometrical properties of the stack (i.e. layer orientation and position). The polar repre-
sentation of [A*], [B*] and [D*] is (see [19]):

T]_A*

ROA* e14 QSOA*

R]_A* 612451‘4*

TOB*
TlB*

while that of matrix [H*] (see Appendix A) can be stated as:

Ty

RH* 612¢H*

TO )
Tl )

n
l Rpei4o D 145
n k=1

1 . n .
_2R0€14<15o z bk€146k
n k=1

1 : n '
—2R1 612 2% Z bkeI%k
n k=1

To
Ty

%RoeM@o i dkei45;C
n k=1

1 . n .
_3R1612451 z dk€126k
n k=1

T  (basic) ,
2T (modified) |,
1 Rei2® i 20k

n k=1

1 . n .
ER@‘M5 3 (3n% — dj)e?  (modified)
k=1

(22)

(23)

From Eqs. (22)-(25) it seems that, at the macro-scale, the laminate behaviour is gov-

erned by a set of 21 polar parameters: six for each one of the matrices [A*], [B*] and [D*],

12



whilst three for the shear stiffness matrix. In this set the isotropic moduli of [B*] are null,
whilst those of [A*], [D*] and [H*] are identical (or proportional) to the isotropic moduli
of the layer reduced stiffness matrices. The only polar parameters which depend upon the
geometrical properties of the stack (i.e. orientation angles and positions of the plies) are
the anisotropic moduli and polar angles of [A*], [B*] and [D*] together with the deviatoric
modulus and polar angle of [H*| for an overall number of 14 polar parameters which can
be designed (by acting on the geometric parameters of the stacking sequence) in order to
achieve the desired mechanical response for the laminate at the macro-scale. However, as
it is detailed in Appendix B, the deviatoric modulus and the polar angle of matrix [H*] can
be expressed (depending on the considered formulation for [H*]) as a linear combination
of the anisotropic polar modulus R; and the related polar angle @; of matrices [A*] and

[D*] as follows:

Ry 4 R£612(¢1A*+¢_ 1) (basic) ,
Ry-e2Pm = ' (26)

B ioo-a) (3Ry4-€2714% — Ry p-e2%10)  (modified)
1

Eq. (26) means that (when the material of the elementary ply is fixed a priori) the overall
mechanical response of the laminate depends only on the anisotropic polar moduli and the
related polar angles of matrices [A*], [B*] and [D*] even in the framework of the First-
order Shear Deformation Theory. In particular the number of polar parameters to be
designed remains unchanged when passing from the context of CLT to that of FSDT: the
designer can act (through a variation of geometric parameters such as layers orientations
and positions) only on the anisotropic polar moduli and polar angles of the membrane,
membrane/bending coupling and bending stiffness matrices, the deviatoric modulus and
the polar angle of the shear stiffness matrix being directly linked to them. Moreover, as
it clearly appears from the first expression of Eq.(26), when using the basic definition of
the laminate shear stiffness matrix, the ratio between the deviatoric part of the matrix
[H*], i.e. Ry+e??a* and the anisotropic term Ry 4«e2%14% of matrix [A*] is constant once
the material of the constitutive layer is chosen: such a ratio does not depend upon the
layers orientations and positions, rather it solely varies with the material properties of the
constitutive layer (i.e. when varying the polar parameters Ry, @1, R, ®).

As a conclusive remark of this section, it is noteworthy that since in almost all of
the real-life engineering applications the designers look for an uncoupled laminate (i.e.
[B*] = [O]), the total number of laminate parameters reduces from 12 to eight. In addi-
tion, by means of the polar formalism it is possible to further reduce the total number of

laminate parameters to be conceived: when using quasi-homogeneous laminates [19, 20],

13



i.e. laminates which satisfy the following properties ([C*] is the homogeneity matrix)

B = [0] 7

(27)
€] = [AT]-[D] = [O] ,

the total number of laminate polar parameters reduces from eight to four. The only
quantities to be conceived are the anisotropic polar moduli and the related polar angles
of the laminate membrane stiffness matrix (or the bending one since they are identical),
namely Rga«, Ri4+, Poa+, P14+ and this result generally applies even when stating the
laminate design problem in the framework of the FSDT (and not only within that of the
CLT).

4 Elastic symmetries of the laminate: the Polar Approach in
the framework of the FSDT

In this Section the problem of designing the elastic symmetries of a laminate will be briefly
recalled. As described by Vannucci in [18], such a problem can be stated as an uncon-
strained minimisation problem in the space of the laminate polar parameters. However,
the classical formulation presented in [18| (later modified and extended to the case of lami-
nates with variable number of plies in [8, 19]), which currently relies on the use of the CLT
hypotheses, will be here extended to the theoretical framework of the FSDT.

