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RATIONAL APPROXIMATION IN THE SENSE OF KATO FOR
TRANSPORT SEMIGROUPS∗

MOHAMED AMINE CHERIF† , HASSAN EMAMIRAD‡ , AND MAHER MNIF †§

Abstract. In this paper we mix the rational approximation procedure, which is a time ap-
proximation with approximation in the sense of Kato, which is a space approximation for linear
transport equation. In 1970, H. J. Hejtmanek [9] gave such a procedure for approximation of the
linear transport equation and he proved the convergence only for explicit Euler scheme. We extend
this procedure to explicit and implicit Euler, Crank-Nicolson and Predictor-Corrector schemes which
have the rate 1,2 and 3 in the sense of rational approximation. Finally, we construct the numerical
illustration for justifying the above rate of convergence.

Key words. Acceptable rational function. Euler’s explicit and implicit algorithms. Crank-
Nicolson scheme. Predictor-Corrector algorithm. Rate of convergence. Free, absorption, production
transport semigroups

AMS subject classifications. 65M12, 65J10

1. Introduction . Let X,Y be real or complex Banach spaces. Let ‖.‖ denote
the norm in X. L(X, Y ) is the space of all bounded linear operators from X to Y ,
L(X) := L(X, X). Let A be a closed densely defined linear operator in a Banach space
X which generates a strongly continuous semigroup etA. By a rational approximation
we mean the existence of a rational function R(z), z ∈ C such that [R( t

nA)]n tends in
some sense to etA. It is clair that any rational function cannot have a such property,
so we define

Definition 1.1. A rational complex function R, is acceptable, if
(i) |R(z)| ≤ 1, for all Re(z) ≤ 0;
(ii) R(ix) 6= 0 for all x ∈ R;
(iii) There exists a real constant p ≥ 1 such that R(z) = ez + O(|z|p+1) as |z| → 0.

In this definition the condition (iii) implies that R(0) = R′(0) = 1 and p is called
the convergence rate of this approximation. If we want to emphasis on the rate of
convergence we say that R, is p-acceptable (see [6]).

Concerning the approximation in time (semi-discrete approximation), there is
wealth of literature concerning the convergence and stability of the rational approxi-
mations of an abstract Cauchy problem (see [1, 2, 3, 7, 10, 12, 13, 14, 15, 17]) In [10],
Hersh and Kato have shown that if R is p-acceptable, then for any f ∈ D(Ap+2),

lim
n→∞

‖R(
t

n
A)nf − etAf‖ = 0 (1.1)

and the rate of convergence is O((1/n)p).
In [2] the assertion (1.1) is improved by Brenner and Thomée in the following

manner:
Theorem 1.2. Let R be a p-acceptable rational function, then for any f ∈

D(Ap+1),

‖R(
t

n
A)nf − etAf‖ = O((1/n)p+1). (1.2)
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In other words, the rate of convergence is p.
In [7] and [13] an important improvement concerning the rate of convergence is

given in the case where A is the generator of an analytic strongly continuous semi-
group, by proving that in this case one has (1.1) for any f ∈ X. In [14] and more
recently in [15] and [17], the same problem is investigated, when A is the generator
of an analytic semigroup and the time step size is not uniform. In [8] this problem
is generalized in the case where the time step size is not uniform and A generates
a C0-semigroup which is not analytic and it is proved that for any α > 1/2 and for
every s ∈ (0, α−1/2) , there exists some constant C∗ depending on α and s such that

||(R(
t

n
A)n − etA)(1−A)−α|| ≤ C∗(t + 1)

3
2 (

t

n
)β , (1.3)

where β = ps
p+s+1 .

In the next section we will give some different expressions of the rational ap-
proximation function in an abstract setting and we define few well known algorithms
such as Euler explicit and implicit methods which have the same rate of convergence
p = 1, Crank-Nicolson method with p = 2 and predictor corrector with p = 3. The
corresponding rate of convergence of these methods in time follows from Theorem 1.2.

Concerning the approximation in space, when A is the generator of a (C0) semi-
group, we define the convergence in the sense of Kato (see [11]).

Definition 1.3. We say that a sequence of Banach spaces {(Xn, ‖.‖n) : n =
1, 2, · · · } converges to a Banach space (X, ‖.‖) in the sense of Kato and we write

Xn
K−→ X

if for any n there is a linear operator Pn ∈ L(X, Xn) (called an approximating oper-
ator) satisfying the following two conditions:
(K1) limn→∞ ‖Pnf‖n = ‖f‖ for any f ∈ X;
(K2) for any fn ∈ Xn, there exists f (n) ∈ X such that fn = Pnf (n) with ‖f (n)‖ ≤

C‖fn‖n (C is independent of n).

Let Xn
K−→ X, Bn ∈ L(Xn) and B ∈ L(X). We say that Bn converges to B in

the sense of Kato and we write Bn
K−→ B if

lim
n→∞

‖BnPnf − PnBf‖n = 0 (1.4)

for any f ∈ X.
In the above context T. Ushijima [16] recovered the Lax equivalence Theorem.

Another investigation in this direction is accomplished in [5] by the two first authors
of this paper in which it is constructed an approximation family for the transport
semigroup which converges in the sense of Kato to transport semigroup.

