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Abstract

In this paper, we present and evaluate a moving mesh finite volume

method for hyperbolic conservation laws. The method consists of two

parts; a mesh moving scheme based on the algorithm of Tang and Tang,

and a third order accurate bi-hyperbolic reconstruction which is an

extension of Marquina’s PHM. The resulting algorithm calculates the

solution of the conservation laws directly in physical space, without any

transformation of the computational grid or the hyperbolic equations.

Numerical experiments in one and two space dimensions indicate high

numerical accuracy of the method.

Key words : Moving mesh method, hyperbolic conservation law, finite

volume method, high-order reconstruction.

1 Introduction

When solving hyperbolic PDEs

ut + f(u)x = 0

u(x, 0) = u0(x),
(1)

where x ∈ Ωc ⊂ R
d, t > 0, the solution will typically contain smooth parts, as well

as moving shocks and contact discontinuities. Therefore, a challenging task is to
construct methods resolving these discontinuities. A common approach is to use a
very fine, equidistant mesh together with a high-resolution method. However, this
will lead to over-resolution of the solution in the smooth regions, and numerical
computations may be far too costly to be feasible, especially in several space di-
mensions. To remedy this problem, adaptivity can be used to increase the solution
accuracy where the errors are expected to be large (like where the solution has large
gradients, e.g. around discontinuities).
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One successful adaptive strategy is to use moving mesh methods (also called r-
methods). These methods have one thing in common; the grid points are moved
to those regions in the computational domain Ωc where they are most needed, thus
keeping the number of mesh points constant. Many authors have been doing research
on these methods, e.g. [4, 5, 6, 7, 9, 12, 13, 15, 18, 19, 21, 29, 30, 31, 32] during the
last years.

Tang and Tang [32] investigated a moving mesh method in which the finite
volume time evolution of the PDE (1) was decoupled from the mesh moving part.
This is an advantageous approach; thus one can choose between several different
high-resolution finite volume methods for solving hyperbolic PDEs. Also, Tang and
Tang developed a formula for calculating the finite volume averages on the adapted
meshes from previously known data. This formula is conservative in the sense that
it preserves the total amount of the conserved variables over the mesh from one
moving mesh iteration to another.

One common drawback of moving mesh methods is that the possibly large differ-
ences in cell sizes resulting from the grid movement may impose a severe restriction
on the time step size during the solution process, due to the CFL condition. There-
fore, one must take great care when choosing parameters in the adaptive algorithms
for the mesh movement. In [30], Tang and Tang’s method was combined with local
time stepping in order to deal with this disadvantage.

Another problem arises; most finite volume methods are designed for uniform
meshes and therefore cannot be applied to the method from [32]. Mostly, to solve this
problem one transforms the adapted grid to an equidistant one (e.g. [30]). However,
this requires that a smooth grid mapping can be found such that solution accuracy
will not get lost during the transformation. Also, the transformation of the equation
(1) results in a more complex Riemann problem that can be difficult to solve, since
the well-known, high-performing approximate Riemann solvers may be inapplicable.

In this paper, we combine the method of Tang and Tang with the third order bi-
hyperbolic finite volume method for quadrilateral meshes from [25], thus avoiding the
transformation of the hyperbolic equations. Also, we derive a third order extension
of the conservative update formula of Tang and Tang. We show that the PHM
methods LHR and LHHR originally presented by Marquina [23], the Power-PHM
by Serna [27] and the locally logarithmic methods by Artebrant and Schroll [1, 2, 3]
can be applied to non-uniform, adapted meshes in one and two space dimensions,
yielding good computational results.

The outline of this paper is as follows. In Section 2, the moving mesh method will
be discussed, followed by an investigation of the finite volume method in Section 3.
The algorithm will be extended to two space dimensions in Section 4, and numerical
experiments are presented in Section 5. Finally, Section 6 concludes the paper.