Before introducing the unified formulation for the design problem of the elastic sym-
metries of a laminate it is opportune to make some comments about all the possible elastic
symmetries of the stiffness matrices describing the behaviour of the laminate in the context
of the FSDT. In particular, as in the case of the CLT, the membrane, membrane/bending
coupling and bending stiffness matrices can show one among the four different elastic
symmetries of a fourth-rank elasticity-like tensor, as described in Section 2 (i.e. ordinary
orthotropy, Rp-orthotropy, square symmetry and isotropy).

Concerning the laminate out-of-plane shear stiffness matrix (since its components be-
have like those of a second-rank symmetric tensor) it can be characterised only by a unique
symmetry: the isotropy (when the deviatoric polar modulus of this matrix is null). In any
other case this matrix is always orthotropic. However, as stated in the previous Section, the
polar parameters of such a matrix, depending on the considered formulation, can always
be obtained as a linear combination of the polar parameters of matrices [A*] and [D*]. As
a consequence, the elastic symmetries of matrix [H*] closely depend upon those of [A*] and
[D*]. After a quick glance to Eq. (26) and according to the considered formulation for the
laminate shear stiffness matrix (basic or modified) the following remarks about the elastic

symmetries of [H*] can be deduced.
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1. In the case of the basic formulation, matrix [H*] is isotropic if and only if the laminate

membrane stiffness matrix [A*] shows a square symmetric behaviour, i.e.:

Ry« =04 Ry =0. (28)

2. In the case of the modified formulation, a sufficient condition for obtaining the
isotropy of the laminate out-of-plane shear stiffness matrix is that both matrices
[A*] and [D*] must be characterised by a square elastic symmetry. Conversely, if [H*|
is isotropic the laminate membrane and bending stiffness matrices are not necessarily

characterised by a square-symmetric behaviour:

RlA*:R1D*=0=>RH*:O s

(29)
but Ry« =0 Rig» = Rip- =0

3. If the laminate has the same elastic response in membrane and bending, i.e. [A*] =
[D*], when using the enriched formulation for [H*], the previous condition becomes

also a necessary condition. In other words the following two-way relationship applies:

if [C*] =[O] then Ry« =0 Ry = Rip-=0. (30)

Let us introduce now the problem of designing the laminate elastic behaviour. Such
a problem consists in finding at least one-stacking sequence meeting the desired set of
elastic symmetries for the laminate (e.g. membrane/bending uncoupling, membrane or-
thotropy, bending isotropy, etc.). When using the polar formalism and when considering
the theoretical framework of the FSDT such a problem can be stated as an unconstrained

minimisation problem as follows:

min ¥ (81,...,0,) = {£}" [W] {f} , (31)

01,...,0n

where ¥ is the overall objective function expressing the desired laminate behaviour and dj,
is the k-th layer orientation (k = 1,...n). {f} is the vector of the partial objective functions
(each one linked to a particular elastic symmetry of the laminate) while [W] is a positive
semi-definite diagonal matrix of weights whose terms can be equal to either zero or one
(depending on the considered combination of elastic symmetries). The components of the

vector {f} as well as the related physical meaning are listed here below:

B*
o fj = ||||[[ Q]]|||| represents the membrane/bending uncoupling condition;
_ el ; tion:
o fr = Tl represents the homogeneity condition;
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fs = Poa- = i}’i* — Ka with K 4« = 0,1 represents the ordinary orthotropy condi-

tion for [A*];

_ Roa+
0

_ Ry g+

1

P R 4o +4R% 4.
6 =
v/ R% + 4R?

¢, — Pop- — P1p- — Kp-
-

fy representing the Rp-orthotropy condition for [A*];

f5 representing the square symmetry condition for [A*];

representing the isotropy condition for [A*];

with Kp+ = 0,1 represents the ordinary orthotropy con-

/4
dition for [D*];
_ Rop- : i .
fs = I representing the Ry-orthotropy condition for [D*];
0
Ry

D" representing the square symmetry condition for [D*];

fo =
9 2

Ry + 412,

fig =
0T R AR?

Pop+ — P 4+
fi1 = % represents the coincidence of the main orhtotropy axes in the
T

case of the square symmetry for both membrane and bending stiffness matrices;

representing the isotropy condition for [D*];

P px — D1 px
fio = % represents the coincidence of the main orhtotropy axes in the
™

case of the ordinary orhtotropy or Rp-orthotropy for both membrane and bending

stiffness matrices;

fi3 = g " representing the isotropy condition for [H*];
Ro - — Ro- . , _
fia = oA oA represents a condition on the value of the first anisotropic modu-
0A*

lus for [A*] which can be used in the cases of ordinary orthotropy or square symmetry

(but not in the cases of both Ry-orthotropy and isotropy);

R * ﬁ *
fis = A - AT representing a condition on the value of the second anisotropic

*

modulus for [A*] which can be used in the cases of ordinary orthotropy or Rg-
orthotropy (but not in the cases of both square symmetry and isotropy);
¢1A* - ¢1A*