We assume that R is is a p-admissible rational function, with

R(z) :=
P (z)
Q(z)

=

∑k
j=0 αjz

j∑`
j=0 βjzj

(1.5)

Definition 1.4. Let A be the generator of a (C0) semigroup U(t). We say that
R, is p-acceptable in the sense of Kato, if for any n ∈ N there exists a finite
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sequence of operators A
(j)
n , j = 1, 2, · · · ,m = (k(k + 1)`(` + 1))/2, such that each of

them is a finite difference approximation of A and

‖Un(t)Pnf − PnU(t)f‖n = O((1/n)p+1), (1.6)

where

Un(t) =
α0I +

∑k
j=1 αj

∏j
p=1 A

(p)
n

β0I +
∑`

j=1 βj

∏j
p=1 A

(p+k)
n

. (1.7)

We think that is difficult to establishes the existence of the sequence A
(j)
n , j =

1, 2, · · · ,m in a systematic manner, but we do believe that is possible to construct
this sequence in case by case.

For an illustration we look to the linear transport equation. We consider a matter
of particles, constituted of neutrons, electrons, ions and photons. Each particle moves
on a straight line with constant velocity until it collides with another particle of
the supporting medium resulting in absorption, scattering or multiplication. The
unknown of the transport equation is the particle density function u(x, v, t). This is a
function in the phase space (x, v) ∈ Ω× V ⊂ R2n at the time t ≥ 0, which belongs to
its natural space X = L1(Ω, V ). Actually,

∫
Ω×V

u(x, v, t) dx dv designates the total
number of particles in the whole space Ω× V at the time t. The general form of the
transport problem is the following

(TP)


∂u
∂t = −v · ∇u− σ(x, v)u +

∫
V

p(x, v′, v)u(x, v′, t)dv′ in Ω× V,

u(x, v, t) = 0 if x · v < 0, for all x ∈ ∂Ω
u(x, v, 0) = f(x, v) ∈ X,

In this equation which is known as linear Boltzmann equation the first term of
the right hand side −v · ∇u(x, v, t) illustrates the movement of the classical group
of the particles in the absence of the absorption and production interactions. The
second term in which σ is the rate of absorption, represents the lost of the particles
caused by the diffusion or absorption at the point (x, v) in the phase space. Finally
the integral of the last term represents the production of the particles at the point
(x, v) in the phase space. The kernel p(x, v′, v) in this integral generates the transition
of the states of particles at the position x and having the velocity v′ to the particles at
the same position having the velocity v. The velocity space V is in general a spherical
shell in Rn, namely

V = {v ∈ Rn : 0 ≤ vmin ≤ |v| ≤ vmax ≤ +∞}.

In this article, we study the particular feature of the transport equation in which
we replace Ω with (−a, a) and we take V := [−1, 1]. We assume that σ is a strictly
positive continuous function with

0 < sm ≤ σ(x) ≤ sM for almost any x ∈ (−a, a) (1.8)

and we replace the kernel p(x, v, v′) by 1
2p(x) which is a positive continuous function

independent of (v, v′), such that

0 < sup
x∈[−a,a]

p(x) = kM . (1.9)
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With these assumptions the transport problem (TP) can be replaced by the
following simplified problem

∂u
∂t = −v · ∇u− σ(x)u + 1

2

∫ 1

−1
p(x)u(x, v, t)dv in (−a, a)× [−1, 1];

u(−a, v ≥ 0, t) = 0, u(a, v ≤ 0, t) = 0 for all t > 0;
u(x, v, 0) = f(x, v) ∈ L1((−a, a)× [−1, 1]).

(1.10)

Remark 1.5.
(a) We denote the production term Af = 1

2

∫ 1

−1
p(x)f(x, v)dv = p(x)Pf , with

Pf =
1
2

∫ 1

−1

f(x, v)dv, (1.11)

which is a rank one projection on L1((−a, a) × [−1, 1]). This space being gen-
erating we get ‖P‖ = 1, and ‖A‖ = kM , since ‖A‖ ≤ kM and for the constant
function p(x) = kM we get the equality.

(b) It is well-known that the problem (TP) generates a (C0) semigroup U(t)
For defining the approximating spaces Xn we proceed as in [5]. We divide the

phase space (−a, a) × [−1, 1] into a finite number of cells by chopping the x interval
(−a, a) into 2mn equal parts and the v interval [−1, 1] into 2µn equal parts; hn and
kn are the lengths of these parts, that is,

hn =
a

mn
, kn =

1
µn

.

Then each cell can be labeled by a pair of integers (i, j) ∈ N , where

N := {(i, j) : i = −mn, . . . ,−1, 0, 1, . . . ,mn. j = −µn, . . . ,−1, 0, 1, . . . , µn}.

The number of the particles in cell γ(i, j) = [ihn, (i+1)hn]× [jkn, (j +1)kn] is written
ξi,j .

We define the set of all real vectors ξi,j as the Banach space Xn with the norm

‖ξ‖n =
∑
i,j

|ξi,j |, ξ ∈ Xn .