2 The Moving Mesh Method

2.1 The Equation Controlling the Mesh Movement

We apply the following variational approach for the mesh movement (see [20, 32] for
more information on this topic). Let x be a point in the computational domain Ωc
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and ξ be a corresponding point in a logical domain Ωl. Both Ωc and Ωl are subsets
of R

d and the grid points in Ωl are uniformly distributed. The goal is to find a map
x = x(ξ) from Ωl to the physical domain Ωc, and to use this mapping for the mesh
adaption. The map is given as the Euler-Lagrange equation of the functional

E(ξ̄) =
1

2

∑

k

∫

Ωp

∇ξT
k G−1

k ∇ξk dx̄ ,

namely
∇ · (G−1

k ∇ξk) = 0 , 1 ≤ k ≤ d . (2)

The Gk are symmetric, positive definite matrices called monitor functions. In this
paper, we always apply monitor functions of the form

Gk = ωI , 1 ≤ k ≤ d , (3)

where I is the identity matrix of appropriate size and ω is a positive weight function
depending only on the solution u of (1) and its gradients.

As can be expected from (3), the choice of ω will greatly influence the properties
of the mesh movement. Typically, one chooses ω large where a dense grid is needed.
See [8, 14, 29] for further discussions on the choice of different monitor functions
and their properties.

2.2 Solving the Mesh Movement Equation

xi−1 xi xi+1

Ci−1 Ci

ui−1

ui

Figure 1: Grid cell notation.

In one space dimension, (2) combined with our simple monitor functions becomes
(ω−1ξx)x = 0. Thus, one can derive the equidistribution principle (ωxξ) = constant.
In practical computations, we solve the following, equivalent equation

(ωxξ)ξ = 0 , (4)

to obtain mesh movement.
Let the problem domain Ωc be divided into computational cells Ci = [xi, xi+1],

where i = 0, . . . , N − 1. The following Gauss-Seidel iteration is used for solving a
discrete version of (4), thus moving the mesh points from xi to x̃i

ω(ui)(xi+1 − x̃i) − ω(ui−1)(x̃i − x̃i−1) = 0 . (5)
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This process will be repeated iteratively until the mesh reaches its equilibrium de-
pending on the underlying solution u. In our numerical experiments, we have run
the iterations until

max
i

|xi − x̃i| < ε , 0 < ε � 1 ,

but at most five iterations, however.
After each iteration, the averages ũi of the new mesh x̃i needs to be computed

from the previously known ui. In [32], the following formula was introduced for this
average update:

∆x̃iũi = ∆xiui − ((cu)i+1 − (cu)i) , (6)

where ci = xi − x̃i, and ∆xi = vol(Ci) = (xi+1 − xi). The border flux terms cu are
approximated by upwinding

(cu)i =
ci

2
(u+

i + u−
i ) −

|ci|

2
(u+

i − u−
i ) . (7)

The solutions u+
i and u−

i in the point xi from the right and left side, respectively,
can be reconstructed according to the procedure outlined in Section 3.1.

The formula (6) is second order accurate in c, but as long as |ci| � min(∆xi−1,∆xi),
we will expect that the use of (6) will not destroy the order properties of a third
order finite volume method. However, following the approach of Tang and Tang, it is
possible to derive a conservative, third order update formula. This is accomplished
as follows.

Consider the integral denoting the unknown total amount of a conserved variable
u in a cell C̃i. Use the ansatz x̃ = x − c(x) and find

∫ x̃i+1

x̃i

u(x̃) dx̃ =

∫ xi+1

xi

u(x − c(x))(1 − cx(x)) dx .

Expand u:

u(x − c(x)) ≈ u(x) − c(x)ux(x) +
1

2
c2(x)uxx(x) .

Then

u(x − c(x))(1 − cx(x)) ≈ u − cux +
1

2
c2uxx − cxu + ccxux −

1

2
c2cxuxx =

= u − (cu)x +
1

2
(c2ux)x + O(c3) .

