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Abstra
t

In this paper the Ver
hery's polar method is extended to the 
on
eptual framework

of the First-order Shear Deformation Theory (FSDT) of laminates. It will be proved

that the number of independent tensor invariants 
hara
terising the laminate 
onsti-

tutive behaviour remains un
hanged when passing from the 
ontext of the Classi
al

Laminate Theory (CLT) to that of the FSDT. Moreover, it will also be shown that,

depending on the 
onsidered formulation, the elasti
 symmetries of the laminate shear

sti�ness matrix depend upon those of membrane and bending sti�ness matri
es. As

a 
onsequen
e of these results a uni�ed formulation for the problem of designing the

laminate elasti
 symmetries in the 
ontext of the FSDT is proposed. The optimum

solutions are found within the framework of the polar-geneti
 approa
h, sin
e the ob-

je
tive fun
tion is written in terms of the laminate polar parameters, while a geneti


algorithm is used as a numeri
al tool for the solution sear
h. In order to support the

theoreti
al results, and also to prove the e�e
tiveness of the proposed approa
h, some

novel and meaningful numeri
al examples are dis
ussed in the paper.

Keywords:

Anisotropy; Polar method; Geneti
 Algorithms; Composite materials; Stru
tural design.

Notations

CLT, Classi
al Laminate Theory

FSDT, First-order Shear Deformation Theory

GA, Geneti
 Algorithm

Γ = {O;x1, x2, x3}, lo
al (or material) frame of the elementary ply

ΓI = {O;x, y, z = x3}, global frame of the laminate

θ, rotation angle

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6}, 
orresponden
e between tensor and Voigt's (ma-

trix) notation for the indexes of tensors (lo
al frame)

{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s}, 
orresponden
e between tensor and Voigt's (ma-

trix) notation for the indexes of tensors (global frame)

Zij , (i, j = 1, 2 or i, j = x, y), se
ond-rank plane tensor using tensor notation (lo
al and

global frame)

Lijkl, (i, j, k, l = 1, 2 or i, j, k, l = x, y), fourth-rank plane tensor using tensor notation

(lo
al and global frame)

Ui, (i = 1, ..., 7) parameters of Tsai and Pagano

[Q], 3× 3 in-plane redu
ed sti�ness matrix of the 
onstitutive lamina (Voigt's notation)
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[Q̂], 2×2 out-of-plane redu
ed sti�ness matrix of the 
onstitutive lamina (Voigt's notation)

T0, T1, R0, R1,Φ0,Φ1, polar parameters of a fourth-rank plane tensor (also used for the

lamina in-plane redu
ed sti�ness matrix [Q])

T,R,Φ, polar parameters of a se
ond-rank plane tensor (also used for the lamina out-of-

plane redu
ed sti�ness matrix [Q̂])

{N}, 3× 1 ve
tor of membrane for
es (per unit length), Voigt's notation

{M}, 3× 1 ve
tor of bending moments (per unit length), Voigt's notation

{F}, 2× 1 ve
tor of shear for
es (per unit length), Voigt's notation

{ε0}, 3× 1 ve
tor of in-plane strains of the laminate middle plane, Voigt's notation

{χ0}, 3× 1 ve
tor of 
urvatures of the laminate middle plane, Voigt's notation

{γ0}, 2× 1 ve
tor of the out-of-plane shear strains of the laminate middle plane, Voigt's

notation

[A], [B], [D], 3×3 matri
es of laminate membrane, membrane/bending 
oupling and bend-

ing sti�ness, respe
tively (Voigt's notation)

[A∗], [B∗], [D∗], 3 × 3 matri
es of laminate homogenised membrane, membrane/bending


oupling and bending sti�ness, respe
tively (Voigt's notation)

[H], 2× 2 matrix of laminate out-of-plane shear sti�ness, (Voigt's notation)

[H∗], 2×2 matrix of laminate homogenised out-of-plane shear sti�ness, (Voigt's notation)

[C∗], 3× 3 laminate homogeneity matrix

T0A∗ , T1A∗ , R0A∗ , R1A∗ ,Φ0A∗ ,Φ1A∗
, polar parameters of [A∗]

T0B∗ , T1B∗ , R0B∗ , R1B∗ ,Φ0B∗ ,Φ1B∗
, polar parameters of [B∗]

T0D∗ , T1D∗ , R0D∗ , R1D∗ ,Φ0D∗ ,Φ1D∗
, polar parameters of [D∗]

TH∗ , RH∗ ,ΦH∗
, polar parameters of [H∗]

Ei, (i = 1, 2, 3), Young's moduli of the 
onstitutive lamina (material frame)

Gij , (i, j = 1, 2, 3), shear moduli of the 
onstitutive lamina (material frame)

νij , (i, j = 1, 2, 3), Poisson's ratios of the 
onstitutive lamina (material frame)

tply, thi
kness of the 
onstitutive lamina
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n, number of layers

{δk} (k = 1, ..., n), ve
tor of the layers orientation angles

h, overall thi
kness of the laminate

Ψ , overall obje
tive fun
tion for the problem of designing the elasti
 symmetries of the

laminate

{f}, 21× 1 ve
tor of partial obje
tive fun
tions

[W], 21× 21 positive semi-de�nite diagonal weight matrix

R̂0A∗ , R̂1A∗ , Φ̂0A∗ , Φ̂1A∗
imposed values for the polar parameters of matrix [A∗]

R̂0D∗ , R̂1D∗ , Φ̂0D∗ , Φ̂1D∗
imposed values for the polar parameters of matrix [D∗]

Npop, number of populations

Nind, number of individuals

Ngen, maximum number of generations

pcross, 
rossover probability

pmut, mutation probability

1 Introdu
tion

The problem of designing a 
omposite stru
ture is quite 
umbersome and 
an be 
onsidered

as a multi-s
ale design problem. The 
omplexity of the design pro
ess is a
tually due to

two intrinsi
 properties of 
omposite materials, i.e. the heterogeneity and the anisotropy.

Although the heterogeneity gets involved mainly at the mi
ro-s
ale (i.e. the s
ale of 
on-

stitutive �phases�, namely �bres and matrix), 
onversely the anisotropy intervenes at both

meso-s
ale (that of the 
onstitutive lamina) and ma
ro-s
ale (that of the laminate). It is

well known that the material properties (and more generally the me
hani
al response) of

an anisotropi
 
ontinuum depend upon the dire
tion. A 
onsequen
e of anisotropy 
on-

sists in the fa
t that the me
hani
al response of the material depends upon a 
onsiderable

number of parameters (i.e. 21 for a general tri
lini
 material, 13 for the mono
lini
 
ase,

nine for the orthotropi
 one, �ve for the transverse isotropi
 
ase and two for an isotropi


material).

Normally the Cartesian representation of tensors is employed to des
ribe the behaviour

of an anisotropi
 material in terms of Young's moduli, shear moduli, Poisson's ratios,

Chentsov's ratios and mutual in�uen
e ratios, see [1℄. While on one hand the Cartesian

representation seems to be the �most natural� representation to des
ribe the anisotropy, on
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the other hand it shows a major drawba
k: the above material parameters depend upon

the 
oordinate system 
hosen for 
hara
terising the me
hani
al response of the 
ontinuum.

As a 
onsequen
e, the anisotropy of the material is des
ribed by a set of parameters whi
h

are not (tensor) invariant quantities and that represent the response of the material only

in a parti
ular frame and not in a general one.

Several alternative analyti
al representations 
an be found in literature. Some of them

rely on the use of tensor invariants whi
h allow for des
ribing the me
hani
al behaviour of

an anisotropi
 
ontinuum through intrinsi
 material quantities. Of 
ourse, su
h representa-

tions do not imply a redu
tion in the number of parameters needed to fully 
hara
terise the

material behaviour. Nevertheless, sin
e these intrinsi
 material quantities are tensor invari-

ants on one hand they allow to des
ribe the me
hani
al response of the material regardless

to the 
onsidered referen
e frame and on the other hand they let to better highlight some

physi
al aspe
ts that 
annot be easily 
aught when using the Cartesian representation.

