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Prioritized Optimal Control:
a Hierarchical Differential Dynamic Programming approach

Francesco Romano1, Andrea Del Prete2, Nicolas Mansard2 and Francesco Nori1

Abstract— This paper deals with the generation of motion
for complex dynamical systems (such as humanoid robots) to
achieve several concurrent objectives. Hierarchy of tasks and
optimal control are two frameworks commonly used to this
aim. The first one specifies control objectives as a number of
quadratic functions to be minimized under strict priorities. The
second one minimizes an arbitrary user-defined function of the
future state of the system, thus considering its evolution in
time. Our recent work on prioritized optimal control merges the
advantages of both these methods. This paper reformulates the
original prioritized optimal control algorithm with the precise
goal of improving its computational speed. We extend the
dynamic programming method to work with a hierarchy of
tasks. We compared our approach in simulation with both our
previous algorithm and classical optimal control. The measured
computational improvement represents another step towards
the application of prioritized optimal control for online model
predictive control of humanoid robots. We believe that this
could be the key to unlock the (so far unexploited) dynamic
capabilities of these mechanical systems.

I. INTRODUCTION

Control of underactuated nonlinear mechanical systems
such as humanoids and legged robots is still a main concern
for the control community. Given the high number of degrees
of freedom (DoFs), it is practical to formulate the control
objective in terms of multiple tasks to achieve at the same
time. For instance, to make a humanoid robot walk, we can
control the trajectory of its center of mass and its swinging
foot, the force exerted by its supporting foot and its whole-
body posture. If we also add manipulation objectives, it is
clear that the number of tasks rapidly grows. In case of
conflict between two or more tasks, we might require the
most important task to be achieved at the expenses of the
others. This approach — known as prioritized or hierarchical
control — has been used in robotics and computer animation
since the 80’s [1]. Researchers have applied prioritized
control in different forms. The basic formalism defines a
hierarchy among cartesian velocities of multiple points of a
robotic structure [1], [2]. The same applies by considering
the dynamic model, while imposing a hierarchy among
operational references [3], [4], thus allowing the control of
contact forces, besides cartesian and joint-space motion.
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In recent years, new formulations [5], [6] have contributed
to improving the computational efficiency of this approach.
[7], [8] have studied efficient ways to include inequalities in
the problem formulation, which for instance can model joint
limits and torque bounds. Research in computer animation
[9], [10] has followed a similar path, trying to generate
artificial motion by solving one or more Quadratic Programs
(QP) (i.e. optimization problems with quadratic cost and
linear constraints).

On the other hand, another well-known technique is opti-
mal control, which minimizes a function of state and control
of the system over a predefined time frame [11]. The control
law automatically results as the solution of the associated
optimization problem. Depending on the problem structure
and the resolution method, the control law can be either
a feedback control policy or a pure open-loop trajectory.
Differently from prioritized control, optimal control takes
decisions in accordance to future predictions, but it does not
handle properly the multi-task scenario.

In [12] we introduced strict task prioritization in the
optimal control formulation, which we recall in Sections II.
Throughout this paper we will refer to it as POC (Prioritized
Optimal Control). The developed algorithm gathers the ben-
efits of prioritized control and optimal control. However, the
approach in [12] did not exploit the intrinsic sparsity of the
optimal control problem, which can lead to a reduction of the
computational complexity from cubic to linear in the number
of time steps. This work revisits the original POC algorithm
with the main goal of addressing the above-mentioned issue,
i.e. exploiting the sparsity. To accomplish this, in Section
III we introduce a hierarchical model into the dynamic
programming equation. Then in Section IV we presents the
corresponding nonlinear heuristics (i.e. regularization and
line search). Comparisons with the previous algorithm show
the performance improvement in Section V.

II. BACKGROUND

A. Notation

The following notation is used throughout the paper:

• xi ∈ Rn is the state variable at the time i.
• ui ∈ Rm is the control variable at the time i.
• Xj := (xj , · · · , xN ) and Uj := (uj , · · · , uN−1) are the

partial state and control trajectories, respectively, from
time j.