In [5] for proving that the approximating space Xn converges in the sense of Kato to
X, we have proved the following Lemma.

Lemma 1.6. (See [5]) For Pnf = {ξi,j : (i, j) ∈ N} where

ξi,j =
∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v) dx dv,

we have
(i) ‖Pnf‖n = ‖f‖, for any 0 ≤ f ∈ X;
(ii) ‖Pn‖L(X,Xn) = 1;
(iii) limn→∞ ‖Pnf‖n = ‖f‖, for any f ∈ X.
The three last sections are concerned with different cases of transport equation.

In the first one (section 3) we consider the collision free transport equation when the
absorption rate σ and production p rate of transport problem (TP) are zero. We
show that the approximating problem converges in the sense of Kato and by choosing
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an appropriate approximating operator for different schemes all the schemes (Explicit
and implicit Euler, Crank-Nicolson and Predictor-Corrector) give a unique algorithm
which is a discrete form of the exact solution. We have to point out that this is one of
the rare partial differential equations such that by taking an adequate approximating
operator for any scheme, one can retrieve a discrete version of the exact solution.

In the section 4 we take σ 6= 0 and p ≡ 0, the correspondent equation is called
tomography or absorbing transport equation. Since here we cannot retrieve numer-
ically the exact solution we prove that the rate of the explicit and implicit Euler,
Crank-Nicolson and Predictor-Corrector schemes are respectively 1,2 and 3.

The section 5 is devoted to transport equation in his whole generality. In this
case we cannot represent the explicit solution of the equation. So, we will use the
Theorems 1.2 and 3.4 of [5] for proving the convergence of the approximate solution
in the sense of Kato.

In the last section we construct the numerical illustration for justifying the above
rate of convergence.

2. Finite-difference approximation in abstract setting. Let us consider
the abstract Cauchy problem:

(CP)

{
du
dt = Au for t > 0,

u(0) = f ∈ X

in a Banach space X and assume that A is the generator of a bounded strongly
continuous semigroup etA in X.

There are various methods for resolving this problem by time finite-difference
approximation and the most well-known of them are
(a) Euler’s implicit and explicit schemes:

xn+1 − xn

τ
= Axn+1 and

xn+1 − xn

τ
= Axn,

which are equivalent to

xn+1 = (I − τA)−1xn and xn+1 = (I + τA)xn.

Replacing τA by z the rational approximation function of Euler’s implicit scheme
becomes R(z) = (1− z)−1 and for explicit Euler’s scheme R(z) = 1 + z.

(b) Crank-Nicolson scheme:
The Crank-Nicolson scheme can be obtained by mixing the explicit and implicit
Euler’s schemes as follows. Take the xn+1/2 the value of u at the point tn+1/2 in
the middle of [tn, tn+1] such that

xn+1 − xn+1/2

τ/2
= Axn+1/2 and

xn+1/2 − xn

τ/2
= Axn+1/2,

which gives

xn+1 = (I + (
τ

2
)A)(I − (

τ

2
)A)−1xn.

Here the rational approximation function will be R(z) = (2 + z)(2− z)−1.
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(c) Predictor-Corrector scheme:
Here we add the equation

xn+1 − xn

τ
= A

(
xn+1 + xn

2

)
with a predicted equation

xn+1 − xn

τ
= A(xn+1/2),

where the predicted value of xn+1/2 can be corrected by the equation

xn+1 − xn+1/2

τ/2
= A(xn+1).

This manipulation gives

xn+1 = xn +
τ

3

[
Axn + A

(
2xn+1 −

τ

2
Axn+1

)]
and by separating xn+1 from xn we get

xn+1 = (I +
τ

3
A)(I − 2τ

3
A +

τ2

6
A2)−1xn.

The corresponding rational function would be R(z) = (1 + z
3 )(1− 2z

3 + z2

6 )−1.
We will see that the above representations of rational approximation functions of
different schemes can be matched into the following definition for different values of
the integer p.

Remark 2.1. For implicit Euler’s method

R(z) = (1− z)−1 = 1 + z + O(z2). (2.1)

Since |R(z)| = 1/[(1 − Re(z))2 + Im(z)2] and Re(z) ≤ 0, we obtain the assertion (i)
of Definition 1.1. For z = ix, R(z) = 1/(1 − ix) 6= 0 and the assertion (ii) follows.
Finally ez =

∑
k≥0 zk/k! and (2.1) imply that

R(z)− ez = O(|z|2), (2.2)

the same estimation holds for Euler’s explicit scheme and consequently we get the
assertion (iii) of Definition 1.1, and by using Theorem 1.2 the rate of convergence is
p = 1 for both implicit and explicit Euler methods.