In the framework of the design of 
omposite materials several analyti
al representations

of (plane) anisotropy were developed in the past and among them the most 
ommonly

employed is that introdu
ed by Tsai and Pagano [2℄. In the 
ontext of this approa
h

they introdu
e seven parameters Ui, (i = 1, ..., 7) whi
h are expressed in terms of the six

independent Cartesian 
omponents of a fourth-rank elasti
ity-like plane tensor (i.e. a tensor

having both major and minor symmetries) written in the lo
al frame Γ = {O;x1, x2, x3}:

U1 =
3L1111 + 2L1122 + 3L2222 + 4L1212

8
,

U2 =
L1111 − L2222

2
,

U3 =
L1111 − 2L1122 + L2222 − 4L1212

8
,

U4 =
L1111 + 6L1122 + L2222 − 4L1212

8
,

U5 =
L1111 − 2L1122 + L2222 + 4L1212

8
,

U6 =
L1112 + L1222

2
,

U7 =
L1112 − L1222

2
.

(1)

The main drawba
ks of this representation are basi
ally three: �rstly not all parameters Ui

are tensor invariants, se
ondly they do not have a simple and immediate physi
al meaning

and, �nally, they are not all independent. Indeed, U5 
an be expressed in terms of U1 and

U4 as:

U5 =
(U1 − U4)

2
. (2)
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In 1979 Ver
hery [3℄ introdu
ed the polar method for representing fourth-rank elasti
ity-

like plane tensors. This representation has been enri
hed and deeply studied later by

Vannu

i and his 
o-workers [4�8℄. The polar method relies upon a 
omplex variable

transformation by taking inspiration from a 
lassi
al te
hnique often employed in analyti
al

me
hani
s, see for instan
e the works of Kolosov [9℄ and Green and Zerna [10℄. As it will be

brie�y des
ribed in Se
. 2, the main advantages of the polar formalism are at least three:

a) it is a representation of anisotropy whi
h is based on tensor invariants, b) su
h invariants

have an immediate physi
al meaning whi
h is linked to the di�erent (elasti
) symmetries

of the tensor and 
) the 
hange of referen
e frame 
an be expressed in a straightforward

way.

Con
erning the problem of the design of a 
omposite stru
ture, the polar method has

been applied, up to now, only in the framework of the Classi
al Laminate Theory (CLT) for

di�erent real-life engineering appli
ations, see [11�17℄. Nevertheless, the results obtained

by using the polar method in the 
ontext of the CLT are not su�
iently a

urate for

those appli
ations involving moderately thi
k (or thi
k) 
omposite parts. To over
ome

this di�
ulty, in this work the polar method is extended and applied (for the �rst time)

for representing the 
lassi
 laminate sti�ness matri
es in the framework of the First-order

Shear Deformation Theory (FSDT). In parti
ular, depending on the assumed mathemati
al

formulation for the out-of-plane shear sti�ness matrix of the laminate, the expressions of its

polar parameters will be analyti
ally derived. A

ordingly, the uni�ed formulation for the

problem of designing the laminate elasti
 symmetries, initially introdu
ed by Vannu

i [18℄

in the 
ontext of the CLT, has been modi�ed and extended to the 
ase of the FSDT. This

problem is formulated as an un
onstrained minimisation problem in the spa
e of the full

set of the laminate polar parameters (membrane, bending, membrane/bending 
oupling

and shear). Due to its parti
ular nature (i.e. a high non-
onvex optimisation problem

in the spa
e of the layers orientation angles), the solution sear
h pro
ess is performed by

using the last version of the geneti
 algorithm (GA) BIANCA [11, 12, 19℄. Finally, in order

to numeri
ally prove and support the major analyti
al results found in this work, some

meaningful and non-
onventional examples are presented.

The paper is organised as follows: Se
tion 2 re
alls the fundamentals of the polar

formalism and the related advantages. In Se
tion 3 the polar method is applied in the

framework of the FSDT, by highlighting the major analyti
al results. Se
tion 4 presents the

mathemati
al formulation of the problem of designing the elasti
 symmetries of a laminate

as an optimisation problem and the generalisation of this formulation when 
onsidering the

laminate behaviour in the 
ontext of the FSDT. Se
tion 5 shows some numeri
al results

in order to prove the e�e
tiveness of the polar formalism when it is applied to the FSDT.

Finally Se
tion 6 ends the paper with some 
on
luding remarks.
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2 Fundamentals of the Polar Method

In this se
tion the main results of the Polar Method introdu
ed by Ver
hery in 1979 [3℄ are

brie�y re
alled. The polar method is substantially a mathemati
al te
hnique that allows

for expressing any n-rank plane tensor through a set of tensor invariants. As a 
onsequen
e,

su
h a representation 
an be applied not only to elasti
ity-like tensors but also to any other

asymmetri
 plane tensor, see for instan
e [20℄. Mainly inspired by the work of Green and

Zerna [10℄, Ver
hery makes use of a (very 
lassi
al) mathemati
al te
hnique based upon

a 
omplex variable transformation in order to easily represent the a�ne transformation

(in this 
ase a rotation) of a plane tensor after a 
hange of referen
e frame. For a deeper

insight in the matter the reader is addressed to [4℄.

In the framework of the polar formalism a se
ond-rank (symmetri
) tensor Zij, (i, j =

1, 2), within the lo
al frame Γ, 
an be stated as:

Z11 = T + R cos 2Φ ,
Z12 = R sin 2Φ ,
Z22 = T − R cos 2Φ ,

(3)

where T is the isotropi
 modulus, R the deviatori
 one and Φ the polar angle. From Eq. (3)

it 
an be noti
ed that the three independent Cartesian 
omponents of a se
ond-rank plane

symmetri
 tensor are expressed in terms of three polar parameters: among them only two

are tensor invariants, i.e. T and R, while the last one, namely the polar angle Φ, is needed

to �x the referen
e frame. The 
onverse relations (giving the polar parameters in terms of

Cartesian 
omponents) are:

T =
Z11 + Z22

2
,

Rei2Φ =
Z11 − Z22

2
+ iZ12 ,

(4)

where i =
√
−1 is the imaginary unit. For a se
ond-rank plane tensor the only possible

symmetry is the isotropy whi
h 
an be obtained when the deviatori
 modulus of the tensor

is null, i.e. R = 0. Moreover, as stated in the introdu
tion, when using the polar formal-

ism the 
omponents of the se
ond-rank tensor 
an be expressed in a very straightforward

manner in the frame ΓI
(turned 
ounter-
lo
k wise by an angle θ around the x3 axis) as

follows:

Zxx = T + R cos 2(Φ − θ) ,
Zxy = R sin 2(Φ − θ) ,
Zyy = T − R cos 2(Φ − θ) .

(5)

Indeed the 
hange of frame 
an be easily obtained by simply subtra
ting the angle θ from

the polar angle Φ.
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Con
erning a fourth-rank elasti
ity-like plane tensor Lijkl, (i, j, k, l = 1, 2) (expressed

within the lo
al frame Γ), its polar representation writes:

L1111 = T0 + 2T1 + R0 cos 4Φ0 + 4R1 cos 2Φ1 ,
L1122 = − T0 + 2T1 − R0 cos 4Φ0 ,
L1112 = R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L2222 = T0 + 2T1 + R0 cos 4Φ0 − 4R1 cos 2Φ1 ,
L2212 = − R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L1212 = T0 − R0 cos 4Φ0 .

(6)

As it 
learly appears from Eq. (6) the six independent Cartesian 
omponents of Lijkl are

expressed in terms of six polar parameters: T0 and T1 are the isotropi
 moduli, R0 and

R1 are the anisotropi
 ones, while Φ0 and Φ1 are the polar angles. Only �ve quantities

are tensor invariants, namely the polar moduli T0, T1, R0, R1 together with the angular

di�eren
e Φ0 −Φ1. One of the two polar angles, Φ0 or Φ1, 
an be arbitrarily 
hosen to �x

the referen
e frame. The 
onverse relations 
an be stated as:

8T0 = L1111 − 2L1122 + 4L1212 + L2222 ,

8T1 = L1111 + 2L1122 + L2222 ,

8R0e
i4Φ0 = L1111 − 2L1122 − 4L1212 + L2222 + 4i(L1112 − L2212) ,

8R1e
i2Φ1 = L1111 − L2222 + 2i(L1112 + L2212) .

(7)

On
e again, thanks to the polar formalism it is very easy to express the Cartesian 
ompo-

nents of the fourth-rank tensor in the frame ΓI
, in fa
t it su�
e to subtra
t the angle θ

from the polar angles Φ0 and Φ1 as follows:

Lxxxx = T0 + 2T1 + R0 cos 4(Φ0 − θ) + 4R1 cos 2(Φ1 − θ) ,
Lxxyy = − T0 + 2T1 − R0 cos 4(Φ0 − θ) ,
Lxxxy = R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lyyyy = T0 + 2T1 + R0 cos 4(Φ0 − θ) − 4R1 cos 2(Φ1 − θ) ,
Lyyxy = − R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lxyxy = T0 − R0 cos 4(Φ0 − θ) .