Thus,
∫ x̃i+1

x̃i

u(x̃) dx̃ ≈

∫ xi+1

xi

u(x) − (cu)x +
1

2
(c2ux)x dx ,

and we get the conservative update formula

∆x̃iũi = ∆xiui − ((cu)i+1 − (cu)i) +
1

2
((c2ux)i+1 − (c2ux)i) . (8)

for finding the sought average ũi. This formula is a third order extension of (6) and
(7) may be reused to determine the border fluxes. In the new, second order term an
approximation for the gradient of u is needed. These gradients are approximated in
second order of accuracy during the reconstruction, see Section 3.1 below.
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3 The Finite Volume Method

We solve the hyperbolic conservation law

u(x, t)t + f(u(x, t))x = 0

by approximating the time derivative of the averages at a time tn

d

dt
ui(t

n) = −
1

∆x
(f(u(xi, t

n)) − f(u(xi+1, t
n))) , (9)

where the averages are

ui(t
n) =

1

∆xi

∫

Ci

u(x, tn) dx , (10)

and then integrating (9) to get the new averages at the next time point tn+1. We
will use the third order SSP Runge-Kutta method described in [10] for the time
integration.

The fluxes f(u(xi, t
n)) and f(u(xi+1, t

n)) will be replaced with some approximate
solver for Riemann problems. To get third order of accuracy in the flux balance
(9) and hence in the solutions ui we need to reconstruct the point value border
fluxes from the known cell averages fi and fi+1. This will be explained in the next
subsection.

3.1 Reconstruction on Non-uniform Meshes

We use the third order hyperbolic method outlined in [25] for the reconstructions.
It is an extension of the Piecewise Hyperbolic Method (PHM) by Marquina [23],
which uses hyperbolas

ri(x) = ai +
bi

(x − xi+1/2) + ci
, x ∈ [xi, xi+1] (11)

as ansatz functions. Either of the algorithms LHR, LHHR or the LHPR (by Serna
[27]) determines the parameters ai, bi and ci cell wise from the solution average

ui =
1

∆xi

∫

Ci

u(x) dx =
1

∆xi

∫

Ci

ri(x) dx, (12)

and from the derivatives at the cell boundaries

r′i(xi) = d− , r′i(xi+1) = d+ . (13)

On uniform meshes, one gets the derivatives d+ and d− easily by central dif-
ferencing. However, since the algorithms require that d+ and d− are known up to
second order accuracy, this approach will not work in the general case when the cells
are of different sizes. In [25], it was shown that the derivatives can be approximated
as a linear combination of three adjacent cell averages

α+
i ui+1 + β+

i ui + γ+
i ui−1 = d+

i + O(h2) , (14)

International Journal on Finite Volumes 5
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and
α−

i ui+1 + β−
i ui + γ−

i ui−1 = d−i + O(h2) , (15)

where h = max(∆xi+1,∆xi,∆xi−1). The coefficients α, β and γ are the solutions of
the linear systems













1 1 1

∆xi+1

2
−

∆xi

2
−

(

∆xi +
∆xi−1

2

)

∆x2
i+1 ∆x2

i 3∆x2
i + 3∆xi∆xi−1 + ∆x2

i−1























α+
i

β+
i

γ+
i











=











0

1

0











and










1 1 1

∆xi+1

2
+ ∆xi −

∆xi

2
−

∆xi−1

2

3∆x2
i + 3∆xi∆xi+1 + ∆x2

i+1 ∆x2
i ∆x2

i−1





















α−
i

β−
i

γ−
i











=











0

1

0











.

In computational cells containing local extrema of the solution, so called transi-
tion cells, the order of the hyperbolic methods drop to two [23, 24, 27]. Therefore,
instead of using hyperbolic functions, a successful reconstruction ansatz is logarith-
mic functions [1, 3]

rL
i (x) = A + B log(x + C) + D log(x + E) ,

yielding the LDLR reconstruction procedure. It has the same requirements on av-
erage (12) and derivatives (13) as the hyperbolic reconstructions, and the linear
combinations (14) and (15) can be used to obtain the cell border derivatives. The
LDLR method is also a formally third order method, but its numerically observed
order is higher than that for the hyperbolic methods since it can reconstruct iso-

lated local extreme values within a cell. We will employ both the LDLR and the
hyperbolic schemes in our numerical tests (Section 5).