Remark 2.2. For Crank-Nicolson method

R(z) = (2 + z)(2− z)−1 = 1 + z +
z2

2
+ O(z2). (2.3)

Since for a ≤ 0,
√

(2− a)2 + b2 ≥
√

(2 + a)2 + b2, we obtain the assertion (i) of
Definition 1.1. For z = ix, |R(z)| = |(2 + ix)/(2 − ix)| = 1 6= 0 and the assertion (ii)
follows. Finally, ez =

∑
k≥0 zk/k! and (2.3) imply that

R(z)− ez = O(|z|3), (2.4)

consequently we get the assertion (iii) of Definition 1.1 for p = 2, and by using
Theorem 1.2 the rate of convergence is p = 2.
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Remark 2.3. For predictor-corrector scheme

R(z) =
1 + z

3

1− 2z
3 + z2

6

= 1 + z +
z2

2
+

z3

6
+ O(|z|4). (2.5)

We remark that for z = ix, 0 6= |R(z)| ≤ 1, since 1+ x2

9 ≤ 1+ x2

9 + x4

36 . Furthermore the
conformal transformation z 7→ 2i(z−1)

|z−1|2 +i, maps the left hand-side plane [Rez ≤ 0] into
the unit disc D(0, 1), so according to maximum principle |R(z)| ≤ 1 for all Re(z) ≤ 0
and the assertions (i) and (ii) of Definition 1.1 follow. Finally, (2.5) implies that

R(z)− ez = O(|z|4), (2.6)

consequently we get the assertion (iii) of Definition 1.1 for p = 3, and by using
Theorem 1.2 the rate of convergence is p = 3.

3. Approximation of collision-free transport equation. The first step in
this model is when the particles move without obstacle, that is the medium is so
rarefied such that there is no other particle can change the directions of each particle.
In this case if at the time t = 0 and at the point x there are f(x, v) particles with
velocity v, then at the time t, these particles find themselves at the point x− tv. So
that the solution of the collision-free transport problem

(CFTP)


∂u
∂t = T0u := −v · ∇u in Ω× V,

u(x, v, t) = 0 if x · v < 0, for all x ∈ ∂Ω
u(x, v, 0) = f(x, v) ∈ X,

is given by the family of operators {U0(t)}t∈R defined by

u(x, v, t) = [U0(t)f ](x, v) :=

{
f(x− tv, v), if x− tv ∈ Ω
0 elsewhere

(3.1)

which is called the collision free transport semigroup.
With this consideration the discrete version of the collision free semigroup defined

in (3.1) will be

[U0,n(kτn)ξ]i,j = ξi−kj,j if (i, j) ∈ N and k = 1; · · · , n. (3.2)

In fact, given t, n and µn, we take τn = t/n and mn = [na(2µn + 1) − t]/(2t) such
that τnkn/hn = 1, since ihn − τnkjkn = hn(ı− τnkn

hn
kj), so we get (3.2).

Remark 3.1. Here we adopt the convention that ξi,j = 0, whenever i < −(mn+1)
or i > mn. This takes care of the boundary condition that no particles enter Ω through
∂Ω.

Theorem 3.2. For U0(t)f(x, v) = f(x− tv, v), we have
(a)

U0,n(t)Pnf = PnU0(t)f. (3.3)

(b) ‖PnU0(t)f‖∞ = sup{|ξi−nj,j | : over all partitions N} ≤ M , where the constant
M is independent of n.
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From (3.3) we get the convergence in the sense of Kato, with zero at the right
hand side of (1.6). Proof. The assertion (a) follows from

U0,n(t)Pnf = U0,n(t){ξi,j} = {ξi−nj,j} =

{∫
γ(i−nj,j)

f(x, v)dxdv

}
{∫

γ(i,j)

f(x− tv, v)dxdv

}
= PnU0(t)f.

and the assertion (b) from

|ξi−nj,j | =
∫∫

γ(i−nj,j)

f(x, v)dxdv ≤ ‖f‖.

�
By computation of this expression we follow the exact value of approximating

solution. As we will see the collision-free transport equation is one of the seldom
equations in which by the judicious choice of discretization operators, the final value
of these methods coincide with the exact value of solution at the point of discretization.

For the sake of importance of this result, we will announce it as a Theorem
Theorem 3.3. Let us define for Euler’s explicit, Euler’s implicit, Crank-

Nicolson and predictor-corrector schemes the following approximated semigroup:
• [UEuler−exp

0,n (τn)ξ]i,j = [ξ + T Euler−exp
0,n ξ](i,j), where

T Euler−exp
0,n := −jknτn

ξi,j − ξi−j,j

jhn
= τn

kn

hn
(ξi−j,j − ξi,j) if (i, j) ∈ N ,

(3.4)
• [UEuler−imp

0,n (τn)ξ]i,j =
[
(I − T Euler−imp

0,n )−1ξ
]

i,j
, where

T Euler−imp
0,n := −jknτn

ξi+j,j − ξi,j

jhn
= (ξi,j − ξi+j,j) if (i, j) ∈ N , (3.5)

• [UCr−Ni
0,n (τn)ξ]i,j = [(I + 1

2T
(1)
0,n)(I − 1

2T
(2)
0,n)−1ξ]i,j , where

T
(1)
0,n :=− jknτn

u (ihn, jkn)− u
((

i− j
2

)
hn, jkn

)
jhn/2

= 2
(

u

(
(i− j

2
)hn, jkn

)
− u(ihn, jkn)

)
.

and

T
(2)
0,n :=− jknτn

u
((

i + j
2

)
hn, jkn

)
− u (ihn, jkn)

jhn/2

= 2
(

u (ihn, jkn)− u

(
(i +

j

2
)hn, jkn

))
and finally
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• [Upre−cor
0,n (τn)ξ]i,j = [(I + 1