(8)

In the 
ase of a fourth-rank elasti
ity-like tensor the real plus-value of the polar method is

in the fa
t that the polar invariants are dire
tly linked to the (elasti
) symmetries of the

tensor, thus having an immediate physi
al meaning. Indeed the polar formalism o�ers an

algebrai
 
hara
terization of the elasti
 symmetries, whi
h 
an be seen as an alternative

to the 
lassi
al geometri
al approa
h to the problem of �nding the elasti
 symmetries of a

material. In parti
ular it 
an be proved that for a fourth-rank elasti
ity-like plane tensor

four di�erent types of elasti
 symmetry exist. They are brie�y re
alled in the following.

• Ordinary orthotropy : this symmetry 
orresponds to the algebrai
 
ondition

Φ0 − Φ1 = K
π

4
, K = 0, 1 . (9)
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Indeed, for the same set of tensor invariants, i.e. T0, T1, R0, R1, two di�erent

shapes of orthotropy exist, depending on the value of K. Vannu

i [4℄ shows that

they 
orrespond to the so-
alled low (K = 0) and high (K = 1) shear modulus

orthotropi
 materials �rstly studied by Pedersen [21℄. However, this 
lassi�
ation is

rather limiting sin
e the di�eren
e between these two 
lasses of orhtotropy 
on
erns,

more generally, the global me
hani
al response of the material, see [4, 7℄.

• R0−Orthotropy : the algebrai
 
ondition to attain this �spe
ial� orthotropy is

R0 = 0 . (10)

In this 
ase the Cartesian 
omponents of the fourth-rank tensor Lijkl 
hange (as a

result of a frame rotation) as those of a se
ond-rank tensor, see Eqs. (3),(6). The

existen
e of this parti
ular orthotropy has been found also for the 3D 
ase [22℄.

• Square symmetry : it 
an be obtained by imposing the following 
ondition

R1 = 0 . (11)

This symmetry represents the 2D 
ase of the well-known 3D 
ubi
 syngony.

• Isotropy : the fourth-rank elasti
ity-like tensor is isotropi
 when its anisotropi
 moduli

are null, i.e. when the following 
ondition is satis�ed

R0 = R1 = 0 . (12)

3 Appli
ation of the Polar Formalism to the First-order Shear

Deformation Theory of laminates

For sake of simpli
ity in this se
tion all of the equations governing the laminate me
hani
al

response will be formulated in the 
ontext of the Voigt's (matrix) notation. The passage

from tensor notation to Voigt's notation 
an be easily expressed by the following two-way

relationships among indexes (for both lo
al and global frames):

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6} ,

{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s} .
(13)

Let us 
onsider a multilayer plate 
omposed of n identi
al layers (i.e. layers having

same material properties and thi
kness). Let be δk the orientation angle of the k-th ply

(k = 1, ..., n), tply the thi
kness of the elementary lamina and h = ntply the overall thi
kness

of the plate. In the framework of the FSDT theory [23℄ the 
onstitutive law of the laminated

plate (expressed within the global frame of the laminate ΓI
) 
an be stated as:





{N}
{M}



 =




[A] [B]

[B] [D]







{ε0}
{χ0}



 , (14)
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{F} = [H] {γ0} , (15)

where [A], [B] and [D] are the membrane, membrane/bending 
oupling and bending sti�-

ness matri
es of the laminate, while [H] is the out-of-plane shear sti�ness matrix. {N},
{M} and {F} are the ve
tors of membrane for
es, bending moments and shear for
es per

unit length, respe
tively, whilst {ε0}, {χ0} and {γ0} are the ve
tors of in-plane strains,


urvatures and out-of-plane shear strains of the laminate middle plane, respe
tively. The

expressions of matri
es [A], [B] and [D] are:

[A] =
h

n

n∑
k=1

[Q (δk)] ,

[B] =
1

2

(
h

n

)2 n∑
k=1

bk [Q (δk)] ,

[D] =
1

12

(
h

n

)3 n∑
k=1

dk [Q (δk)] ,

(16)

with

bk = 2k − n− 1 ,
n∑

k=1

bk = 0 ,

dk = 12k (k − n− 1) + 4 + 3n (n+ 2) ,
n∑

k=1

dk = n3 .
(17)

It 
an be noti
ed that in Eq. (16) [Q(δk)] is the in-plane redu
ed sti�ness matrix of the

k-th ply. Con
erning Eq. (15), in literature one 
an �nd di�erent expressions for the out-

of-plane shear sti�ness matrix of the laminate [H]. In the following it will be 
onsidered

two di�erent representations for this matrix, namely:

[H] =





h

n

n∑
k=1

[Q̂(δk)] (basic) ,

5h

12n3

n∑
k=1

(3n2 − dk)[Q̂(δk)] (modified) .

(18)

In Eq. (18) [Q̂(δk)] is the out-of-plane shear sti�ness matrix of the elementary ply. The

�rst form of the matrix [H] is the basi
 one wherein the shear stresses are 
onstant through

the thi
kness of ea
h lamina. However, as widely dis
ussed in [1, 23℄ this approximation

is not a

urate at least for three reasons: a) a 
onstant out-of-plane shear stress �eld

does not satisfy the lo
al equilibrium equations of ea
h lamina, b) the shear stresses are

dis
ontinuous at the layers interfa
es and 
) the out-of-plane shear stresses must be null on

both top and bottom surfa
es of the laminated plate if no tangential for
es are applied. To

these purposes several modi�
ations of the expression of [H] have been proposed by many

resear
hers in order to take into a

ount the previous aspe
ts, see [23℄. In parti
ular, the

se
ond form of matrix [H] shown in Eq. (18) takes into a

ount on one side the paraboli


variation of the shear stresses through the thi
kness of ea
h lamina (whi
h satis�es the
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lo
al equilibrium) and on the other side the fa
t that su
h stresses have to vanish on both

top and bottom fa
es of the plate. However, this modi�ed form of [H] does not take into

a

ount the 
ontinuity of the shear stresses at the interfa
es of the plies. For a deeper

insight on su
h aspe
ts the reader is addressed to [23℄.

It 
an be noti
ed that, when passing from the lamina material frame Γ to the laminate

global frame ΓI
, the terms of the matrix [Q(δk)] behave like those of a fourth-rank elasti
ity-

like tensor, while the 
omponents of [Q̂(δk)] behave like those of a se
ond-rank symmetri


tensor, see [4, 19℄. Therefore [Q(δk)] and [Q̂(δk)] 
an be expressed (within the laminate

global frame) by means of the polar formalism as follows:

Qxx = T0 + 2T1 + R0 cos 4(Φ0 + δk) + 4R1 cos 2(Φ1 + δk) ,
Qxy = − T0 + 2T1 − R0 cos 4(Φ0 + δk) ,
Qxs = R0 sin 4(Φ0 + δk) + 2R1 sin 2(Φ1 + δk) ,
Qyy = T0 + 2T1 + R0 cos 4(Φ0 + δk) − 4R1 cos 2(Φ1 + δk) ,
Qys = − R0 sin 4(Φ0 + δk) + 2R1 sin 2(Φ1 + δk) ,
Qss = T0 − R0 cos 4(Φ0 + δk) ,

(19)

and

Q̂qq = T + R cos 2(Φ + δk) ,

Q̂qr = R sin 2(Φ + δk) ,

Q̂rr = T − R cos 2(Φ + δk) .

(20)

To be remarked that in the previous equations it is the material frame of the k-th lamina

(and not the global one) whi
h is turned 
ounter-
lo
k wise by an angle δk around the x3

axis. In Eqs. (19) and (20) T0, T1, R0, R1, Φ0 and Φ1 are the polar parameters of the

in-plane redu
ed sti�ness tensor of the lamina, while T , R, and Φ are those of the redu
ed

out-of-plane sti�ness tensor: all of these parameters solely depend upon the ply material

properties (e.g. if the ply is orthotropi
 the polar parameters of [Q(δk)] depend upon E1,

E2, G12 and ν12, while those of [Q̂(δk)] depend upon G23 and G13).

In order to better analyse and understand the me
hani
al response of the laminate it

is useful to homogenise the units of the matri
es [A], [B], [D] and [H] to those of the ply

redu
ed sti�ness matri
es as follows:

[A∗] =
1

h
[A] ,

[B∗] =
2

h2
[B] ,

[D∗] =
12

h3
[D] ,

[H∗] =





1

h
[H] (basic) ,

12

5h
[H] (modified) .