4 Extension to Two Space Dimensions

In this Section, we will show how to extend the solution procedure to two space
dimensions. Our goal is now to find a map x = x(ξ, η) and y = y(ξ, η) from the
variables (ξ, η) in a logical domain, and then to apply the high-resolution finite
volume method from [25] on the adapted meshes.

The two-dimensional bi-hyperbolic PDE solver from [25] works as follows. The
conservation law

∂U(x, y, t)

∂t
+ ∇ · F (U(x, y, t)) = 0

will be solved by time stepping of its average derivative for all cells Cij

d

dt
Uij(t) = −

1

vol(Cij)

k
∑

p=1

∫

γp

Fp(U(x, y, t)) · np dS . (16)

International Journal on Finite Volumes 6
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Here, the flux integration is carried out over each of the k linear cell edges (∂Cij =
γ1 + . . . + γk). Hence, the fluxes on all the boundaries γp need to be reconstructed
for the solution. The bi-hyperbolic algorithm calculates six weights µ(0,k), . . . , µ(5,k)

for each of the k boundaries in every cell Cij such that one gets the first order
derivatives of the fluxes to be reconstructed as

∑

l

µ(l,k)F
av
l = F ′

k + O(h2) ,

where F av are the averages of the cell fluxes and h = maxp,q∈Cij
‖p−q‖. The weights

µ(l,k) are computed from integral expressions depending on the mesh geometry. On
moving meshes, the weights are dynamic and need to be updated after each mesh
iteration. A detailed description of the procedure of calculating the weights can be
found in [25].

The bi-hyperbolic reconstruction function is extended from (11) as follows:

rij(x, y) = aij +
bij

(x − xm
ij ) + cij

+
dij

(y − ym
ij ) − eij

, (x, y) ∈ Cij . (17)

The variables xm
ij and ym

ij are the coordinates of the cell mid points. With this
ansatz, the calculation of the coefficients aij, . . . , eij can be applied separately in
x- and y-dimensions using the original one-dimensional algorithms LHR, LHHR or
LHPR.

If applying the moving mesh algorithm of Tang and Tang directly, the resulting
grid will be fully adapted to the underlying solution, and we will have difficulties
applying the bi-hyperbolic method. Although it was designed for general meshes
in two space dimensions, after every moving mesh step one must recalculate the
dynamic weights µ(l,k) for every computational cell Cij . This is very costly when
implemented numerically, and the benefit from using adaption compared to using
higher order, non-adaptive methods directly on very fine, equidistant meshes is lost.

Therefore, we will simplify the calculations by restricting the adaption mapping
to x = x(ξ) and y = y(η). This will move an entire line of coordinates at the same
speed, thus making all cells rectangular (but still non-uniform). In this way, the
calculation of the coefficients µ(l,k) can be made much simpler, and the cell boundary
integration (16) becomes trivial. One drawback is that in two space dimensions, some
computational regions having smooth solutions (those being aligned with regions
containing large discontinuities) will be too highly resolved. However, numerical
experiments have shown that this is still an advantageous approach compared to
applying the bi-hyperbolic method directly on general grids. See Section 5.2 for 2D
mesh examples.

The two dimensional mesh movement is handled as follows. Let the problem do-
main Ωc be divided into rectangular computational cells Cij = [xj , xj+1]× [yi, yi+1],
i = 0, . . . , Ny−1, j = 0, . . . , Nx−1. We employ the coordinate-wise weight functions

ω
(x)
j = max

i
ω(x)(Uij)

and
ω

(y)
i = max

j
ω(y)(Uij).

International Journal on Finite Volumes 7
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The mesh movement will now be handled by applying (5) with the above weight
functions separately in each coordinate direction.