• X := X0 and U := U0 are the entire state and control
trajectories.



• ∂yg is the partial derivative of a multivariable function
g(·) with respect to one of its variables y; ∂yzg is the
partial second-order derivative with respect to y and z.

• The superscript (·)∗ denotes the minimum value and
the corresponding decision variable for a minimization
problem: p∗(z∗) := minz p(z).

• A† ∈ Rm×n is the Moore-Penrose pseudoinverse of the
matrix A ∈ Rn×m.

B. Problem Formulation

Let us consider a discrete-time nonlinear dynamical sys-
tem

xi+1 = f(xi, ui), for i = 0, . . . , N − 1, (1)

where f(·) : Rn × Rm 7→ Rn is the dynamics function.
Assume that the system has to perform K tasks, with task 1
having the highest priority, and task K the lowest. The k-th
task is represented with an arbitrary cost function:

G(k)(X,U) :=

N−1∑
i=0

φ(k)(xi, ui) + φ
(k)
N (xN ) , (2)

where φ(·) : Rn × Rm 7→ R is the running cost and
φN (·) : Rn 7→ R is the final cost. The control problem is to
find the control input sequence U∗ and state trajectory X∗

that solve the following hierarchical optimal control problem,
denoted by HOC(k):

minimize
U,X

G(k)(X,U)

subject to xi+1 = f(xi, ui), for i = 0, . . . , N − 1

x0 fixed

G(j)(X,U) = G(j)∗ ∀j < k ,

(3)

for k = 1 to K, where G(j)∗ is the optimum obtained
by solving the HOC(j). We define the hierarchical optimal
control problem composed of the K tasks as the solution of
the cascade of HOC(k). This definition of “cascade” follows
the construction made in [13] for hierarchical quadratic
problems.

C. Algorithm Outline

Before delving into the mathematical details, let us intro-
duce the principles of the algorithm. Each iteration consists
of the following three phases:

1) Problem approximation.
2) Local control computation, or backward pass.
3) System simulation, or forward pass.

We start by approximating the dynamics and the cost along
an initial nominal state-control trajectory. Then in the back-
ward pass — which is the main contribution of this paper —
we compute the local control modification as the solution to
a hierarchical optimal control problem for the approximated
model. Because this control modification is based on a
local model, we have to check how it performs on the real
system (i.e. we integrate the dynamics with the new control
trajectory and compute the new costs). The so-called line-
search procedure takes care of reducing the magnitude of

the control modification to compensate for the mismatch
between approximated and real model. Finally we introduce
a regularization procedure to solve two issues commonly
arising in this class of algorithms: solutions far from the
local validity of the model and ill-conditioning due to finite-
precision arithmetic.

III. HDDP ALGORITHM: LINEAR PART

A. Dynamic Programming

We solve the problem (3) by applying the dynamic pro-
gramming algorithm [11]. Let us start by defining the cost-
to-go at step i for task k as:

G
(k)
i (xi, Ui) :=

N−1∑
j=i

φ(k)(xj , uj) + φ
(k)
N (xN ) .

Note that the total cost corresponds to the cost-to-go at
step i = 0. The optimal cost-to-go, or value function, is
its minimum value:

V
(k)
i (xi) := min

Ui

G
(k)
i (xi, Ui) .

By applying Bellman’s principle of optimality [14] we get
the recurrence equation of dynamic programming. This for-
mulation allows you to minimize over a single time step at
a time, instead of minimizing over the whole trajectory. The
recurrence equation is:

V
(k)
i (xi) := min

ui

φ(k)(xi, ui) + V
(k)
i+1(f(xi, ui)) , (4)

with i = N − 1, · · · , 0 initialized with
V

(k)
N (xN ) := φ

(k)
N (xN ). To simplify the notation we

will use the following definition:

V(k)
i (xi, ui) := φ(k)(xi, ui) + V

(k)
i+1(f(xi, ui)). (5)

Solving the above equation in the nonlinear context is
computationally infeasible even for low-dimensional state
and control spaces (Bellman’s curse of dimensionality). The
route followed in this paper, instead, is to iteratively solve
local quadratic approximations of the value function.