(21)
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In the framework of the polar formalism it is possible to express also matri
es [A∗],

[B∗], [D∗] and [H∗] in terms of their polar parameters. In parti
ular the homogenised mem-

brane, membrane/bending 
oupling and bending sti�ness matri
es behave like a fourth-

rank elasti
ity-like tensor while the homogenised shear matrix behaves like a se
ond-rank

symmetri
 tensor. Moreover, the polar parameters of these matri
es 
an be expressed

as fun
tions of the polar parameters of the lamina redu
ed sti�ness matri
es and of the

geometri
al properties of the sta
k (i.e. layer orientation and position). The polar repre-

sentation of [A∗], [B∗] and [D∗] is (see [19℄):

T0A∗ = T0 ,

T1A∗ = T1 ,

R0A∗ei4Φ0A∗ =
1

n
R0e

i4Φ0

n∑
k=1

ei4δk ,

R1A∗ei2Φ1A∗ =
1

n
R1e

i2Φ1

n∑
k=1

ei2δk ,

(22)

T0B∗ = 0 ,

T1B∗ = 0 ,

R0B∗ei4Φ0B∗ =
1

n2
R0e

i4Φ0

n∑
k=1

bke
i4δk ,

R1B∗ei2Φ1B∗ =
1

n2
R1e

i2Φ1

n∑
k=1

bke
i2δk ,

(23)

T0D∗ = T0 ,

T1D∗ = T1 ,

R0D∗ei4Φ0D∗ =
1

n3
R0e

i4Φ0

n∑
k=1

dke
i4δk ,

R1D∗ei2Φ1D∗ =
1

n3
R1e

i2Φ1

n∑
k=1

dke
i2δk ,

(24)

while that of matrix [H∗] (see Appendix A) 
an be stated as:

TH∗ =

{
T (basic) ,

2T (modified) ,

RH∗ei2ΦH∗ =





1

n
Rei2Φ

n∑
k=1

ei2δk (basic) ,

1

n3
Rei2Φ

n∑
k=1

(3n2 − dk)e
i2δk (modified) ,

(25)

From Eqs. (22)-(25) it seems that, at the ma
ro-s
ale, the laminate behaviour is gov-

erned by a set of 21 polar parameters: six for ea
h one of the matri
es [A∗], [B∗] and [D∗],

12



whilst three for the shear sti�ness matrix. In this set the isotropi
 moduli of [B∗] are null,

whilst those of [A∗], [D∗] and [H∗] are identi
al (or proportional) to the isotropi
 moduli

of the layer redu
ed sti�ness matri
es. The only polar parameters whi
h depend upon the

geometri
al properties of the sta
k (i.e. orientation angles and positions of the plies) are

the anisotropi
 moduli and polar angles of [A∗], [B∗] and [D∗] together with the deviatori


modulus and polar angle of [H∗] for an overall number of 14 polar parameters whi
h 
an

be designed (by a
ting on the geometri
 parameters of the sta
king sequen
e) in order to

a
hieve the desired me
hani
al response for the laminate at the ma
ro-s
ale. However, as

it is detailed in Appendix B, the deviatori
 modulus and the polar angle of matrix [H∗] 
an

be expressed (depending on the 
onsidered formulation for [H∗]) as a linear 
ombination

of the anisotropi
 polar modulus R1 and the related polar angle Φ1 of matri
es [A∗] and

[D∗] as follows:

RH∗ei2ΦH∗ =





R1A∗

R

R1
ei2(Φ1A∗+Φ−Φ1) (basic) ,

R

R1
ei2(Φ−Φ1)

(
3R1A∗ei2Φ1A∗ −R1D∗ei2Φ1D∗

)
(modified) .

(26)

Eq. (26) means that (when the material of the elementary ply is �xed a priori) the overall

me
hani
al response of the laminate depends only on the anisotropi
 polar moduli and the

related polar angles of matri
es [A∗], [B∗] and [D∗] even in the framework of the First-

order Shear Deformation Theory. In parti
ular the number of polar parameters to be

designed remains un
hanged when passing from the 
ontext of CLT to that of FSDT: the

designer 
an a
t (through a variation of geometri
 parameters su
h as layers orientations

and positions) only on the anisotropi
 polar moduli and polar angles of the membrane,

membrane/bending 
oupling and bending sti�ness matri
es, the deviatori
 modulus and

the polar angle of the shear sti�ness matrix being dire
tly linked to them. Moreover, as

it 
learly appears from the �rst expression of Eq.(26), when using the basi
 de�nition of

the laminate shear sti�ness matrix, the ratio between the deviatori
 part of the matrix

[H∗], i.e. RH∗ei2ΦH∗

, and the anisotropi
 term R1A∗ei2Φ1A∗

of matrix [A∗] is 
onstant on
e

the material of the 
onstitutive layer is 
hosen: su
h a ratio does not depend upon the

layers orientations and positions, rather it solely varies with the material properties of the


onstitutive layer (i.e. when varying the polar parameters R1, Φ1, R, Φ).

As a 
on
lusive remark of this se
tion, it is noteworthy that sin
e in almost all of

the real-life engineering appli
ations the designers look for an un
oupled laminate (i.e.

[B∗] = [O]), the total number of laminate parameters redu
es from 12 to eight. In addi-

tion, by means of the polar formalism it is possible to further redu
e the total number of

laminate parameters to be 
on
eived: when using quasi-homogeneous laminates [19, 20℄,

13



i.e. laminates whi
h satisfy the following properties ([C∗] is the homogeneity matrix)

[B∗] = [O] ,

[C∗] = [A∗]− [D∗] = [O] ,
(27)

the total number of laminate polar parameters redu
es from eight to four. The only

quantities to be 
on
eived are the anisotropi
 polar moduli and the related polar angles

of the laminate membrane sti�ness matrix (or the bending one sin
e they are identi
al),

namely R0A∗
, R1A∗

, Φ0A∗
, Φ1A∗

and this result generally applies even when stating the

laminate design problem in the framework of the FSDT (and not only within that of the

CLT).

4 Elasti
 symmetries of the laminate: the Polar Approa
h in

the framework of the FSDT

In this Se
tion the problem of designing the elasti
 symmetries of a laminate will be brie�y

re
alled. As des
ribed by Vannu

i in [18℄, su
h a problem 
an be stated as an un
on-

strained minimisation problem in the spa
e of the laminate polar parameters. However,

the 
lassi
al formulation presented in [18℄ (later modi�ed and extended to the 
ase of lami-

nates with variable number of plies in [8, 19℄), whi
h 
urrently relies on the use of the CLT

hypotheses, will be here extended to the theoreti
al framework of the FSDT.

Before introdu
ing the uni�ed formulation for the design problem of the elasti
 sym-

metries of a laminate it is opportune to make some 
omments about all the possible elasti


symmetries of the sti�ness matri
es des
ribing the behaviour of the laminate in the 
ontext

of the FSDT. In parti
ular, as in the 
ase of the CLT, the membrane, membrane/bending


oupling and bending sti�ness matri
es 
an show one among the four di�erent elasti


symmetries of a fourth-rank elasti
ity-like tensor, as des
ribed in Se
tion 2 (i.e. ordinary

orthotropy, R0-orthotropy, square symmetry and isotropy).