From [32] we get the second order update formula for the averages in 2D

∫∫

C̃ij

U(x̃, ỹ) dx̃ỹ =

∫∫

Cij

U(x, y) dxdy −

∫

∂Cij

(cxnx + cyny)U(x, y) dxdy. (18)

corresponding to (6). Here, n = (nx, ny) is the unit length normal and (cx, cy) =
(x− x̃, y − ỹ). All terms of order |c|2 or higher have been neglected. Rewriting (18)
yields

vol(C̃ij)Ũij = vol(Cij)Uij −

∫

∂Cij

(cxnx + cyny)U(x, y) dxdy.

Since the cells are kept rectangular during mesh adaption, the integral above is
straight forward to compute exactly when using the reconstruction ansatz (17).
Thus, no order reduction occurs from the integration.

In principle, it is possible to derive a third order version of (18), but it is necessary
to introduce some additional constraints. Let c = (cx, cy) denote the local mesh
movement and make the change of variables

x̃ = x − cx

ỹ = y − cy

in the integral of the total amount of u in C̃ij

∫∫

C̃ij

u(x̃, ỹ) dx̃dỹ =

∫∫

Cij

u(x − cx, y − cy)((1 − cx
x)(1 − cy

y) − cy
xcx

y) dxdy .

Expand u up to second order:

u(x − cx, y − cy) ≈ u(x, y) − ux(x, y)cx − uy(x, y)cy+

+
1

2
uxx(x, y)(cx)2 + uxy(x, y)cxcy +

1

2
uyy(x, y)(cy)2 =

= u − cxux − cyuy +
1

2
(cx)2uxx + cxcyuxy +

1

2
(cy)2uyy

Multiplying this expansion with the determinant of the Jacobian of the change of
variables det J yields

u(x − cx, y − cy) · det J = u − (cxu)x − (cyu)y +

(

1

2
(cx)2ux

)

x

+

(

1

2
(cy)2uy

)

y

+

+cxcyuxy + cxcyuy + cy
yc

xux + cx
xcy

yu − cy
xcx

yu ,

neglecting terms of order c3 or higher. Assuming now that cx = cx(x) and cy = cy(y),
i.e. the mesh is rectangular, we see that

(cxcyu)xy = cx
xcy

yu + cx
xcyuy + cxcy

yux + cxcyuxy ,

International Journal on Finite Volumes 8
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and cy
xcx

yu = 0. Thus,

∫∫

C̃ij

u(x̃, ỹ) dx̃dỹ =

∫∫

Cij

u dxdy −

∫∫

Cij

∇ · (cu) dxdy +

+
1

2

∫∫

Cij

∇ ·
(

(cx)2ux, (cy)2uy

)

dxdy +

∫∫

Cij

(cxcyu)xy dxdy .

Finally, by the Divergence Theorem;

vol(C̃ij)ũij = vol(Cij)uij −

∫

∂Cij

(cu) · n ds+

1

2

∫

∂Cij

(

(cx)2ux, (cy)2uy

)

· n ds +

∫∫

Cij

(cxcyu)xy dxdy ,

where n is the outward normal of the boundary ∂Cij . The expression above is com-
puted numerically by replacing u with rij from (17) and using the upwind formula
(7) in the first integral.

5 Numerical Experiments

In this Section, we will test the combination of the hyperbolic (or logarithmic)
methods [25] and the moving mesh method [32], using both second and third order
average update procedures. We implement the solution algorithm by Tang and
Tang with one modification: during the very first mesh generation, we do not use
any of the average update formulae after moving the mesh one iteration. This is
unnecessary, since before any time evolution of the equation, the solution is known
from the initial data and we can simply calculate the values of ũi or Ũij by re-
averaging the initial data according to the new mesh. We run a great many more
iterations of (5) during the first mesh generation than during the later ones, in order
to make sure that the grid manages to adjust itself to the discontinuities properly.
This approach saves some computational time and helps keeping the solution errors
small.

5.1 One Dimensional Problems

Example 1: We solve the linear advection problem (with periodic boundary con-
ditions)

ut + ux = 0, −1 < x < 1, u(x, 0) = u0(x)

with

u0(x) =



















1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)) −0.8 ≤ x ≤ −0.6,

1
6 (F (x, α, a − δ) + F (x, α, a + δ) + 4F (x, α, a)) 0.4 ≤ x ≤ 0.6,

0 otherwise.