3 T̃
(1)
0,n)(I − 2

3 T̃
(2)
0,n + 1

6 T̃
(3)
0,nT̃

(4)
0,n)−1ξ]i,j , where

T̃
(1)
0,n := 3

[
T Euler−exp

0,n ξ
]

i,j
+

[
T Euler−exp

0,n ξ
]

i−j,j
− 3

[
T Euler−exp

0,n ξ
]

i− j
2 ,j

=
[
ξi−2j,j − 3ξi− 3j

2 ,j + 2ξi−j,j + 3ξi− j
2 ,j − 3ξi,j

]
,

T̃
(2)
0,n = T̃

(3)
0,n :=

1
2

[
T

(1)
0,nξ + T

(2)
0,nξ

]
i,j

=
[
ξi− j

2 ,j − ξi+ j
2 ,j

]
and T̃

(4)
0,n := T

(1)
0,n.

Then we have

[UEuler−exp
0,n (τn)ξ]i,j = [UEuler−imp

0,n (τn)ξ]i,j = [UCr−Ni
0,n (τn)ξ]i,j = [Upre−cor

0,n (τn)ξ]i,j = ξi−j,j .

Proof. For explicit Euler’s scheme, by choosing mn and µn such that τn
kn

hn
= 1 for

any n, a simple calculation gives the expression of (3.2) for k = 1.
For implicit Euler’s scheme, since

ξi,j = [(I − T
(1)
0,n)η]i,j = ηi,j − τn

kn

hn
(ηi,j − ηi+j,j) = ηi+j,j

and once more we obtain ηi,j = ξi−j,j , as we have expected.
For the Crank-Nicolson scheme, since

[UCr−Ni
0,n (τn)ξ]i,j = [(I +

1
2
T

(1)
0,n)(I − 1

2
T

(2)
0,n)−1ξ]i,j

= (I +
1
2
T (1)

n )ξi− j
2 ,j = ξi−j,j .

Finally, for the predictor-corrector scheme we remark that[
(I − 2

3
T̃

(2)
0,n +

1
6
T̃

(3)
0,nT̃

(4)
0,n)ξ

]
i,j

= ξi,j −
2
3
(ξi− j

2 ,j − ξi+ j
2 ,j) +

1
3
T̃

(3)
0,n(ξi− j

2 ,j − ξi,j)

=
2
3
ξi,j +

1
3
ξi−j,j + ξi+ j

2 ,j − ξi− j
2 ,j

and from other hand[
(I +

1
3
T̃

(1)
0,n)ξ

]
i,j

= ξi,j +
1
3

[
− 3(ξi,j − ξi−j,j)− (ξi−j,j − ξi−2j,j) + 3(ξi− j

2 ,j − ξi− 3j
2 ,j)

]
=

2
3
ξi−j,j +

1
3
ξi−2j,j + ξi− j

2 ,j − ξi− 3j
2 ,j =

[
(I − 2

3
T̃

(2)
0,n +

1
6
T̃

(3)
0,nT̃

(4)
0,n)ξ

]
i−j,j

.

This proves that we obtain once more (3.2) for k = 1. �
In the section 6 we illustrate numerically the evolution of the pure translation

of an initial solution with non entrance boundary condition. Remark that all the
different schemes end with an unique scheme (3.2).

4. One dimensional pure absorbing linear transport equation. In this
section we will choose the same approximating space Xn of the section 3 with the
same condition τn

kn

hn
= 1 on the grid. The exact solution of the pure absorbing

transport problem

(PATP)


∂u
∂t = −v · ∇u− σ(x)u in (−a, a)× [−1, 1];
u(−a, v ≥ 0, t) = 0 and u(a, v ≤ 0, t) = 0 for all t > 0;
u(x, v, 0) = f(x, v) ∈ L1((−a, a)× [−1, 1]).
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is given by

u(x, v, t) = [U1(t)f ](x, v) :=

{
e−

R t
0 σ(x−sv)dsf(x− tv, v), if |x− tv| < a

0 elsewhere
(4.1)

where U1(t) is a C0-semigroup on X.
The one dimensional approximation of this solution would be

u(ihn, jkn, kτn) = exp
(
−

∫ t

0

σ(ihn − sjkn)ds

)
f(ihn − jkτnkn, jkn)

if (i, j) ∈ N and k = 1; · · · , n.

After replacing the integral
∫ t

0
σ(ihn − sjkn)ds by σ

(n)
i,j , where

σ
(l)
i,j := τn

l∑
k=1

σ(ihn − jkτnkn). (4.2)

Then we get

U1,n(t) = u(ihn, jkn, t) = exp
(
−σ

(n)
i,j

)
f(ihn − njτnkn, jkn).