Con
erning the laminate out-of-plane shear sti�ness matrix (sin
e its 
omponents be-

have like those of a se
ond-rank symmetri
 tensor) it 
an be 
hara
terised only by a unique

symmetry: the isotropy (when the deviatori
 polar modulus of this matrix is null). In any

other 
ase this matrix is always orthotropi
. However, as stated in the previous Se
tion, the

polar parameters of su
h a matrix, depending on the 
onsidered formulation, 
an always

be obtained as a linear 
ombination of the polar parameters of matri
es [A∗] and [D∗]. As

a 
onsequen
e, the elasti
 symmetries of matrix [H∗] 
losely depend upon those of [A∗] and

[D∗]. After a qui
k glan
e to Eq. (26) and a

ording to the 
onsidered formulation for the

laminate shear sti�ness matrix (basi
 or modi�ed) the following remarks about the elasti


symmetries of [H∗] 
an be dedu
ed.
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1. In the 
ase of the basi
 formulation, matrix [H∗] is isotropi
 if and only if the laminate

membrane sti�ness matrix [A∗] shows a square symmetri
 behaviour, i.e.:

RH∗ = 0 ⇔ R1A∗ = 0 . (28)

2. In the 
ase of the modi�ed formulation, a su�
ient 
ondition for obtaining the

isotropy of the laminate out-of-plane shear sti�ness matrix is that both matri
es

[A∗] and [D∗] must be 
hara
terised by a square elasti
 symmetry. Conversely, if [H∗]

is isotropi
 the laminate membrane and bending sti�ness matri
es are not ne
essarily


hara
terised by a square-symmetri
 behaviour:

R1A∗ = R1D∗ = 0 ⇒ RH∗ = 0 ,

but RH∗ = 0 ; R1A∗ = R1D∗ = 0 .
(29)

3. If the laminate has the same elasti
 response in membrane and bending, i.e. [A∗] =

[D∗], when using the enri
hed formulation for [H∗], the previous 
ondition be
omes

also a ne
essary 
ondition. In other words the following two-way relationship applies:

if [C∗] = [O] then RH∗ = 0 ⇔ R1A∗ = R1D∗ = 0 . (30)

Let us introdu
e now the problem of designing the laminate elasti
 behaviour. Su
h

a problem 
onsists in �nding at least one-sta
king sequen
e meeting the desired set of

elasti
 symmetries for the laminate (e.g. membrane/bending un
oupling, membrane or-

thotropy, bending isotropy, et
.). When using the polar formalism and when 
onsidering

the theoreti
al framework of the FSDT su
h a problem 
an be stated as an un
onstrained

minimisation problem as follows:

min
δ1,...,δn

Ψ (δ1, ..., δn) = {f}T [W] {f} , (31)

where Ψ is the overall obje
tive fun
tion expressing the desired laminate behaviour and δk

is the k-th layer orientation (k = 1, ...n). {f} is the ve
tor of the partial obje
tive fun
tions
(ea
h one linked to a parti
ular elasti
 symmetry of the laminate) while [W ] is a positive

semi-de�nite diagonal matrix of weights whose terms 
an be equal to either zero or one

(depending on the 
onsidered 
ombination of elasti
 symmetries). The 
omponents of the

ve
tor {f} as well as the related physi
al meaning are listed here below:

• f1 =
‖ [B∗] ‖
‖ [Q] ‖ represents the membrane/bending un
oupling 
ondition;

• f2 =
‖ [C∗] ‖
‖ [Q] ‖ represents the homogeneity 
ondition;
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• f3 =
Φ0A∗ − Φ1A∗ −KA∗

π/4
with KA∗ = 0, 1 represents the ordinary orthotropy 
ondi-

tion for [A∗];

• f4 =
R0A∗

R0
representing the R0-orthotropy 
ondition for [A∗];

• f5 =
R1A∗

R1
representing the square symmetry 
ondition for [A∗];

• f6 =

√
R2

0A∗
+ 4R2

1A∗

√
R2

0 + 4R2
1

representing the isotropy 
ondition for [A∗];

• f7 =
Φ0D∗ − Φ1D∗ −KD∗

π/4
with KD∗ = 0, 1 represents the ordinary orthotropy 
on-

dition for [D∗];

• f8 =
R0D∗

R0
representing the R0-orthotropy 
ondition for [D∗];

• f9 =
R1D∗

R1
representing the square symmetry 
ondition for [D∗];

• f10 =

√
R2

0D∗ + 4R2
1D∗

√
R2

0 + 4R2
1

representing the isotropy 
ondition for [D∗];

• f11 =
Φ0D∗ −Φ0A∗

π/4
represents the 
oin
iden
e of the main orhtotropy axes in the


ase of the square symmetry for both membrane and bending sti�ness matri
es;

• f12 =
Φ1D∗ −Φ1A∗

π/4
represents the 
oin
iden
e of the main orhtotropy axes in the


ase of the ordinary orhtotropy or R0-orthotropy for both membrane and bending

sti�ness matri
es;

• f13 =
RH∗

R
representing the isotropy 
ondition for [H∗];

• f14 =
R0A∗ − R̂0A∗

R̂0A∗

represents a 
ondition on the value of the �rst anisotropi
 modu-

lus for [A∗] whi
h 
an be used in the 
ases of ordinary orthotropy or square symmetry

(but not in the 
ases of both R0-orthotropy and isotropy);

• f15 =
R1A∗ − R̂1A∗

R̂1A∗

representing a 
ondition on the value of the se
ond anisotropi


modulus for [A∗] whi
h 
an be used in the 
ases of ordinary orthotropy or R0-

orthotropy (but not in the 
ases of both square symmetry and isotropy);

• f16 =
Φ1A∗ − Φ̂1A∗

π/4
representing a 
ondition on the value of the orientation of the

main orthotropy axis for [A∗] whi
h 
an be used in the 
ases of ordinary orthotropy

or R0-orthotropy (but not in the 
ases of both square symmetry and isotropy);
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• f17 =
Φ0A∗ − Φ̂0A∗

π/4
representing a 
ondition on the value of the orientation of the

main orthotropy axis for [A∗] whi
h 
an be used in the 
ase of square symmetry (but

not in the 
ases of ordinary orthotropy, R0-orthotropy and isotropy);

• f18 =
R0D∗ − R̂0D∗

R̂0D∗

represents a 
ondition on the value of the �rst anisotropi
 modu-

lus for [D∗] whi
h 
an be used in the 
ases of ordinary orthotropy or square symmetry

(but not in the 
ases of both R0-orthotropy and isotropy);

• f19 =
R1D∗ − R̂1D∗

R̂1D∗

represents a 
ondition on the value of the se
ond anisotropi
 mod-

ulus for [D∗] whi
h 
an be used in the 
ases of ordinary orthotropy or R0-orthotropy

(but not in the 
ases of both square symmetry and isotropy);

• f20 =
Φ1D∗ − Φ̂1D∗

π/4
representing a 
ondition on the value of the orientation of the

main orthotropy axis for [D∗] whi
h 
an be used in the 
ases of ordinary orthotropy

or R0-orthotropy (but not in the 
ases of both square symmetry and isotropy);

• f21 =
Φ0D∗ − Φ̂0D∗

π/4
representing a 
ondition on the value of the orientation of the

main orthotropy axis for [D∗] whi
h 
an be used in the 
ase of square symmetry (but

not in the 
ases of ordinary orthotropy, R0-orthotropy and isotropy).

It 
an be noti
ed that all of the 
omponents of the ve
tor {f} are expressed in terms of the

polar parameters of the laminate sti�ness matri
es and that they have been normalised with

the 
orresponding 
ounterparts of the ply sti�ness matri
es, i.e. [Q] and [Q̂]. Moreover,

the expression of the matrix norm used for the �rst two partial fun
tions is that proposed

by Kandil and Ver
hery [24℄:

‖ [Q] ‖ =
√

T 2
0 + 2T 2

1 +R2
0 + 4R2

1 , (32)

an analogous relationship applies for matri
es [B∗] and [C∗]. Of 
ourse, the terms belonging

to the diagonal of the weight matrix [W] 
annot be all di�erent from zero at the same time:

for instan
e it is not possible to have a laminate whi
h is simultaneously orthotropi
 and

isotropi
 in membrane, or a laminate whi
h is quasi-homogeneous orthotropi
 in membrane

and isotropi
 in bending (indeed if the laminate is quasi-homogeneous it is 
hara
terised

by the same elasti
 behaviour in membrane and bending), et
. Therefore a parti
ular 
are

must be taken in tuning the terms of the weight matrix.

As a 
on
lusive remark it is noteworthy that the obje
tive fun
tion Ψ is a dimensionless,

positive semi-de�nite 
onvex fun
tion in the spa
e of laminate polar parameters, sin
e it is

de�ned as a sum of 
onvex fun
tions, see Eq. (31). Nevertheless, su
h a fun
tion is highly

non-
onvex in the spa
e of plies orientation angles be
ause the laminate polar parameters
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depend upon 
ir
ular fun
tions of these angles, see Eqs. (22)-(25). Finally, one of the

advantages of su
h a formulation 
onsists in the fa
t that the absolute minima of Ψ are

known a priori sin
e they are the zeroes of this fun
tion. For more details about the nature

of this problem the reader is addressed to [8, 19℄.