Also,
G(x, β, z) = e−β(x−z)2

International Journal on Finite Volumes 9
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and
F (x, α, a) =

√

max(1 − α2(x − a)2, 0) ,

with parameters a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = ln 2/(36δ2). This
initial data is taken from Jiang and Shu [16], but we only include the Gaussian and
the ellipse. We choose not to use the same problem setup as in [16], since in the
original problem, the number of movable grid points in the smooth regions are too
few to properly cover all the discontinuities, making mesh movement not so efficient.

We run simulations up to t = 2 s with CFL = 0.3 using all the four previously
mentioned reconstruction procedures for finding the average (10), together with the
well-known Lax-Friedrichs numerical flux as approximate Riemann solver. We use
N = 100 and the monitor function G = ωI, ω =

√

1 + 0.25|uxx|. This monitor
is chosen such that one achieves a sufficient grid clustering near the corners of the
solution. No discontinuities are present, so we have omitted any dependence of the
first derivative of the solution in the monitor function. A monitor of similar type was
used in [33] for the Hamilton-Jacobi equations, however also including the gradient.

The simulation result at t = 0.1 s is shown in Figure 2 with a blowup in Figure
4, and at t = 2 s in Figure 5. See Figures 3 for the mesh movement in time. In the
Figure, we observe the clustering of mesh points near the corners, as desired.

We have employed a simple second order MUSCL-reconstruction based on the
minmod-limiter for comparison against the third order methods. It uses the following
estimation of u+ and u− in the upwinding formula (7):

u+
i = ui +

1

2
(xi − xi+1)si, u−

i = ui−1 +
1

2
(xi − xi−1)si−1,

where
si(s

+, s−) = sign(s−) · max(0,min(|s−|, sign(s−) · s+))

and

s+ =
ui+1 − ui

0.5 · (xi+2 + xi)
, s− =

ui − ui−1

0.5 · (xi+1 + xi−1)
.

See Table 1 for a comparison of errors in the numerical simulations of this prob-
lem. Obviously, adaptivity greatly increases the accuracy of all the methods. Also,
we see that the difference between second and third order average updating during
the mesh movement phase is not very large, but in all the simulations, the third
order update performs slightly better, especially in the maximum norm. We note
that although improving the simulation results, the second order adaptive MUSCL
cannot compete with the third order methods.

Example 2: In this example, we solve the following problem:

ut + ux = 0, x ∈ [−4, 4],

with the initial data
u(x, 0) = 1 − e

− 1
1+x8 .

It is easily verified that it has the analytical solution

u(x, t) = 1 − e
− 1

1+(x−t)8 ,

International Journal on Finite Volumes 10
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L1-error L∞-error

LHR
no adaption 0.0209 0.1827
2nd order average update 0.0052 0.1023
3rd order average update 0.0052 0.0712

LHHR
no adaption 0.0214 0.1685
2nd order average update 0.0054 0.1195
3rd order average update 0.0053 0.0884

LHPR
no adaption 0.0227 0.2110
2nd order average update 0.0064 0.1045
3rd order average update 0.0061 0.0533

LDLR
no adaption 0.0208 0.1949
2nd order average update 0.0056 0.1149
3rd order average update 0.0055 0.0731

MUSCL, minmod
no adaption 0.0270 0.1927
2nd order average update 0.0115 0.1735
3rd order average update — —

Table 1: Errors in the numerical solutions of Example 1 at t = 0.1 s.

and can therefore be used for error analysis. We run the simulations using the LHPR
scheme with Powermod3-limiter up to t = 0.5 s with CFL = 0.3, ω =

√

1 + 25|uxx|
and different numbers of grid cells N . Again, no discontinuities are present in the
solution, but it contains sharp corners. The same type of weight function as in
Example 1 is therefore used.