Replacing f(ihn − jnτnkn, jkn) by ξi−nj,j as before we get

[U1,n(nτn)ξ]i,j = exp
(
−σ

(n)
i,j

)
ξi−nj,j . (4.3)

Theorem 4.1. We assume that σ is a strictly positive continuous function
satisfying (1.8) and U1(t) defined in (4.1), we have the convergence of U1,n(t) to
U1(t) in the sense of Kato. Proof. It is well known that if

sn(σ) = τn

n∑
k=1

mk(σ), Sn(σ) = τn

n∑
k=1

Mk(σ),

where

mk(σ) = inf
s∈[(k−1)τn,kτn]

σ(x− sv) and Mk(σ) = sup
s∈[(k−1)τn,kτn]

σ(x− sv),

were the upper and lower Darboux’s sum of the function [0, t] 3 s 7→ σ(x − sv) ∈
C([−a, a] × [−1, 1]), then sn(σ) ≤ σ

(n)
i,j ≤ Sn(σ) and sn(σ) and Sn(σ) converge both

to
∫ t

0
σ(x− sv)ds in C([−a, a]× [−1, 1]). So

‖ exp
(
−σ(n)

)
− Pn

(
e−

R t
0 σ(x−sv)ds

)
‖n → 0,

where σ(n) ∈ Xn with
[
σ(n)

]
i,j

= σ
(n)
i,j . And, due to this property,

‖U1,n(t)Pnf − PnU1(t)f‖n ≤ ‖U1,n(t)Pnf − exp
(
−σ(n)

)
PnU0(t)f‖n

+ ‖ exp
(
−σ(n)

)
PnU0(t)f − PnU1(t)f‖n︸ ︷︷ ︸

=0

≤ ‖PnU0(t)f‖∞‖Pn

(
e−

R t
0 σ(x−sv)ds

)
− exp

(
−τnσ(n)

)
‖n,

which goes to zero as n →∞. In fact, according to Theorem 3.2 (b) can be estimated
independently of n. �

Now let us describe the different schemes for the problem (PATP).
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4.1. Euler’s explicit and implicit scheme for pure absorbing linear trans-
port equation. For explicit Euler’s scheme we define the finite difference operator

T Euler−exp
1,n := (ξi−j,j − ξi,j)− τnσi−jξi−j,j if (i, j) ∈ N (4.4)

the approximated semigroup UEuler−exp
1,n (τn) would be

[η]i,j := [UEuler−exp
1,n (τn)ξ]i,j = [ξ+T Euler−exp

1,n ξ]i,j = ξi,j+((ξi−j,j − ξi,j)− τnσi−jξi−j,j) .

and so,

[η]i,j = (1− τnσi−j)ξi−j,j .

A comparison with respect to the pure absorption approximate group (4.3) leads the
following estimation:

|[(UEuler−exp
1,n (τn)−U1,n(τn))ξ]i,j | = |1−τnσi−j−exp (−τnσi−j) ||ξi−j,j | = O(τ2

n)|ξi−j,j |,

which implies that there exists a constant C depending only on σ, such that

‖(I + T Euler−exp
1,n − U1,n(τn))ξ‖n ≤ Cτ2

n‖ξ‖n.

which leads to the estimation (2.2) and consequently the order of the scheme would
be p = 1.

For implicit Euler’s scheme the finite difference operator would be

T Euler−imp
1,n := (ξi,j − ξi+j,j)− τnσiξi+j,j if (i, j) ∈ N (4.5)

and UEuler−imp
1,n (τn) by

[η]i,j = [UEuler−imp
1,n (τn)ξ]i,j := [

(
I − T Euler−imp

1,n

)−1

ξ]i,j .

So,

ξi,j = [η − T Euler−imp
1,n η]i,j = ηi,j − ((ηi,j − ηi+j,j)− τnσiηi+j,j) = ηi+j,j + τnσiηi+j,j ,

which gives,

[η]i,j = (1 + τnσi−j)−1ξi−j,j .

and consequently

|
[(

I − T Euler−imp
1,n

)−1

ξ − U1,n(τn)ξ
]

i,j

| = |(1 + τnσi−j)−1 − exp (−τnσi−j) ||ξi−j,j |

which implies once more

‖UEuler−imp
1,n (τn)ξ − U1,n(τn))ξ‖n ≤ Cτ2

n‖ξ‖n.

and consequently the order of the scheme would be p = 1.
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4.2. Crank-Nicolson scheme for pure absorbing linear transport equa-
tion. For this scheme we define two finite difference operators T

(1)
1,n and T

(2)
1,n ∈ L(Xn)

as

[T (1)
1,nξ]i,j := 2(ξi− j

2 ,j − ξi,j)− τnσi− j
2
ξi− j

2 ,j

and

[T (2)
1,nξ]i,j := 2(ξi,j − ξi+ j

2 ,j)− τnσi+ j
2
ξi+ j

2 ,j

We define also the following operator

[Mξ]i,j = R(−τnσi)ξi,j where R(z) = (2 + z)(2− z)−1

We remark that

[(1 +
1
2
T

(1)
1,n)ξ]i,j = ξi,j + (ξi− j

2 ,j − ξi,j)−
τn

2
σi− j

2
ξi− j

2 ,j

= (1− τn

2
σi− j

2
)ξi− j

2 ,j

and

[(1− 1
2
T

(2)
1,n)Mξ]i−j,j = [Mξ]i−j,j −

(
[Mξ]i−j,j − [Mξ]i− j

2 ,j

)
+

τn

2
σi− j

2
[Mξ]i− j

2 ,j

= (1 +
τn

2
σi− j

2
)[Mξ]i− j

2 ,j = (1− τn

2
σi− j

2
)ξi− j

2 ,j = [(1 +
1
2
T

(1)
1,n)ξ]i,j .