/4
main orthotropy axis for [A*] which can be used in the cases of ordinary orthotropy

fi¢ = representing a condition on the value of the orientation of the

or Rp-orthotropy (but not in the cases of both square symmetry and isotropy);
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Poar — Do
/4
main orthotropy axis for [A*] which can be used in the case of square symmetry (but

o 17 = representing a condition on the value of the orientation of the

not in the cases of ordinary orthotropy, Rp-orthotropy and isotropy);

Rop+ — Rop- " o
o fig = —opr Dt represents a condition on the value of the first anisotropic modu-

0D*
lus for [D*] which can be used in the cases of ordinary orthotropy or square symmetry

(but not in the cases of both Ry-orthotropy and isotropy);

o f1g = Sipr D represents a condition on the value of the second anisotropic mod-

1D*
ulus for [D*] which can be used in the cases of ordinary orthotropy or Rgp-orthotropy

(but not in the cases of both square symmetry and isotropy);
P1p- — Pip-

/4
main orthotropy axis for [D*] which can be used in the cases of ordinary orthotropy

o fop = representing a condition on the value of the orientation of the

or Rp-orthotropy (but not in the cases of both square symmetry and isotropy);

o £, — Pop-— %op-
21 /4
main orthotropy axis for [D*] which can be used in the case of square symmetry (but

representing a condition on the value of the orientation of the

not in the cases of ordinary orthotropy, Rp-orthotropy and isotropy).

It can be noticed that all of the components of the vector {f} are expressed in terms of the
polar parameters of the laminate stiffness matrices and that they have been normalised with
the corresponding counterparts of the ply stiffness matrices, i.e. [Q] and [(:)] Moreover,
the expression of the matrix norm used for the first two partial functions is that proposed

by Kandil and Verchery [24]:

11QU | = /T3 + 272 + B3 + 4R}, (32)

an analogous relationship applies for matrices [B*] and [C*]. Of course, the terms belonging
to the diagonal of the weight matrix [W] cannot be all different from zero at the same time:
for instance it is not possible to have a laminate which is simultaneously orthotropic and
isotropic in membrane, or a laminate which is quasi-homogeneous orthotropic in membrane
and isotropic in bending (indeed if the laminate is quasi-homogeneous it is characterised
by the same elastic behaviour in membrane and bending), etc. Therefore a particular care
must be taken in tuning the terms of the weight matrix.

As a conclusive remark it is noteworthy that the objective function ¥ is a dimensionless,
positive semi-definite convex function in the space of laminate polar parameters, since it is
defined as a sum of convex functions, see Eq. (31). Nevertheless, such a function is highly

non-convex in the space of plies orientation angles because the laminate polar parameters
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depend upon circular functions of these angles, see Eqs. (22)-(25). Finally, one of the
advantages of such a formulation consists in the fact that the absolute minima of ¥ are
known a priori since they are the zeroes of this function. For more details about the nature

of this problem the reader is addressed to |8, 19].

5 Studied cases and results

In this Section some meaningful numerical examples concerning the problem of designing
the laminate elastic behaviour will be illustrated in order to numerically check the validity of
the analytical results for the elastic symmetries of the laminate out-of-plane shear stiffness
matrix presented in Eqs. (28)-(30). Moreover, such examples will also show on one hand
the effectiveness of using the polar approach in the framework of the FSDT, while on the
other hand it will be (numerically) proved the existence of some non-conventional stacking
sequences satisfying a given set of elastic requirements imposed on the homogenised stiffness
matrices of the laminate, i.e. [A*], [B*], [D*] and [H*]. In particular, in the following
subsections the problem of designing the laminate elastic symmetries is formulated and

solved in the following cases:

e an uncoupled laminate with square symmetric membrane and isotropic out-of-plane

shear behaviours (basic formulation);

e an uncoupled laminate with an isotropic out-of-plane shear behaviour (modified for-

mulation);

e a quasi-homogeneous laminate with square symmetric membrane-bending and isotropic

out-of-plane shear behaviours (modified formulation).

Since the elastic behaviour of the laminate depends upon the elastic properties of the
constitutive lamina, the results must refer to a given material. In the case of the numerical
examples illustrated in this Section a transverse isotropic unidirectional carbon/epoxy ply
has been chosen, whose material properties are listed in Table 1. In addition the number
of layers n composing the laminated plate was fixed equal to 16.

Due to the nature of the optimisation problem of Eq. (31), i.e. a highly non-convex
unconstrained minimisation problem in the space of the layers orientations, the new version
of the genetic algorithm BIANCA [12, 19, 25] has been employed to find a solution. In
this case, each individual has a genotype composed of n chromosomes, i.e. one for each
ply, characterised by a single gene coding the layer orientation. It must be pointed out
that the orientation angle of each lamina can get all the values in the range [—89°,90°]
with a discretisation step of 1°. Such a discretisation step has been chosen in order to
prove that laminates with given elastic properties can be easily obtained by abandoning

the well-known conventional rules for tailoring the laminate stack (e.g. symmetric-balanced
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stacks) which extremely shrink the search space for the problem at hand. Therefore, the
true advantages in using non-conventional staking sequences are at least two: on one hand
when using such a discretisation step for the plies orientations it is possible to explore the
overall design space of problem (31), while on the other hand the polar-genetic approach
leads to find very general stacks (nor symmetric neither balanced) that fully meet the
elastic properties with a fewer number of plies (hence lighter) than the standard ones. For
more details about these aspects the reader is addressed to [8, 19].