See Figure 6 for the solution, Figure 7 for the mesh movement in time and Table 2
for the simulation errors. The notation is the same as in the previous Example. The
errors in the Table are plotted against N in Figures 8 and 9. Indubitably, adaptivity
gives the best simulation results, and third order updates perform somewhat better
than second order updates. It is worth remarking, that despite the moderate level of
adaption (the fraction between the largest and the smallest cell size is not extremely
large), computational errors are significantly reduced.

Example 3. We now turn our focus to Sod’s problem [28], which is the one-
dimensional Euler equations (for which we determine the pressure p using p = (γ −
1)(E − ρu2/2))





ρ
ρu
E





t

+







ρu

ρu2 + p

(E + p)u







x

= 0,
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Figure 2: The advection problem (Example 1) at t = 0.1 s computed with LHR-
reconstruction and third order average update.

No adaption 2nd order average update 3rd order average update

N L1-error L∞-error L1-error L∞-error L1-error L∞-error
10 0.3698 0.1400 0.2992 0.0902 0.3052 0.0961
20 0.0747 0.0488 0.0727 0.0379 0.0770 0.0410
40 0.0450 0.0421 0.0213 0.0155 0.0184 0.0122
80 0.0334 0.0342 0.0120 0.0130 0.0101 0.0108
160 0.0184 0.0160 0.0074 0.0079 0.0059 0.0067
320 0.0094 0.0082 0.0045 0.0046 0.0035 0.0036
640 0.0047 0.0040 0.0023 0.0024 0.0021 0.0019

Table 2: Solution errors at t = 0.5 s in Example 2.

coupled with the initial data

(ρ, u, p) =

{

(1, 1, 1) 0 ≤ x < 0.5

(0.125, 0, 0.1) 0.5 ≤ x ≤ 1.

This challenging problem have been tested in moving mesh frameworks by several
authors, see e.g. [29, 32].

In Figure 10 the result of the simulation at t = 0.2 s is shown. We used 3rd
order average update based on the LHPR scheme with CFL = 0.3 and 80 grid cells.
Since the solution will contain three components, one has to decide which of these
variables the monitor function should depend on. It may be inappropriate to simply
let ω be a function of ‖(ρ, ρu,E)‖ since the values of the entities are probably of
different magnitudes. Reference [29] contains a further discussion on this. Still, we
need to find a monitor that can adapt the mesh to the discontinuities, rarefactions
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Figure 3: The mesh movement in time of Example 1 up to t = 0.1 s. Third order
average update was used.

and other types of behaviour in all the variables. For Sod’s problem we found that a
weight function being dependent on the density ρ and entropy s = p/ργ accomplishes
this (this choice of ω was inspired by the Sod simulation in [32]). Therefore, we use

ω =
√

1 + ς|uξ| + ς|sξ|.

and ς = 25.
We see in Figure 10 that the method proposed in this paper behaves very well

also for this nonlinear problem with discontinuous initial data. In Figure 12 we
compare the higher order results with those of lower order and without adaptivity.
We note that third order average update makes the slopes around the shock and
contact discontinuity much steeper and more accurate than the other simulations.

5.2 Two Dimensional Problems

In this Section, we will test two-dimensional version of the presented method on the
Euler equations of gas dynamics

Ut + F (U)x + G(U)y = 0,

U =









ρ
ρu
ρv
E









, F (U) =









ρu
ρu2 + p

ρuv
u(E + p)









, G(U) =









ρv
ρuv

ρv2 + p
v(E + p)









.

with the pressure p = (γ − 1)(E − ρ
2 (u2 + v2)). We run all simulations for pure air,

so γ = 1.4.
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Figure 4: Blowup of solution at the bottom of the ellipse (Example 1).

Example 4: (A rectangular explosion problem.) A rectangular section of high
density is immersed in lower density air. The problem setup is

(ρ, u, v, p) =

{

(10, 0, 0, 5) if 0.4 ≤ x ≤ 0.6 and 0.4 ≤ y ≤ 0.6.

(1, 0, 0, 1) otherwise.