5 Studied 
ases and results

In this Se
tion some meaningful numeri
al examples 
on
erning the problem of designing

the laminate elasti
 behaviour will be illustrated in order to numeri
ally 
he
k the validity of

the analyti
al results for the elasti
 symmetries of the laminate out-of-plane shear sti�ness

matrix presented in Eqs. (28)-(30). Moreover, su
h examples will also show on one hand

the e�e
tiveness of using the polar approa
h in the framework of the FSDT, while on the

other hand it will be (numeri
ally) proved the existen
e of some non-
onventional sta
king

sequen
es satisfying a given set of elasti
 requirements imposed on the homogenised sti�ness

matri
es of the laminate, i.e. [A∗], [B∗], [D∗] and [H∗]. In parti
ular, in the following

subse
tions the problem of designing the laminate elasti
 symmetries is formulated and

solved in the following 
ases:

• an un
oupled laminate with square symmetri
 membrane and isotropi
 out-of-plane

shear behaviours (basi
 formulation);

• an un
oupled laminate with an isotropi
 out-of-plane shear behaviour (modi�ed for-

mulation);

• a quasi-homogeneous laminate with square symmetri
 membrane-bending and isotropi


out-of-plane shear behaviours (modi�ed formulation).

Sin
e the elasti
 behaviour of the laminate depends upon the elasti
 properties of the


onstitutive lamina, the results must refer to a given material. In the 
ase of the numeri
al

examples illustrated in this Se
tion a transverse isotropi
 unidire
tional 
arbon/epoxy ply

has been 
hosen, whose material properties are listed in Table 1. In addition the number

of layers n 
omposing the laminated plate was �xed equal to 16.

Due to the nature of the optimisation problem of Eq. (31), i.e. a highly non-
onvex

un
onstrained minimisation problem in the spa
e of the layers orientations, the new version

of the geneti
 algorithm BIANCA [12, 19, 25℄ has been employed to �nd a solution. In

this 
ase, ea
h individual has a genotype 
omposed of n 
hromosomes, i.e. one for ea
h

ply, 
hara
terised by a single gene 
oding the layer orientation. It must be pointed out

that the orientation angle of ea
h lamina 
an get all the values in the range [−89◦, 90◦]

with a dis
retisation step of 1◦. Su
h a dis
retisation step has been 
hosen in order to

prove that laminates with given elasti
 properties 
an be easily obtained by abandoning

the well-known 
onventional rules for tailoring the laminate sta
k (e.g. symmetri
-balan
ed
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sta
ks) whi
h extremely shrink the sear
h spa
e for the problem at hand. Therefore, the

true advantages in using non-
onventional staking sequen
es are at least two: on one hand

when using su
h a dis
retisation step for the plies orientations it is possible to explore the

overall design spa
e of problem (31), while on the other hand the polar-geneti
 approa
h

leads to �nd very general sta
ks (nor symmetri
 neither balan
ed) that fully meet the

elasti
 properties with a fewer number of plies (hen
e lighter) than the standard ones. For

more details about these aspe
ts the reader is addressed to [8, 19℄.

Finally, regarding the value of the geneti
 parameters for the GA BIANCA, used to

solve the un
onstrained minimisation problem (31), they are listed in Table 2. For more

details on the numeri
al te
hniques developed within the new version of BIANCA and the

meaning of the values of the di�erent parameters tuning the GA the reader is addressed

to [19, 25℄.

5.1 Case 1: un
oupled laminate with square symmetri
 membrane and

isotropi
 out-of-plane shear behaviours (basi
 formulation)

Con
erning the mathemati
al formulation of the 
onstitutive law, the basi
 formulation has

been employed in this example for expressing the out-of-plane shear sti�ness matrix of the

laminate. The aim of this �rst 
ase is to design an un
oupled laminate showing a square

symmetri
 membrane sti�ness matrix. Therefore, by imposing this kind of symmetry on

matrix [A∗] the designer 
an automati
ally obtain an isotropi
 out-of-plane shear sti�ness

matrix, as a 
onsequen
e of Eq. (28). Equivalently, when using the basi
 formulation for

matrix [H∗], by imposing the isotropy 
ondition on this matrix the elasti
 requirement on

the square symmetry of the laminate membrane sti�ness matrix is fully met. In this 
ase,

the expression of the overall obje
tive fun
tion Ψ of Eq. (31) is 
omposed only by the sum

of two quadrati
 fun
tions and it 
an be obtained in two di�erent but equivalent ways:

• as the sum of the square of fun
tions f1 and f5 by setting W11 = W55 = 1 and

Wii = 0, (i = 2, ..., 21 with i 6= 5), i.e.

Ψ = f1
2 + f5

2 =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(
R1A∗

R1

)2

; (33)

• as the sum of the square of fun
tions f1 and f13 by setting W11 = W1313 = 1 and

Wii = 0, (i = 2, ..., 21 with i 6= 13), i.e.

Ψ = f1
2 + f13

2 =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(
RH∗

R

)2

. (34)

Table 3 shows two examples of laminate sta
king sequen
es satisfying the 
riteria of

Eqs. (33)-(34). The residual in the last 
olumn is the value of the obje
tive fun
tion Ψ for

ea
h solution (re
all that exa
t solutions 
orrespond to zeros of the obje
tive fun
tion). As

in ea
h numeri
al te
hnique the �true� solution always lies within a small numeri
al interval
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of toleran
e in the neighbourhood of the exa
t one: this toleran
e is exa
tly the residual.

A dis
ussion on the importan
e of the numeri
al residual in this type of problems 
an be

found in [18℄. It 
an be noti
ed that the optimal sta
king sequen
es are really general: they

are nor symmetri
 neither balan
ed and they fully meet the elasti
 symmetry requirements

imposed on the laminate through Eq. (33) or (34) with only 16 plies.

Table 4 lists the value of the laminate polar parameters for the best sta
king sequen
e

(solution n. 1) of Table 3, while Fig. 1 illustrates the related polar diagrams of both

the �rst 
omponent for matri
es [A∗], [B∗] and [D∗] and those of [H∗] (when using the

basi
 formulation). One 
an noti
e that, a

ording to the theoreti
al result of Eq. (28), the

laminate is 
hara
terised both by a square symmetri
 membrane sti�ness behaviour (whose

main orthotropi
 axis is oriented at −18◦, see Table 3) and by an isotropi
 out-of-plane

shear elasti
 response. In addition the laminate is pra
ti
ally un
oupled (B∗

xx redu
es

to a small point in the 
entre of the plot) while it is 
ompletely anisotropi
 in bending

be
ause no elasti
 requirements have been imposed on [D∗]. It is noteworthy that su
h

results have been found with very general sta
ks 
omposed of a few number of plies: it is

really di�
ult (if not impossible) to obtain the same laminate me
hani
al response with

standard multilayer plates, i.e. plates 
hara
terised by a symmetri
, balan
ed lay-up.

As a �nal remark, Fig. 2 shows the variation of the value of the obje
tive fun
tion of

the best solution (of Table 3) along generations for problem (31) for this �rst 
ase. One


an easily see that the optimum solution has been found only after 160 generations. Sin
e

the problem is highly non-
onvex, at the end of the geneti
 
al
ulation it is possible to �nd

within the population not only the best solution but also some �tting quasi-optimal solution

like the solution n.2 illustrated in Table 3: the presen
e of su
h solutions (whereof solution

n.2 is only an example among others 
omposing the �nal population) 
an be e�e
tively

exploited by the designer whi
h wants to deeply investigate their me
hani
al response with

respe
t to di�erent design 
riteria (e.g. bu
kling, natural frequen
ies, et
.).

5.2 Case 2: un
oupled laminate with an isotropi
 out-of-plane shear

behaviour (modi�ed shear matrix)

For this se
ond 
ase, 
on
erning the laminate 
onstitutive law, the enri
hed formulation

has been 
onsidered to express the matrix [H∗]. Here, the goal is to design an un
oupled

laminate with an isotropi
 out-of-plane shear elasti
 response. Therefore, due to the theo-

reti
al result of Eq. (29), the laminate will not ne
essarily be 
hara
terised by any spe
ial

elasti
 symmetry for both membrane and bending behaviours.

In this 
ase, the expression of the overall obje
tive fun
tion Ψ of Eq. (31) is 
omposed

only of the sum of two quadrati
 fun
tions and it 
an be easily obtained by setting W11 =
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W1313 = 1 and Wii = 0, (i = 2, ..., 21 with i 6= 13):

Ψ = f1
2 + f13

2 =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(
RH∗

R

)2

. (35)

Two examples of laminate sta
king sequen
es satisfying the 
riteria of Eq. (35) are listed

in Table 3. Table 5 lists the value of the laminate polar parameters for the best sta
king

sequen
e (solution n. 1) of Table 3, while Fig. 3 illustrates the related polar diagrams for

matri
es [A∗], [B∗], [D∗] and [H∗] (when using the modi�ed formulation). One 
an noti
e

that, a

ording to the theoreti
al result of Eq. (29), the laminate is 
hara
terised only by

an isotropi
 out-of-plane shear elasti
 response. In this 
ase the laminate is un
oupled

(B∗

xx redu
es to a small point in the 
entre of the plot) while it is 
ompletely anisotropi


in both membrane and bending be
ause, when using the modi�ed form of matrix [H∗],

an isotropi
 out-of-plane shear behaviour does not ne
essarily imply a square symmetri


behaviours for matri
es [A∗] and [D∗].