B. Hierarchical Dynamic Programming

We start by considering a nominal control policy
(ū0, · · · , ūN−1) =: Ū and the corresponding state trajectory
(x̄1, · · · , x̄N ) =: X̄ resulting by applying the former control
to the system (1) with initial condition x0. We also denote
the variation of the control and the state with respect to
their nominal values as δui := ui − ūi and δxi := xi − x̄i
respectively. With these definitions, we approximate (5) with
its Taylor’s series expansion truncated at the second order:

V(k)
i (xi, ui) ≈ V(k)

i (x̄i, ūi) +Q
(k)>
x,i δxi +Q

(k)>
u,i δui

+
1

2

(
δx>i Q

(k)
xx,iδxi + δu>i Q

(k)
uu,iδui

)
+ δx>i Q

(k)
xu,iδui ,

(6)



where the coefficients are defined as:

Q
(k)
x,i = ∂xφ

(k) + ∂xf
>∂xV

(k)
i+1

Q
(k)
u,i = ∂uφ

(k) + ∂uf
>∂xV

(k)
i+1

Q
(k)
xx,i = ∂xxφ

(k) + ∂xf
>∂xxV

(k)
i+1∂xf + ∂xV

(k)
i+1∂xxf

Q
(k)
uu,i = ∂uuφ

(k) + ∂uf
>∂xxV

(k)
i+1∂uf + ∂xV

(k)
i+1∂uuf

Q
(k)
xu,i = ∂xuφ

(k) + ∂xf
>∂xxV

(k)
i+1∂uf + ∂xV

(k)
i+1∂xuf .

(7)

All the derivatives are computed for xi = x̄i and ui = ūi.
To speed-up the algorithm, we neglect the terms depending
on the second-order derivatives of the dynamics in the
last three equations. This is the same approximation that
distinguishes the iterative LQR algorithm [15], [16] from
differential dynamic programming [17]. In most scenarios
and applications there is a trade-off between computational
burden and accuracy of the solution [16]. Because our final
goal is the real-time control of robots, we prefer fast-and-
approximate solutions over slow-and-accurate ones.

Now that we have a quadratic model of V(k)
i (xi, ui), we

can find the optimal control variation analytically:

δu
(k)∗
i =−Q(k)†

uu,iQ
(k)
u,i︸ ︷︷ ︸

δû
(k)
i

−Q(k)†
uu,iQ

(k)
ux,i︸ ︷︷ ︸

K
(k)
i

δxi+N
(k)
i δu

(k+1)
i (8)

where N (k)
i is a projector onto N (Q

(k)
uu,i) (i.e. the null space

of Q(k)
uu,i) and δu(k+1)

i is a free vector that will be chosen to
minimize the task k+ 1. Typically in robotics the dimension
of a task is much smaller than the number of DoFs of the
robot, which ensures the existence of the null space.

1) One task resolution: We start by solving the optimal
control problem with only one task. In this simplified sce-
nario the optimal control in (8) consists of the first two terms
only, i.e. δu(k+1)

i ≡ 0 for all i.
To obtain the value function at step i we substitute the

control (8) into (6), thus obtaining the following quadratic
form for the value function:

Vi(δxi) = Vs,i + V >x,iδxi +
1

2
δx>i Vxx,iδxi , (9)

where the scalar, linear and quadratic terms are defines as:

Vs,i = Q>u,iδûi +
1

2
δû>i Quu,iδûi

Vx,i = Qx,i −K>i Qu,i −K>i Quu,iδûi +Qxu,iδûi

Vxx,i = Qxx,i +K>i Quu,iKi − 2Qxu,iKi

(10)

Equation (9) is solved backward in time starting from
i = N − 1 to 0 and initialized with the quadratic approxima-
tion of φ(k)N (xN ). As expected, for a single task, the solution
of hierarchical differential dynamic programming coincides
analytically with the solution of DDP [17].

2) Multiple-task resolution: When we solve the problem
for a task k > 1 the control variable in no longer free. Indeed
δû

(j)
i and K(j)

i have already been chosen for all tasks j < k.