This proves that

[η]i,j = [(1 +
1
2
T

(1)
1,n)(1− 1

2
T

(2)
1,n)−1ξ]i,j = [Mξ]i−j,j = (2− τnσi−j)(2 + τnσi−j)−1ξi−j,j .

Now, if we define UCr−Ni
1,n (τn) by

[UCr−Ni
1,n (τn)ξ]i,j := [(1 +

1
2
T

(1)
1,n)(1− 1

2
T

(2)
1,n)−1ξ]i,j

a comparison with the pure absorption approximate semigroup U1,n(t) leads the fol-
lowing estimation :

|[η − U1,n(τn)ξ]i,j | = |(2− τnσi−j)(2 + τnσi−j)−1 − exp(−τnσi−j)||ξi−j,j |

which implies

‖UCr−Ni
1,n (τn)ξ − U1,n(τn)ξ‖n ≤ Cτ3

n||ξ||n.

where the constant C depends only on σ, and independent of τn and we retrieve the
estimation (2.4) and consequently the order of the scheme would be p = 2.

4.3. Predictor-corrector scheme for pure absorbing linear transport
equation. Here we define four finite difference operators,

• [T̃ (1)
1,nξ]i,j := 3[T Euler−exp

0,n ξ]i,j + [T Euler−exp
0,n ξ]i−j,j − 3[T Euler−exp

0,n ξ]i− j
2 ,j

− 2
3τnσi−jξi−j,j − 1

3τnσi−2jξi−2j,j − τnσi− j
2
ξi− j

2 ,j + τnσi− 3
2 jξi− 3

2 j,j
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• [T̃ (2)
1,nξ]i,j := (ξi− j

2 ,j − ξi+ j
2 ,j) + 1

2τnσi+ j
2
ξi+j,j − 3

4τnσi−jξi−j,j − τn( 3
4σi +

1
2σi− j

2
)ξi,j

+ τn( 1
3σi − 3

2σi+ j
2
)ξi+ j

2 ,j − τn( 1
6σi−j + 3

2σi− j
2
)ξi− j

2 ,j

• [T̃ (3)
1,nξ]i,j := (ξi− j

2 ,j − ξi+ j
2 ,j)−

2
3τnσiξi+ j

2 ,j −
1
3τnσi−jξi− j

2 ,j − τnσi+ j
2
ξi+j,j +

τnσi− j
2
ξi,j

• [T̃ (4)
1,nξ]i,j = [T (1)

1,nξ]i,j .
We define also the following operator

[M1ξ]i,j = R1(−τnσi)ξi,j where R1(z) = (1 +
z

3
)(1− 2

3
z +

z2

6
)−1.

By a simple calculation, we obtain

[(1 +
1
3
T̃

(1)
1,n)ξ]i,j =

2
3
ξi−j,j +

1
3
ξi−2j,j + ξi− j

2 ,j − ξi− 3
2 j,j −

2
9
τnσi−jξi−j,j

− τn

9
σi−2jξi−2j,j −

τn

3
σi− j

2
ξi− j

2 ,j +
τn

3
σi− 3

2 jξi− 3
2 j,j

=
2
3
(1− τn

3
σi−j) ξi−j,j +

1
3
(1− τn

3
σi−2j)ξi−2j,j

+ (1− τn

3
σi− j

2
)ξi− j

2 ,j − (1− τn

3
σi− 3

2 j)ξi− 3
2 j,j

and

[(1− 2
3
T̃

(2)
1,n +

1
6
T̃

(3)
1,nT̃

(4)
1,n)M1ξ]i−j,j = Ai,j +

1
6
Bi,j

where

Ai,j = [M1ξ]i−j,j −
2
3
([M1ξ]i− 3

2 j,j − [M1ξ]i− j
2 ,j)−

τn

3
σi− j

2
[M1ξ]i,j

+
τn

2
σi−2j [M1ξ]i−2j,j +

τn

2
σi−j [M1ξ]i−j,j +

τn

3
σi− 3

2 j [M1ξ]i−j,j

− 2τn

9
σi−j [M1ξ]i− j

2 ,j + τnσi− j
2
[M1ξ]i− j

2 ,j −
τn

9
σi−2j [M1ξ]i− 3

2 j,j

− τnσi− 3
2 j [M1ξ]i− 3

2 j,j

and

Bi,j =
(
[T̃ (4)

1,nM1ξ]i− 3
2 j,j − [T̃ (4)

1,nM1ξ]i− j
2 ,j

)
− 2

3
τnσi−j [T̃

(4)
1,nM1ξ]i− j

2 ,j

− 1
3
τnσi−2j [T̃

(4)
1,nM1ξ]i− 3

2 j,j − τnσi− j
2
[T̃ (4)