Finally, regarding the value of the genetic parameters for the GA BIANCA, used to
solve the unconstrained minimisation problem (31), they are listed in Table 2. For more
details on the numerical techniques developed within the new version of BIANCA and the
meaning of the values of the different parameters tuning the GA the reader is addressed
to [19, 25].

5.1 Case 1: uncoupled laminate with square symmetric membrane and
isotropic out-of-plane shear behaviours (basic formulation)

Concerning the mathematical formulation of the constitutive law, the basic formulation has
been employed in this example for expressing the out-of-plane shear stiffness matrix of the
laminate. The aim of this first case is to design an uncoupled laminate showing a square
symmetric membrane stiffness matrix. Therefore, by imposing this kind of symmetry on
matrix [A*] the designer can automatically obtain an isotropic out-of-plane shear stiffness
matrix, as a consequence of Eq. (28). Equivalently, when using the basic formulation for
matrix [H*], by imposing the isotropy condition on this matrix the elastic requirement on
the square symmetry of the laminate membrane stiffness matrix is fully met. In this case,
the expression of the overall objective function ¥ of Eq. (31) is composed only by the sum

of two quadratic functions and it can be obtained in two different but equivalent ways:

e as the sum of the square of functions f; and f5 by setting W13 = W55 = 1 and
Wi =0, (i =2,..,21 with i #5), i.e.

v (ffelf) () o

e as the sum of the square of functions f; and fi3 by setting W13 = Wis13 = 1 and
Wi =0, (i =2,...,21 with i # 13), i.e.

v=ntent = (hght) () o

Table 3 shows two examples of laminate stacking sequences satisfying the criteria of

Egs. (33)-(34). The residual in the last column is the value of the objective function ¥ for
each solution (recall that exact solutions correspond to zeros of the objective function). As

in each numerical technique the “true” solution always lies within a small numerical interval
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of tolerance in the neighbourhood of the exact one: this tolerance is exactly the residual.
A discussion on the importance of the numerical residual in this type of problems can be
found in [18]. It can be noticed that the optimal stacking sequences are really general: they
are nor symmetric neither balanced and they fully meet the elastic symmetry requirements
imposed on the laminate through Eq. (33) or (34) with only 16 plies.

Table 4 lists the value of the laminate polar parameters for the best stacking sequence
(solution n. 1) of Table 3, while Fig. 1 illustrates the related polar diagrams of both
the first component for matrices [A*], [B*] and [D*] and those of [H*] (when using the
basic formulation). One can notice that, according to the theoretical result of Eq. (28), the
laminate is characterised both by a square symmetric membrane stiffness behaviour (whose
main orthotropic axis is oriented at —18°, see Table 3) and by an isotropic out-of-plane
shear elastic response. In addition the laminate is practically uncoupled (B*,, reduces
to a small point in the centre of the plot) while it is completely anisotropic in bending
because no elastic requirements have been imposed on [D*]. It is noteworthy that such
results have been found with very general stacks composed of a few number of plies: it is
really difficult (if not impossible) to obtain the same laminate mechanical response with
standard multilayer plates, i.e. plates characterised by a symmetric, balanced lay-up.

As a final remark, Fig. 2 shows the variation of the value of the objective function of
the best solution (of Table 3) along generations for problem (31) for this first case. One
can easily see that the optimum solution has been found only after 160 generations. Since
the problem is highly non-convex, at the end of the genetic calculation it is possible to find
within the population not only the best solution but also some fitting quasi-optimal solution
like the solution n.2 illustrated in Table 3: the presence of such solutions (whereof solution
n.2 is only an example among others composing the final population) can be effectively
exploited by the designer which wants to deeply investigate their mechanical response with

respect to different design criteria (e.g. buckling, natural frequencies, etc.).

5.2 Case 2: uncoupled laminate with an isotropic out-of-plane shear
behaviour (modified shear matrix)

For this second case, concerning the laminate constitutive law, the enriched formulation
has been considered to express the matrix [H*]. Here, the goal is to design an uncoupled
laminate with an isotropic out-of-plane shear elastic response. Therefore, due to the theo-
retical result of Eq. (29), the laminate will not necessarily be characterised by any special
elastic symmetry for both membrane and bending behaviours.