The control variable must then respect the following form:

δui = [δû
(1)
i + · · ·+N

(1)
i · · ·N

(k−2)
i δû

(k−1)
i ]

− [K
(1)
i + · · ·+N

(1)
i · · ·N

(k−2)
i K

(k−1)
i ]δxi

+N
(1)
i N

(2)
i · · ·N

(k−1)
i δu

(k)
i

:= δ ¯̂u
(k−1)
i − K̄(k−1)

i δxi + N̄
(k)
i δu

(k)
i . (11)

Substituting (11) into (6) we get updated values for the
coefficients in (7):

Q̄
(k)
x,i = Q

(k)
x,i − K̄

(k−1)>
i Q

(k)
u,i + Q̄

(k)
xu,iδ

¯̂u
(k−1)
i

Q̄
(k)
u,i = Q

(k)
u,i +Q

(k)
uu,iδ

¯̂u
(k−1)
i

Q̄
(k)
xx,i = Q

(k)
xx,i + K̄

(k−1)>
i Q

(k)
uu,iK̄

(k−1)
i − 2Q

(k)
xu,iK̄

(k−1)
i

Q̄
(k)
uu,i = N̄

(k−1)
i Q

(k)
uu,iN̄

(k−1)
i

Q̄
(k)
xu,i = Q

(k)
xu,i − K̄

(k−1)>
i Q

(k)
uu,i .

(12)
With the above redefinition we can compute the optimal

control δu(k)∗i using (8) with the substitution Q ← Q̄.
Similarly, the value function at step i has the same form
as the one in (9) provided that its coefficients in (10) are
computed with Q̄.

Equations (12) and (11) already outline the correct proce-
dure to compute the control and the value-function update
during the backward pass. It is clear that two sweeps on the
task hierarchy are required: 1) from k = 1 to K to compute
the feedforward terms, the feedback gain matrices and the
null-space projectors; 2) from k = K − 1 to 1 to update the
value function. Algorithm 1 summarizes the procedure.

Algorithm 1 Hierarchical Linear Solver

Initialize V (k)
x,N and V (k)

xx,N ∀ task k
for i = N − 1 to 0 do

for k = 1 to K do
Update δ ¯̂u

(k−1)
i , K̄(k−1)

i and N̄ (k−1)
i

5: Compute Q(k)
x,i , Q

(k)
u,i , Q

(k)
xx,i, Q

(k)
uu,i and Q(k)

xu,i

Compute Q̄(k)
x,i , Q̄

(k)
u,i , Q̄

(k)
xx,i, Q̄

(k)
uu,i and Q̄(k)

xu,i

δû
(k)
i = −Q̄(k)†

uu,iQ̄
(k)
u,i

K
(k)
i = Q̄

(k)†
uu,iQ̄

(k)
ux,i

N
(k)
i ← projector onto N (Q̄

(k)
uu,i)

10: end for
for k = K − 1 to 1 do

Compute V (k)
x,i and V (k)

xx,i

end for
δûi = δ ¯̂u

(1)
i , Ki = K̄

(1)
i

15: end for
return {δûi, Ki, i = 0, . . . , N − 1}

C. Computational Cost Analysis

The benefit of the proposed hierarchical dynamic program-
ming approach with respect to the algorithm described in
[12] is its computational complexity. We now analyze and
compare the computational cost of the two algorithms.



1) HDDP computational complexity analysis: We start
by considering a single iteration of the linear part of the
algorithm. At each iteration we compute the coefficients
Q̄

(k)
(·) . This step consists of a series of matrix-matrix multipli-

cations and matrix-vector multiplications (O(r3), where r is
the largest dimension of the matrices involved).To compute
the pseudoinverse and the null-space projector we have to
perform an orthogonal decomposition of the matrix Q̄

(k)
uu ,

e.g. we chose the SVD decomposition. Depending on the
algorithm the cost can vary, but it is proportional to O(m3).
The value-function update step consists of matrix-matrix
and matrix-vector multiplications too. Its cost is still in the
order of O(m3). To summarize, the above computations are
performed for each of the K tasks and for all the N time
steps thus yielding the total cost of O(N K m3).