Finally, Fig. 4 shows the variation of the value of the obje
tive fun
tion for the best

solution (of Table 3) along generations for problem (31) for this se
ond 
ase. It 
an be

noti
ed that the optimum solution has been found after 185 generations. For the rest, the


onsiderations already done for 
ase 1 
an be repeated here.

5.3 Case 3: quasi-homogeneous laminate with square symmetri
 membrane-

bending and isotropi
 out-of-plane shear behaviours (modi�ed shear

matrix)

Even in this last 
ase the modi�ed formulation has been employed to express the out-of-

plane shear sti�ness matrix of the laminate. The aim of this example is the design of

a quasi-homogeneous laminate with a fully square symmetri
 elasti
 behaviour (both in

extension and bending) and with the main axis of symmetry (for [A∗] and [D∗] ) oriented

at Φ̂0A∗ = Φ̂0D∗ = 0◦. Moreover, due to the theoreti
al result of Eq. (30), when the

laminate is homogeneous and 
hara
terised by a square symmetri
 elasti
 response it will

also show an isotropi
 out-of-plane shear behaviour.

In this 
ase, the expression of the overall obje
tive fun
tion Ψ of Eq. (31) 
an be

obtained by setting W11 = W22 = W55 = W1717 = 1 and Wii = 0, (i = 3, ..., 21 with i 6=
5, 17):

Ψ = f1
2+f2

2+f5
2+f17

2 =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [C∗] ‖
‖ [Q] ‖

)2

+

(
R1A∗

R1

)2

+

(
Φ0A∗ − Φ̂0A∗

π/4

)2

. (36)

Two examples of laminate sta
king sequen
es satisfying the 
riteria of Eq. (36) are

listed in Table 3: also in this 
ase the optimal sta
ks are very general sta
ks. Table 6 lists

the value of the laminate polar parameters for the best sta
king sequen
e (solution n. 1) of

Table 3, while Fig. 5 illustrates the related polar diagrams for matri
es [A∗], [B∗], [D∗] and
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[H∗]. One 
an noti
e that, a

ording to the theoreti
al result of Eq. (30), the laminate is


hara
terised both by a full square symmetri
 elasti
 response (matri
es [A∗] and [D∗]) and

by an isotropi
 out-of-plane shear behaviour. Moreover the laminate is quasi-homogeneous,

i.e. un
oupled and with the same homogenised membrane and bending behaviour. Finally,

the main axis of symmetry for both matri
es [A∗] and [D∗] is oriented at 0◦.

As a �nal remark of this se
tion, Fig. 6 shows the variation of the value of the obje
tive

fun
tion for the best solution (of Table 3) along generations for problem (31) for this last


ase: the optimum solution has been found after about 125 generations. For the rest, the


onsiderations already done for 
ases 1 and 2 
an be repeated here.

6 Con
lusions

In this work the Ver
hery's polar method for representing plane tensors has been extended

and employed within the 
on
eptual framework of the First-order Shear Deformation The-

ory of laminates. The following major results were analyti
ally derived.

1. The number of independent tensor invariants 
hara
terising the me
hani
al response

of the laminate remains un
hanged when passing from the 
ontext of the CLT to

that of the FSDT.

2. The elasti
 symmetries of the laminate out-of-plane shear sti�ness matrix depend

upon those of membrane and bending sti�ness matri
es: in parti
ular, depending

on the 
onsidered formulation, the isotropi
 behaviour of the laminate shear sti�ness

matrix is 
losely related to the square symmetri
 behaviour of the membrane sti�ness

matrix (basi
 formulation) or to the square symmetry of both bending and membrane

elasti
 response (modi�ed formulation).

3. The uni�ed formulation of the problem of designing the laminate elasti
 symmetries

has been modi�ed and extended to the 
ontext of the FSDT.

To the best of the author's knowledge, this is the �rst time that a mathemati
al for-

mulation based upon tensor invariants (namely the polar method) has been applied to the


on
eptual framework of the FSDT. The me
hani
al response of the laminated plate is

represented by means of the polar formalism that o�ers several advantages: a) the polar

invariants are dire
tly linked to the tensor elasti
 symmetries, b) the polar method allows

for eliminating from the pro
edure redundant me
hani
al properties and 
) it lets to easily

express the 
hange of referen
e frame.

The e�e
tiveness of the proposed approa
h has been proved both analyti
ally and nu-

meri
ally by means of some novel and meaningful numeri
al examples. The numeri
al

results presented in this works shows that when the well-known hypothesis and rules for
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tailoring laminates are abandoned (i.e. by using symmetri
, balan
ed sta
ks and by 
on-

sidering a small set of layer orientations shrunk to the values 0◦, 45◦ and 90◦) it is possible

to design laminates with enhan
ed elasti
 and (more generally) me
hani
al responses, very

di�
ult (if not impossible) to be obtained otherwise.

Finally, it is opinion of the author that the polar-geneti
 approa
h 
an be extended

also to the theoreti
al framework of more a

urate theories su
h as the Third-order Shear

Deformation Theory or even higher order theories 
oupled with equivalent single layer

kinemati
 models: resear
h is ongoing on this topi
s.

Appendix A Determination of the polar parameters of ma-

trix [H∗]

Sin
e the 
omponents of matrix [H∗] behave like those of a se
ond-rank symmetri
 tensor,

its polar representation (expressed within the laminate global frame ΓI
), a

ording to

Eq. (4), writes:

TH∗ =
H∗

qq +H∗

rr

2
,

RH∗ei2ΦH∗ =
H∗

qq −H∗

rr

2
+ iH∗

qr .
(A. 1)

Depending on the 
onsidered formulation for expressing matrix [H∗], its Cartesian 
ompo-

nents 
an be written in terms of those of the lamina out-of-plane sti�ness matrix [Q̂] as:

H∗

ij =





1

n

n∑
k=1

Q̂ij(δk) (basic) ,

1

n3

n∑
k=1

(3n2 − dk)Q̂ij(δk) (modified) ,

(i, j = q, r) . (A. 2)

Let us 
onsider the expression of the isotropi
 modulus TH∗
of Eq. (A. 1). By inje
ting the

expression of H∗

qq and H∗

rr given by Eq. (A. 2) we have:

TH∗ =





1

2n

n∑
k=1

[
Q̂qq(δk) + Q̂rr(δk)

]
(basic) ,

1

2n3

n∑
k=1

(3n2 − dk)
[
Q̂qq(δk) + Q̂rr(δk)

]
(modified) .

(A. 3)

In order to obtain the expression of the isotropi
 modulus TH∗
in terms of the polar

parameters of the out-of-plane shear sti�ness matrix of the lamina, it su�
es to inje
t

the expression of Q̂qq(δk) and Q̂rr(δk) given by Eq. (20). After some standard algebrai


passages and by 
onsidering the following equality

n∑

k=1

(3n2 − dk) = 2n3 , (A. 4)
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one 
an write the following expression:

TH∗ =





1

2n

n∑
k=1

2T = T (basic) ,

1

2n3

n∑
k=1

(3n2 − dk)2T = 2T (modified) .
(A. 5)

Let us now 
onsider the expression of the deviatori
 part RH∗ei2ΦH∗

of the laminate

shear sti�ness matrix given by Eq. (A. 1). By inje
ting the expression of H∗

qq, H
∗

rr and

H∗

qr given by Eq. (A. 2) we have:

RH∗ei2ΦH∗ =





1

n

n∑
k=1

[
Q̂qq(δk)− Q̂rr(δk)

2
+ iQ̂qr(δk)

]
(basic) ,

1

n3

n∑
k=1

(3n2 − dk)

[
Q̂qq(δk)− Q̂rr(δk)

2
+ iQ̂qr(δk)

]
(modified) ,

(A. 6)

Consider now the polar expression of Q̂qq(δk), Q̂rr(δk) and Q̂qr(δk) given by Eq. (20). By

inje
ting these relations in Eq. (A. 6) one obtains:

RH∗ei2ΦH∗ =





1

n

n∑
k=1

[R cos 2 (Φ + δk) + iR sin 2 (Φ + δk)] (basic) ,

1

n3

n∑
k=1

(3n2 − dk) [R cos 2 (Φ + δk) + iR sin 2 (Φ + δk)] (modified) ,

(A. 7)

In order to derive the �nal form of the deviatori
 part of matrix [H∗] it su�
es to apply

the following equality to Eq (A. 7):

cos(α+ β) + i sin(α+ β) = ei(α+β) = eiαeiβ . (A. 8)

When applying the previous equality to Eq. (A. 7) we obtain:

RH∗ei2ΦH∗ =





1

n
Rei2Φ

n∑
k=1

ei2δk (basic) ,

1

n3
Rei2Φ

n∑
k=1

(3n2 − dk)e
i2δk (modified) .