In this case, the expression of the overall objective function ¥ of Eq. (31) is composed

only of the sum of two quadratic functions and it can be easily obtained by setting Wy; =
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W1313 =1 and Wu = O, (’l = 2, ,21 with ¢ 75 ].3)

-t (Y ()

Two examples of laminate stacking sequences satisfying the criteria of Eq. (35) are listed

in Table 3. Table 5 lists the value of the laminate polar parameters for the best stacking
sequence (solution n. 1) of Table 3, while Fig. 3 illustrates the related polar diagrams for
matrices [A*], [B*], [D*] and [H*] (when using the modified formulation). One can notice
that, according to the theoretical result of Eq. (29), the laminate is characterised only by
an isotropic out-of-plane shear elastic response. In this case the laminate is uncoupled
(B*,» reduces to a small point in the centre of the plot) while it is completely anisotropic
in both membrane and bending because, when using the modified form of matrix [H*],
an isotropic out-of-plane shear behaviour does not necessarily imply a square symmetric
behaviours for matrices [A*] and [D*].

Finally, Fig. 4 shows the variation of the value of the objective function for the best
solution (of Table 3) along generations for problem (31) for this second case. It can be
noticed that the optimum solution has been found after 185 generations. For the rest, the

considerations already done for case 1 can be repeated here.

5.3 Case 3: quasi-homogeneous laminate with square symmetric membrane-
bending and isotropic out-of-plane shear behaviours (modified shear
matrix)

Even in this last case the modified formulation has been employed to express the out-of-
plane shear stiffness matrix of the laminate. The aim of this example is the design of
a quasi-homogeneous laminate with a fully square symmetric elastic behaviour (both in
extension and bending) and with the main axis of symmetry (for [A*] and [D*] ) oriented
at @A* = @%D* = 0°. Moreover, due to the theoretical result of Eq. (30), when the
laminate is homogeneous and characterised by a square symmetric elastic response it will
also show an isotropic out-of-plane shear behaviour.

In this case, the expression of the overall objective function ¥ of Eq. (31) can be
obtained by setting W11 = Way = W5 = Wi717 = 1 and Wy; =0, (i = 3,...,21 with i #
5,17):

Cerenieep o (BN, (O, (Ria )2, (Poar — Boa
w_f1+f2+f5+f”_<H[Q]H>+<H[Q]H>+<R1>+< </ >'(36)

Two examples of laminate stacking sequences satisfying the criteria of Eq. (36) are
listed in Table 3: also in this case the optimal stacks are very general stacks. Table 6 lists
the value of the laminate polar parameters for the best stacking sequence (solution n. 1) of

Table 3, while Fig. 5 illustrates the related polar diagrams for matrices [A*], [B*], [D*] and
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[H*]. One can notice that, according to the theoretical result of Eq. (30), the laminate is
characterised both by a full square symmetric elastic response (matrices [A*] and [D*]) and
by an isotropic out-of-plane shear behaviour. Moreover the laminate is quasi-homogeneous,
i.e. uncoupled and with the same homogenised membrane and bending behaviour. Finally,
the main axis of symmetry for both matrices [A*] and [D*] is oriented at 0°.

As a final remark of this section, Fig. 6 shows the variation of the value of the objective
function for the best solution (of Table 3) along generations for problem (31) for this last
case: the optimum solution has been found after about 125 generations. For the rest, the

considerations already done for cases 1 and 2 can be repeated here.

6 Conclusions

In this work the Verchery’s polar method for representing plane tensors has been extended
and employed within the conceptual framework of the First-order Shear Deformation The-

ory of laminates. The following major results were analytically derived.

1. The number of independent tensor invariants characterising the mechanical response
of the laminate remains unchanged when passing from the context of the CLT to
that of the FSDT.

2. The elastic symmetries of the laminate out-of-plane shear stiffness matrix depend
upon those of membrane and bending stiffness matrices: in particular, depending
on the considered formulation, the isotropic behaviour of the laminate shear stiffness
matrix is closely related to the square symmetric behaviour of the membrane stiffness
matrix (basic formulation) or to the square symmetry of both bending and membrane

elastic response (modified formulation).

3. The unified formulation of the problem of designing the laminate elastic symmetries

has been modified and extended to the context of the FSDT.

To the best of the author’s knowledge, this is the first time that a mathematical for-
mulation based upon tensor invariants (namely the polar method) has been applied to the
conceptual framework of the FSDT. The mechanical response of the laminated plate is
represented by means of the polar formalism that offers several advantages: a) the polar
invariants are directly linked to the tensor elastic symmetries, b) the polar method allows
for eliminating from the procedure redundant mechanical properties and c) it lets to easily
express the change of reference frame.

The effectiveness of the proposed approach has been proved both analytically and nu-
merically by means of some novel and meaningful numerical examples. The numerical

results presented in this works shows that when the well-known hypothesis and rules for
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tailoring laminates are abandoned (i.e. by using symmetric, balanced stacks and by con-
sidering a small set of layer orientations shrunk to the values 0°, 45° and 90°) it is possible
to design laminates with enhanced elastic and (more generally) mechanical responses, very
difficult (if not impossible) to be obtained otherwise.