2) Comparison with POC computational complexity:
POC did not take advantage of the intrinsic sparsity of
the optimal control problem. Indeed at every iteration a
matrix S ∈ RmN×mN is formed and then decomposed
with the SVD algorithm. Its computational cost amounts at
O(N3 m3). The total algorithmic cost is dominated by the
above decomposition. We can thus neglect the cost due to
matrix multiplications. The total complexity of the linear part
of the algorithm is O(N3 K m3).

Comparing the two costs the difference in complexity is
clear: POC is cubic in the number of time steps while our
algorithm is linear.

IV. HDDP ALGORITHM: NONLINEAR HEURISTIC

A. Regularization Procedure

The procedure described in the previous section operates
on a local approximation of the original problem (3) and
in this context regularization helps attenuating numerical
issues arising from the finite-precision arithmetic and the
local validity of the approximated model.

We introduce two regularization procedures. The first
one, which resembles the Levenberg modification for the
nonlinear least-squares problem, penalizes state deviations
from the nominal state trajectory. A parameter λ(k) regulates
the intensity of the regularization, which is applied in (7) to
the definitions of Q(k)

uu,i and Q(k)
xu,i:

Q
(k)
uu,i = ∂uuφ

(k) + ∂uf
>(∂xxV

(k)
i+1 + λ(k)In)∂uf

Q
(k)
xu,i = ∂xuφ

(k) + ∂xf
>(∂xxV

(k)
i+1 + λ(k)In)∂uf ,

where In ∈ Rn×n is the identity matrix.
The second regularization consists in damping the pseu-

doinverses [18] with a parameter µ(k). Note that the null-
space projectors must be computed with the undamped
pseudoinverses to ensure the proper hierarchy propagation.

B. Line-Search Procedure

Another important feature of the proposed algorithm con-
sists in adopting a custom line-search procedure, which
reduces the optimization step computed on the quadratic
approximation. More in details, the control-policy update
rule (8) consists in a feedback Ki(xi−x̄i) and a feed forward

δû
(k)
i term. The latter in particular, might significantly de-

grade the policy optimality and should therefore be carefully
chosen by a suitable line-search procedure, complicated by
the hierarchical nature of the algorithm.

The line search adopted in our algorithm is the following:
a set of constants ν(k) ∈ [0, 1], one for each task, is chosen
and the control:

ui = ūi +

K∑
k=1

ν(k)δû
(k)
i −Ki(xi − x̄i)

is applied to the system (1). The policy for selecting the step
size ν(k) consists in initializing ν(k) = 0 for all the tasks.
We then start from the highest-priority task traversing the
whole hierarchy down to the last task. At a generic task k
we set ν(k) = 1 and we progressively decrease it until all
the costs decrease in a lexicographic order, i.e. a decrease of
the cost for the task k must not lead to an increase of the
cost of any tasks j < k.

C. Algorithm Summary

We now summarize the algorithm proposed to solve a cas-
cade of hierarchical optimal control problems. An iteration
of the main algorithm is composed of the following phases:

1) Problem approximation.
2) Local control computation, or backward pass.
3) System simulation, or forward pass.

Starting from an initial nominal trajectory we approximate
the system and the costs and we compute a control mod-
ification. In the forward pass, we simulate the system and
compute the new cost for every task. In this phase we per-
form the line-search procedure. In case of no improvements,
we increase the regularization parameters and repeat the
backward pass. If at least one task has improved, we decrease
its regularization parameter and accept the iteration.

Convergence is tested at the end of each iteration. The
convergence criteria consists in an absolute criterion and a
relative one. We assume that the algorithm has converged
if the cost is lower than the absolute tolerance value. Alter-
natively, the relative improvement between two successive
iterations must be smaller than a relative tolerance value.

Algorithm 2 summarizes in pseudo code the hierarchical
dynamic programming algorithm.

V. SIMULATION RESULTS

This section presents two sets of simulations. The first
tests validate the expected computational improvements of
our new formulation with respect to POC [12]. The second
tests instead investigate the issues arising when using weights
in iLQR to approximate strict priorities.