The initial data are chosen such that both pressure and density are several times
larger inside the rectangle than on the outside. The gas is at rest at t = 0, and
thereafter it will spread out in all the four different directions yielding the nice
simulation results in Figure 13. For this problem, we use

ω(x)(U) =
√

1 + ς|ρξ|, ω(y)(U) =
√

1 + ς|ρη|, (19)

ς = 0.25, and the LHPR-scheme on a mesh of size Nx = Ny = 100. We let CFL
= 0.5. To detect discontinuities which characterize the solution of the nonlinear
hyperbolic conservation laws like the Euler equations, we choose a weight related to
gradients.

Both the second and third order average updates in 2D have been tested, and
graphically we conclude that there is no significant difference between the results.
We therefore only include the higher order version, see Figure 13 for the density
contours of the solution at t = 0.2 s. Clearly, the moving mesh solution contains
sharper discontinuities than the equidistant one, as expected.
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Figure 5: The advection problem (Example 1) at t = 2 s computed with LHHR-
reconstruction.

Example 5: Riemann problem, Configuration 6 (see [17]), (also known as Config-
uration B [26]). This is a well-known test example with the initial data

(ρ, u, v, p) =



























(1.0, 0.75,−0.5, 1) x ≥ 0.5, y ≥ 0.5

(2.0, 1.5, 1.0, 1) x ≤ 0.5, y ≥ 0.5

(1.0,−0.75, 0.5, 1) x ≤ 0.5, y ≤ 0.5

(3.0,−2.25,−1.5, 1) x ≥ 0.5, y ≤ 0.5

.

This problem is solved with CFL = 0.5 up to t = 0.3 s with weight function (19)
and ς = 5 on a 100×100 mesh. See Figure 15 for the density contours with/without
the moving mesh algorithm, and Figure 16 for the mesh at t = 0.3 s.

Example 6: Another Riemann problem, denoted Configuration 7 [17]. The problem
setup of this experiment is

(ρ, u, v, p) =



























(1, 0.1, 0.1, 1) x ≥ 0.5, y ≥ 0.5

(0.5197,−0.6259, 0.1, 0.4) x ≤ 0.5, y ≥ 0.5

(0.8, 0.1, 0.1, 0.4) x ≤ 0.5, y ≤ 0.5

(0.5197, 0.1,−0.6259, 0.4) x ≥ 0.5, y ≤ 0.5

.

We employ the same mesh size and CFL-number as in the previous Riemann prob-
lem, but finish the computations at t = 0.25 s. We use the same monitor function as
in the previous example. Again, we see a lot better resolution in the computations
(Figure 17) using the adaptive schemes.
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Figure 6: Solution of Example 2 (N = 80, adaption using third order update) at
t = 0.5 s computed with the LHPR scheme.
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Figure 7: Time motion of the grid lines in Example 2.
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Figure 8: Solution errors in Example 2 at different mesh sizes in L1-norm.
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Figure 9: Solution errors in Example 2 at different mesh sizes in L∞-norm.
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Figure 10: Density of the solution in Sod’s problem computed with higher order
average update and the LHPR scheme at t = 0.2 s.

We observe the same quality in the densities of Riemann problems 6 and 7 as
those observed in [32], despite the fact that rectangular mesh adaption has been
employed.

6 Conclusion

In this paper, we have combined the moving mesh method of Tang and Tang with the
third order hyperbolic/logarithmic reconstruction method based on Marquina, such
that all computations are performed directly in physical space, with no coordinate or
equation transformation involved. We have developed third order extensions of the
average update formulae introduced in [32], and shown that the new expressions yield
good computational results. We note that the third order finite volume methods keep
the advantage over a second order method when applied on moving meshes.

In one space dimension, we find that the third order average update formula
yields slightly better simulation results than the second order one. However, in
two space dimensions, the quality of the solutions obtained by either of the update
formulae are the same, thus we deem that the second order average update by Tang
and Tang will suffice for combination with the third order methods.
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Figure 11: Mesh movement in time for Sod’s problem.
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the upper figure is computed using adaptivity (third order), in the lower without.
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Figure 17: Density contours of Configuration 7 at t = 0.25 s. The upper solution is
computed using adaptivity (third order average update, lower without adaptivity.
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