Finally, it is opinion of the author that the polar-genetic approach can be extended
also to the theoretical framework of more accurate theories such as the Third-order Shear
Deformation Theory or even higher order theories coupled with equivalent single layer

kinematic models: research is ongoing on this topics.

Appendix A Determination of the polar parameters of ma-
trix [H*]

Since the components of matrix [H*] behave like those of a second-rank symmetric tensor,
its polar representation (expressed within the laminate global frame I'!), according to

Eq. (4), writes:

H*,, + H*
Ty —
Ry-ei2%m+  — WHH*W ’

Depending on the considered formulation for expressing matrix [H*], its Cartesian compo-

nents can be written in terms of those of the lamina out-of-plane stiffness matrix [Q] as:

% 52 Qi (01) (basic) |
3 Z (3n? — dk)QZ] (0x) (modified)

Let us consider the expression of the isotropic modulus T+ of Eq. (A. 1). By injecting the
expression of H*;, and H*,, given by Eq. (A. 2) we have:

% 3 [Quo(00) + Qe (1) (basic) |
k=1

i3 Xi: (3n® — dy) [Qqq(ak) + Qn«(&c)} (modified)

In order to obtain the expression of the isotropic modulus T+ in terms of the polar
parameters of the out-of-plane shear stiffness matrix of the lamina, it suffices to inject
the expression of Qqq(ék) and Q,,(0;) given by Eq. (20). After some standard algebraic
passages and by considering the following equality

n

> (B0 —di) = 2n* (A. 4)

k=1
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one can write the following expression:

1 n
o >2T=T (basic) ,
k=1
Tp+ = (A.5)

1 n
5 2, (30" = di)2T = 2T (modified)

Let us now consider the expression of the deviatoric part Rp«e?®H* of the laminate
shear stiffness matrix given by Eq. (A. 1). By injecting the expression of H*;,, H*,, and

H*,, given by Eq. (A. 2) we have:

L ki [Qqq(m s Q@) , 15 ¢ M] bosic)
Ry-ei2%m- = R R
% i (3n? — dy,) [Qqq(ék) ; Qrr(O%) + qur(ék)] (modified)
k=1

(A. 6)

Consider now the polar expression of Qqq(5k), Q,+ (%) and QqT(ék) given by Eq. (20). By

injecting these relations in Eq. (A. 6) one obtains:

1 n
- > [Rcos2 (P + ;) +iRsin2 (P + d0y)] (basic) )
Rpy-e?2%m = . i ) N .
52(311 —d)[Rcos2(P+ 6) +iRsin2 (P + 0)] (modified)
k=1

(A.7)

In order to derive the final form of the deviatoric part of matrix [H*] it suffices to apply

the following equality to Eq (A. 7):
cos(a+ B) + isin(a 4 8) = @8 = ¢logh (A.8)

When applying the previous equality to Eq. (A. 7) we obtain:

1 . no.

— Rei2? 37 120k (basic) ,

mReiM5 S (3n% — di,)e?  (modified)
k=1

Appendix B The link between the polar parameters of [H|
and those of [A*] and [D*]

In order to analytically derive the link between the deviatoric part of matrix [H*] and

the second anisotropic polar modulus R; and the related polar angle @; of matrices [A*]
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n

. n .
and [D*], let us consider the expression of the quantities Y e2% and 3 (3n% — dy)e2%
k=1 k=1
appearing in Eq. (A. 9). These quantities actually depend upon the polar parameters of

the membrane and bending stiffness matrices of the laminate. A quick glance to Egs. (22)

and (24) suffices to determine their expression. Indeed, from Eq. (22) we have:

n 1201 4
Zei%’“ = anA*f.EQ - = anA* ! 2(Prax— 1) (B. 1)
e Ryei2®1 R, ’
while from Eq. (24) we obtain:
noo 3 1261 e R .
i2s, _ N Rip-e _ 3 1UD* io(dy e — )
kz_ldke = R, o2 =n i e“\h1p . (B. 2)

n .

The expression of quantity > (3n% — d)e!?** can be obtained by combining Egs. (B. 1)
k=1

and (B. 2) as follows:

n

n n
Z(3n2_dk)ei25k — 3n226125k _deei25k — 3713 R]_A* ei2(@1A* — 1) _n3 R]_ D* ei2(@1D* —P1) .
k=1 k=1 k=1 F Fa

(B. 3)

Finally, by substituting Egs. (B. 1) and (B. 3) into Eq. (A. 9) (and after some standard

passages) we can obtained the desired result:

2 Rei2%p, A" i2(P1px—P1) RlA*_ea(qﬁlA*ers—dsl) 7
1 Ry
Ry-e2®u+ = %Reim 303 Rig- o 2(Brax—B1) _ n3R1D* e 2(P1px—P1) | —
n s 1 Ry
_ R_ea(qﬁ—qﬁl) (3R1A*ei2d§1A* _ Rlp*eiMlD*)
\ 1

(B. 4)

References

[1] R. M. Jones. Mechanics of composite materials. McGraw-Hill, 1975.
[2] S. W. Tsai and T. Hahn. Introduction to composite materials. Technomic, 1980.