A. Experimental Setup

All tests have been conducted on a workstation with an
Intel Xeon quad core at 3.2GHz with 8GB of RAM. We
tested the three algorithms on a customized version of the
Compliant huManoid (CoMan) simulator [19]. The base of
the robot was fixed because we used only its upper body,
which counts 11 DoFs: 4 in each arm and 3 in the torso.



Algorithm 2 Hierarchical Differential Dynamic Program-
ming

Require: Given x0 and Ū
Ensure: Ū ,K∗i

K∗i ← 0
X̄ ← FORDWARDDYNAMICS(x0, Ū ,K∗)
G(k) ← COMPUTECOST(X̄, Ū )
Initialize regularization parameters: λ← λ0, µ← µ0

5: loop
for k = 1, · · · ,K and i = 0, · · · , N do

Compute ∂(·)φ(k), ∂xf and ∂uf
end for
{δû(k)i ,Ki} ← LINEARSOLVER(∂(·){φ(k), f}, µ, λ)

10: {Unew, G
(k)
new} ← LINESEARCH(δû(k)i ,Ki)

if all(G(k)
new −G(k) > 0) then

increase λ and µ
goto backward pass

else
15: decrease λ(k) and µ(k) for improved tasks

end if
Ū ← Unew, G(k) ← G

(k)
new, K∗i ← Ki

if converged then
break

20: end if
end loop
return {Ū ,K∗i }

Fig. 1: Screenshots of the simulation. On the left the initial
configuration of the robot. On the right the final configuration
during one test. Colored balls represent the target. In order
of priority: yellow, red and green.

All the algorithms and the dynamics computation have been
coded in Matlab 2012b.

B. Test Description

We controlled the humanoid robot in order to reach three
cartesian points with three different parts of its body, while
minimizing the effort (i.e. the joint torques). In order of
decreasing priority, we controlled the position of the left-
arm end-effector, right-arm end-effector and the top of the
torso. Figure 1 shows the test scenario.

We discretized the robot dynamics with a time step of
5ms for a total of 50 steps. In all the tests, we initialized
the control trajectory with gravity compensation torques, so
that the robot maintained the initial state for the whole time
horizon.

TABLE I: Comparison between POC and HDDP. Task errors
are in [m2]. Values are average of 100 trials.

Error [m2] Iter. CPU
TimeTask 1 Task 2 Task 3

Test 1 POC 4.07 10−7 1.59 10−2 N.A. 13 139s
HDDP 1.87 10−8 1.22 10−2 N.A. 411 107s

Test 2 POC 5.03 10−7 1.39 10−2 2.87 10−2 28 511s
HDDP 1.42 10−8 1.24 10−2 2.24 10−2 382 136s

Test 3 POC 6.73 10−7 1.44 10−5 N.A. 21 206s
HDDP 4.75 10−9 3.98 10−9 N.A. 281 187s

C. Comparison with Prioritized Optimal Control

We first tested our algorithm against our previous im-
plementation described in [12]. The reaching cost func-
tions contain only a final cost, i.e. it takes the form
G(k)(X,U) ≡ φ(k)N (xN ), being the squared norm of the
distance between the end-effector and the target position:

φ
(k)
N (xN ) = ||h(xN )− h̄||2 ,

where h(x) : Rn 7→ R3 is the function mapping the state
variable x to a cartesian position, and h̄ is its reference value.

We tested three different scenarios: i) two conflicting
reaching tasks for the left and right arm end-effectors
(Test 1); ii) three conflicting reaching tasks, using both arms
and the torso (Test 2); iii) two compatible reaching tasks for
the left and right arm end-effectors (Test 3). In all tests we
added an effort task at the bottom of the hierarchy, which
removes any left redundancy. We repeated the tests 100
times changing the original task targets of a value randomly
sampled from a uniform distribution between 0 and 5cm.
Table I reports the mean value of the final costs and of the
total computation time for the three scenarios.

For both algorithms the absolute and relative tolerance for
the stopping criteria have been set to 10−8[m2] and 10−4,
respectively.