(A. 9)

Appendix B The link between the polar parameters of [H∗]
and those of [A∗] and [D∗]

In order to analyti
ally derive the link between the deviatori
 part of matrix [H∗] and

the se
ond anisotropi
 polar modulus R1 and the related polar angle Φ1 of matri
es [A∗]
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and [D∗], let us 
onsider the expression of the quantities

n∑
k=1

ei2δk and

n∑
k=1

(3n2 − dk)e
i2δk

appearing in Eq. (A. 9). These quantities a
tually depend upon the polar parameters of

the membrane and bending sti�ness matri
es of the laminate. A qui
k glan
e to Eqs. (22)

and (24) su�
es to determine their expression. Indeed, from Eq. (22) we have:

n∑

k=1

ei2δk =
nR1A∗ei2Φ1A∗

R1ei2Φ1
= n

R1A∗

R1
ei2(Φ1A∗−Φ1) , (B. 1)

while from Eq. (24) we obtain:

n∑

k=1

dke
i2δk =

n3R1D∗ei2Φ1D∗

R1ei2Φ1
= n3R1D∗

R1
ei2(Φ1D∗−Φ1) . (B. 2)

The expression of quantity

n∑
k=1

(3n2 − dk)e
i2δk


an be obtained by 
ombining Eqs. (B. 1)

and (B. 2) as follows:

n∑

k=1

(3n2−dk)e
i2δk = 3n2

n∑

k=1

ei2δk−
n∑

k=1

dke
i2δk = 3n3R1A∗

R1
ei2(Φ1A∗−Φ1)−n3R1D∗

R1
ei2(Φ1D∗−Φ1) .

(B. 3)

Finally, by substituting Eqs. (B. 1) and (B. 3) into Eq. (A. 9) (and after some standard

passages) we 
an obtained the desired result:

RH∗ei2ΦH∗ =





1

n
Rei2Φn

R1A∗

R1
ei2(Φ1A∗−Φ1) = R1A∗

R

R1
ei2(Φ1A∗+Φ−Φ1) ,

1

n3
Rei2Φ

[
3n3R1A∗

R1
ei2(Φ1A∗−Φ1) − n3R1D∗

R1
ei2(Φ1D∗−Φ1)

]
=

=
R

R1
ei2(Φ−Φ1)

(
3R1A∗ei2Φ1A∗ −R1D∗ei2Φ1D∗

)
.

(B. 4)
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Tables

Te
hni
al 
onstants Polar parameters of [Q] Polar parameters of [Q̂]

E1 161000 MPa T0 23793.3868 MPa T 5095.4545 MPa

E2 9000 MPa T1 21917.8249 MPa R 1004.5454 MPa

G12 6100 MPa R0 17693.3868 MPa Φ 90 deg

ν12 0.26 R1 19072.0711 MPa

ν23 0.1 Φ0 0 deg

Φ1 0 deg

Density and thi
kness

ρ 1.58× 10−6
Kg/mm

3

tply 0.125 mm

Table 1: Material properties of the 
arbon-epoxy lamina.

Geneti
 parameters

Npop 1
Nind 500
Ngen 500
pcross 0.85
pmut 1/Nind

Sele
tion roulette-wheel

Elitism a
tive

Table 2: Geneti
 parameters of the GA BIANCA for problem (31).

Case N. Solution N. Sta
king sequen
e n Residual

1 1 [64/-36/63/-72/4/-5/-5/81/-36/62/-13/85/40/-53/-13/70℄ 16 4.5742 × 10−7

2 [15/-89/-24/-63/8/62/60/-81/-13/-60/5/18/85/73/-52/6℄ 16 2.5810 × 10−6

2 1 [-9/55/62/-21/47/-37/86/-57/52/-53/-2/37/-28/60/-14/64℄ 16 2.5693 × 10−6

2 [7/-33/-76/-25/83/64/-35/84/33/18/37/-71/-27/-10/-28/89℄ 16 6.8820 × 10−5

3 1 [73/6/-58/26/-19/88/-29/89/-62/7/41/76/7/70/-6/-60℄ 16 5.0327 × 10−6

2 [87/-51/-1/55/23/-2/-12/-74/61/78/-66/7/-69/-30/70/12℄ 16 2.3628 × 10−5

Table 3: Numeri
al results of problem (31) for 
ases 1, 2 and 3.
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In plane elasti
 behaviour

Polar parameters [A∗] [B∗] [D∗]

T0 [MPa℄ 23793.3868 0 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249
R0 [MPa℄ 7089.4990 28.2753 8714.2147
R1 [MPa℄ 0.3627 13.2899 3313.7496
Φ0 [deg℄ -18 N.D. -25

Φ1 [deg℄ N.D. N.D. 77

Out-of-plane elasti
 behaviour

Polar parameters [H∗] (basi
 form)

T [MPa℄ 5095.4545
R [MPa℄ 0.0191
Φ [deg℄ N.D.

Table 4: Laminate polar parameters for the best sta
king sequen
e of 
ase 1 (N.D.=not

de�ned, i.e. meaningless for the 
onsidered 
ombination of laminate elasti
 symmetries).

In plane elasti
 behaviour

Polar parameters [A∗] [B∗] [D∗]

T0 [MPa℄ 23793.3868 0 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249
R0 [MPa℄ 8389.0299 69.9780 12660.3816
R1 [MPa℄ 1760.0603 19.9785 5266.3785
Φ0 [deg℄ -30 N.D. -24

Φ1 [deg℄ 31 N.D. 31

Out-of-plane elasti
 behaviour

Polar parameters [H∗] (modi�ed form)

T [MPa℄ 10190.909
R [MPa℄ 0.7772
Φ [deg℄ N.D.

Table 5: Laminate polar parameters for the best sta
king sequen
e of 
ase 2 (N.D.=not

de�ned, i.e. meaningless for the 
onsidered 
ombination of laminate elasti
 symmetries).

In plane elasti
 behaviour

Polar parameters [A∗] [B∗] [D∗]

T0 [MPa℄ 23793.3868 0 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249
R0 [MPa℄ 4200.7794 61.0565 4211.5750
R1 [MPa℄ 23.3058 22.6314 49.0406
Φ0 [deg℄ 0 N.D. 0

Φ1 [deg℄ N.D. N.D. N.D.

Out-of-plane elasti
 behaviour

Polar parameters [H∗] (modi�ed form)

T [MPa℄ 10190.909
R [MPa℄ 1.2434
Φ [deg℄ N.D.

Table 6: Laminate polar parameters for the best sta
king sequen
e of 
ase 3 (N.D.=not

de�ned, i.e. meaningless for the 
onsidered 
ombination of laminate elasti
 symmetries).
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Figure 1: a)First 
omponent of the laminate membrane, membrane/bending 
oupling and bending

sti�ness matri
es and b) the three 
omponents of the laminate out-of-plane shear sti�ness matrix,

best solution of 
ase 1.
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Figure 2: Best values of the obje
tive fun
tion along generations, 
ase 1.
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Figure 3: a)First 
omponent of the laminate membrane, membrane/bending 
oupling and bending

sti�ness matri
es and b) the three 
omponents of the laminate out-of-plane shear sti�ness matrix,

best solution of 
ase 2.
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Figure 4: Best values of the obje
tive fun
tion along generations, 
ase 2.
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Figure 5: a)First 
omponent of the laminate membrane, membrane/bending 
oupling and bending

sti�ness matri
es and b) the three 
omponents of the laminate out-of-plane shear sti�ness matrix,

best solution of 
ase 3.
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Figure 6: Best values of the obje
tive fun
tion along generations, 
ase 3.
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