[3] G. Verchery. Les invariants des tenseurs d’ordre 4 du type de 'élasticité. VIllard-de-
Lans, (France), 1979. Proc. of colloque Euromech 115.

[4] P. Vannucci. Plane anisotropy by the polar method. Meccanica, 40:437-454, 2005.
[5] P. Vannucci. On special orthotropy of paper. Journal of Elasticity, 99:75-83, 2010.

[6] P. Vannucci. A note on the elastic and geometric bounds for composite laminates.
Journal of Elasticity, 112:199-215, 2013.

25



7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Catapano, B. Desmorat, and P. Vannucci. Invariant formulation of phenomenolog-
ical failure criteria for orthotropic sheets and optimisation of their strength. Mathe-
matical Methods in the Applied Sciences, 35(15):1842-1858, 2012.

M. Montemurro, A. Vincenti, and P. Vannucci. Design of elastic properties of laminates

with minimum number of plies. Mechanics of Composite Materials, 48:369-390, 2012.

G. V. Kolosov. On an Application of Complex Function Theory to a Plane Problem
of the Mathematical Theory of Elasticity. Yuriev, Russia, 1909.

A. Green and W. Zerna. Theoretical Elasticity. Clarendon Press, Oxford, UK, 1954.

M. Montemurro, A. Vincenti, and P. Vannucci. A two-level procedure for the global
optimum design of composite modular structures - application to the design of an
aircraft wing. Part 1: theoretical formulation. Journal of Optimization Theory and
Applications, 155(1):1-23, 2012.

M. Montemurro, A. Vincenti, and P. Vannucci. A two-level procedure for the global
optimum design of composite modular structures - application to the design of an
aircraft wing. Part 2: numerical aspects and examples. Journal of Optimization Theory
and Applications, 155(1):24-53, 2012.

M. Montemurro, Y. Koutsawa, S. Belouettar, A. Vincenti, and P. Vannucci. Design
of damping properties of hybrid laminates through a global optimisation strategy.
Composite Structures, 94:3309-3320, 2012.

M. Montemurro, A. Vincenti, Y. Koutsawa, and P. Vannucci. A two-level pro-
cedure for the global optimization of the damping behavior of composite lami-
nated plates with elastomer patches. Journal of Vibration and Control, page DOI:
10.1177/1077546313503358, 2013.

A. Catapano and M. Montemurro. A multi-scale approach for the optimum design
of sandwich plates with honeycomb core. Part I: homogenisation of core properties.
Composite Structures, 118:664-676, 2014.

A. Catapano and M. Montemurro. A multi-scale approach for the optimum design of
sandwich plates with honeycomb core. Part II: the optimisation strategy. Composite
Structures, 118:677-690, 2014.

A. Catapano, B. Desmorat, and P. Vannucci. Stiffness and strenght optimization of
the anisotropy distribution for laminated structures. Journal of Optimization Theory
and Applications, pages DOI: 10.1007/s10957-014-0693-5, 2014.

26



[18]

[19]

[20]

21]

22]

23]

[24]

[25]

P. Vannucci. Designing the elastic properties of laminates as an optimisation problem:
a unified approach based on polar tensor invariants. Structural and Multidisciplinary
Optimisation, 31(5):378-387, 2006.

M. Montemurro. Optimal design of advanced engineering modular systems through a
new genetic approach. PhD thesis, UPMC, Paris VI, France, 2012. http://tel.archives-
ouvertes.fr/tel-00955533.

P. Vannucci and G. Verchery. Stiffness design of laminates using the polar method.
International Journal of Solids and Structures, 38(50):9281-9294, 2001.

P. Pedersen. On optimal orientation of orthotropic material. Structural Optimization,
1:101-106, 1989.

S. Forte. Classi di simmetria in elasticita piana. Florence, (Italy), 2005. Proceedings
of the 17th AIMETA Congress.

J. N. Reddy. Mechanics of composite laminated plates and shells: theory and analysis.
(second edition) CRC Press, Boca Raton, FL, 2003.

N. Kandil and G. Verchery. New methods of design for stacking sequences of laminates.
pages 243-257, Southampton, 1988. Proc. of CADCOMPS88, - Computer Aided Design

in Composite Materials.

M. Montemurro, A. Vincenti, and P. Vannucci. The automatic dynamic penalisation
method (ADP) for handling constraints with genetic algorithms. Computer Methods
in Applied Mechanics and Engineering, 256:70-87, 2013.