Table I shows that, as far as the final error is concerned,
HDDP manages to achieve a slightly better performance in
all three scenarios. Unexpectedly, in Test 3, in which the
tasks are compatible, POC yields some errors, especially in
the secondary task, while HDDP manages to achieve almost
zero errors.

From the computational standpoint HDDP is faster then
POC in every test as we expected. Note that the CPU time
is not directly proportional to the number of iterations in
the HDDP algorithm. This is mainly due to the line-search
procedure: big values of ν(k) mean few forward-dynamics
simulations, resulting in faster iterations.

D. Weighted Cost Comparison

This test compares our algorithm with the standard iLQR
control in the case of three conflicting reaching tasks (Test 2).
To approximate strict priorities we used a weighted sum of
the task costs:

G(X,U) = w3g1(X,U)+w2g2(X,U)+wg3(X,U)+ge(U),

where gi(·) is the ith-task cost function, ge(U) is the effort
task and w is a user-defined weight. Table II shows the results



TABLE II: Task errors ([m2]) for the three-reaching scenario
using a single weighted cost.

w
Error [m2]

Task 1 Task 2 Task 3

W
ei

gh
te

d
H

D
D

P 10 7.27 10−4 2.03 10−2 7.51 10−2

102 1.38 10−6 1.43 10−2 2.86 10−2

103 1.14 10−8 1.44 10−2 2.37 10−2

104 6.64 10−10 1.44 10−2 2.37 10−2

105 6.64 10−10 1.44 10−2 2.37 10−2

106 4.1 10−4 1.44 10−2 2.41 10−2

iL
Q

R

10 7.2 10−4 2.0 10−2 7.5 10−2

102 1.3 10−6 1.43 10−2 2.78 10−2

103 9.5 10−9 1.44 10−2 2.36 10−2

104 7.56 10−6 1.47 10−2 2.32 10−2

105 3.49 10−6 1.46 10−2 2.3 10−2

106 2.37 10−3 1.33 10−2 3.33 10−2

for different weights from w = 10 to w = 106. We used two
different implementations to check that the results did not
depend on some implementation details: i) Weighted HDDP
is our algorithm with a single weighted task; ii) iLQR is an
implementation of [15]. In both cases the cost has been used
both as running cost and as final cost.

For the first two weights, i.e. w = 10 and w = 102,
both implementations achieved the same result: the task
priorities are not respected and the solutions are suboptimal.
By increasing the weights the solutions obtained approach
the one from multi-task HDDP. Interestingly, from w = 104

the two implementations yield significantly different results.
In both cases increasing the weights over a certain value
leads to larger errors.

We can conclude that with the appropriate weights iLQR
can find a solution that is very similar to the one of HDDP.
However, if the weights are not appropriate iLQR can give
either suboptimal or meaningless solutions. Moreover, we
believe that the complexity of the weight tuning is propor-
tional to the number of tasks, which could easily be higher
than 4 when controlling a full humanoid.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed an efficient way to compute the
solution of the prioritized optimal control (POC) problem
that we previously introduced in [12]. We reformulated the
original POC method, and solved the problem by means
of a modified version of dynamic programming, capable
of handling strict task priorities. The resulting algorithm is
significantly faster than its previous version, while retaining
the capability to correctly handle strict priorities.

Our final goal is to apply this method to a real humanoid
robot, but before doing so we need to address some issues.
Taking into account torques and joint limits is crucial, and it
can be accomplished by introducing inequalities constraints
into the problem. Since humanoid robots are almost al-
ways in contact with the environment, the controller must
consider the contact dynamics. Thanks to the generality of
our formulation, it should be easy to integrate any smooth
contact dynamics [20] inside our algorithm. Finally, the
current implementation has been coded in Matlab, which
allowed only “relative” comparisons. To properly measure

the computational load of the algorithm, an efficient, multi-
threaded C++ implementation is required.

As humanoid robots become more and more complex,
the ability to specify simple and clear tasks through strict
priorities — thus avoiding the time-consuming and error-
prone weight tuning — could greatly simplify the synthesis
of complex behavior for these systems.
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