27



Tables

Technical constants | Polar parameters of [Q] | Polar parameters of [Q]

En 161000 MPa | Tp 23793.3868 MPa T  5095.4545 MPa
E> 9000 MPa T 21917.8249 MPa R 1004.5454 MPa

Gi2 6100 MPa Ro  17693.3868 MPa ® 90 deg

V12 0.26 Ry 19072.0711 MPa
V23 0.1 Py 0 deg
[ 0 deg

Density and thickness

p 1.58 x 1076 Kg/mm?3
tply 0.125 mm

Table 1: Material properties of the carbon-epoxy lamina.

Genetic parameters

Npop 1

Ning 500

Ngen 500

Dcross 0.85

Pmut 1/A]Vind
Selection | roulette-wheel
Elitism active

Table 2: Genetic parameters of the GA BIANCA for problem (31).

Case N. | Solution N. | Stacking sequence | n | Residual
1 1 [64/-36/63/-72/4/-5/-5/81/-36/62/-13/85/40/-53 /-13/70] 16 | 4.5742 x 10~7
‘ 2 ‘ [15/-89/-24/-63/8/62/60/-81/-13/-60/5/18/85/73 /-52/6] ‘ 16 ‘ 2.5810 x 106
2 1 [-9/55/62/-21/47/-37/86/-57/52/-53/-2/37/-28/60/-14/64] 16 | 2.5693 x 1076
‘ 2 ‘ [7/-33/-76/-25/83/64/-35/84/33/18/37/-71/-27/-10/-28/89] | 16 ‘ 6.8820 x 105
3 ‘ 1 ‘ [73/6/-58/26/-19/88/-29/89/-62/7/41/76/7/70/-6/-60] ‘ 16 ‘ 5.0327 x 1076
2 [87/-51/-1/55/23/-2/-12/-T4/61/78 /-66/7/-69/-30/70/12] 16 | 2.3628 x 105

Table 3: Numerical results of problem (31) for cases 1, 2 and 3.
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In plane elastic behaviour

Polar parameters | [A*] | [B*] | [D*]

To |[MPa] 23793.3868 | O 23793.3868
T [MPa] 21917.8249 | O 21917.8249
Ry [MPal 7089.4990 28.2753 | 8714.2147
R; [MPa] 0.3627 13.2899 | 3313.7496
By [deg] -18 N.D. 25

@, [deg] N.D. N.D. 7

Out-of-plane elastic behaviour

Polar parameters | [H*] (basic form)

T [MPa] 5095.4545
R [MPa] 0.0191
& [deg] N.D.

Table 4: Laminate polar parameters for the best stacking sequence of case 1 (N.D.=not
defined, i.e. meaningless for the considered combination of laminate elastic symmetries).

In plane elastic behaviour

Polar parameters | [A*] | [B*] | [D*]

To [MPa] 23793.3868 | O 23793.3868
T1 [MPa] 21917.8249 | O 21917.8249
Ro [MPa] 8389.0299 69.9780 | 12660.3816
R [MPa) 1760.0603 19.9785 | 5266.3785
@y [deg] -30 ND. | -2

@, [deg] 31 N.D. 31

Out-of-plane elastic behaviour

Polar parameters | [H*] (modified form)

T [MPa] 10190.909
R [MPa) 0.7772
@ [deg] N.D.

Table 5: Laminate polar parameters for the best stacking sequence of case 2 (N.D.=not
defined, i.e. meaningless for the considered combination of laminate elastic symmetries).

In plane elastic behaviour

Polar parameters | [A*] | [B*] | [D*]

To [MPa] 23793.3868 | 0 23793.3868
T [MPa] 21917.8249 | O 21917.8249
Ry [MPa) 4200.7794 61.0565 | 4211.5750
R; [MPa] 23.3058 22.6314 | 49.0406
Do [deg] 0 N.D. 0

®; [deg] N.D. N.D. N.D.

Out-of-plane elastic behaviour

Polar parameters | [H*] (modified form)

T [MPa] 10190.909
R [MPa] 1.2434
& [deg] N.D.

Table 6: Laminate polar parameters for the best stacking sequence of case 3 (N.D.=not
defined, i.e. meaningless for the considered combination of laminate elastic symmetries).
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Figure 1: a)First component of the laminate membrane, membrane /bending coupling and bending
stiffness matrices and b) the three components of the laminate out-of-plane shear stiffness matrix,
best solution of case 1.
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Figure 2: Best values of the objective function along generations, case 1.
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Figure 3: a)First component of the laminate membrane, membrane/bending coupling and bending
stiffness matrices and b) the three components of the laminate out-of-plane shear stiffness matrix,
best solution of case 2.
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Figure 4: Best values of the objective function along generations, case 2.
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Figure 5: a)First component of the laminate membrane, membrane /bending coupling and bending
stiffness matrices and b) the three components of the laminate out-of-plane shear stiffness matrix,
best solution of case 3.
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Figure 6: Best values of the objective function along generations, case 3.
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