1,nM1ξ]i,j + τnσi− 3
2 j [T̃

(4)
1,nM1ξ]i−j,j

=
{

2
(
[M1ξ]i−2j,j − [M1ξ]i− 3

2 j,j − [M1ξ]i−j,j + [M1ξ]i− j
2 ,j

)
− τnσi−2j [M1ξ]i−2j,j + τnσi−j [M1ξ]i−j,j

}
− 2

3
τnσi−j

{
2
(
[M1ξ]i−j,j

− [M1ξ]i− j
2 ,j

)
− τnσi−j [M1ξ]i−j,j

}
− 1

3
τnσi−2j

{
2

(
[M1ξ]i−2j,j − [M1ξ]i− 3

2 j,j

)
− τnσi−2j [M1ξ]i−2j,j

}
− τnσi− j

2

{
2

(
[M1ξ]i− j

2 ,j − [M1ξ]i,j
)
− τnσi− j

2
[M1ξ]i− j

2 ,j

}
+ τnσi− 3

2 j

{
2

(
[M1ξ]i− 3

2 j,j − [M1ξ]i−j,j

)
− τnσi− 3

2 j [M1ξ]i− 3
2 j,j

}



14 M. A. CHERIF, H. EMAMIRAD and M. MNIF

So we get

Ai,j +
1
6
Bi,j =

2
3

(
1 +

2
3
τnσi−j +

τ2
n

6
σ2

i−j

)
[M1ξ]i−j,j +

1
3

(
1 +

2
3
τnσi−2j

+
τ2
n

6
σ2

i−2j

)
[M1ξ]i−2j,j +

(
1 +

2
3
τnσi− j

2
+

τ2
n

6
σ2

i− j
2

)
[M1ξ]i− j

2 ,j −
(

1 +
2
3
τnσi− 3

2 j +
τ2
n

6
σ2

i− 3
2 j

)
[M1ξ]i− 3

2 j,j

and finally,

[(1−2
3
T̃

(2)
1,n +

1
6
T̃

(3)
1,nT̃

(4)
1,n)M1ξ]i−j,j =

2
3
(1− τn

3
σi−j)ξi−j,j +

1
3
(1− τn

3
σi−2j)ξi−2j,j

+ (1− τn

3
σi− j

2
)ξi− j

2 ,j − (1− τn

3
σi− 3

2 j)ξi− 3
2 j,j = [(1 +

1
3
T̃

(1)
1,n)ξ]i,j

which implies

[η]i,j = [(1− 2
3
T̃

(2)
1,n +

1
6
T̃

(3)
1,nT̃

(4)
1,n))−1(1 +

1
3
T̃

(1)
1,n)ξ]i,j = [M1ξ]i−j,j

= (1− τn

3
σi−j)(1 +

2
3
τnσi−j +

τ2
n

6
σ2

i−j)
−1ξi−j,j

and we get

|[η−U1,n(τn)ξ]i,j | = |(1− τn

3
σi−j)(1 +

2
3
τnσi−j +

τ2
n

6
σ2

i−j)
−1 − exp(−τnσi−j)||ξi−j,j |.

So, if we define

Upre−cor
1,n (τn) = (1 +

1
3
T̃

(1)
1,n)(1− 2

3
T̃

(2)
1,n +

1
6
T̃

(3)
1,nT̃

(4)
1,n)−1

then we obtain

‖Upre−cor
1,n (τn)ξ − U1,n(τn)ξ‖n ≤ Cτ4

n||ξ||n

which implies that the order of the scheme is p = 3.

5. One dimensional linear transport equation with production. In this
section we consider the system (TP), when σ 6= 0 and p(x) 6= 0.

Here, we do not have at our disposition an explicit expression of the semigroup
U(t) as U0(t) or U1(t). Hence for representing U(t) we will use the Dyson-Phillips
formula:

V0(t) = U1(t), U(t) :=
∞∑

n=0

Vn(t),

where

Vn+1(t) =
∫ t

0

V0(t− s)Vn(s)Ads,

[U1(t)f ](x, v) = e−
R t
0 σ(x−sv)dsf(x− tv,v) and [Af ](x, v) =

1
2

∫ 1

−1

p(x)f(x,v′)dv′.
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Let us define an approximation of U(t) by UN (t), where

UN (t)f = [
N+1∑
k=0

Vk(t)]f = U1(t)f +
∫ t

0

U1(t− s)B(s)fds,

with

B(s) =U1(s)A +
∫ s

0

U1(s− s1)U1(s1)A2ds1 + · · · (5.1)

+
∫ s

0

· · ·
∫ sN

0

U1(s− s1)U1(s1 − s2) · · ·U1(sN )AN+1dsN · · · ds1.

Remark 5.1. The operator UN (t) is not himself a semigroup as U0(t) or U1(t),
but it can act as the function V (t) in the Chernoff’s theorem. This will be shown in
Appendix 1.

In the discrete version we denote by WN,n(nτn) the operator which approximates
UN (t) and is given by

[WN,n(nτn)ξ]i,j =
N+1∑
k=0

[Vk,n(nτn)ξ]i,j

where [V0,n(nτn)ξ]i,j = [U1,n(nτn)ξ]i,j is given in (4.3) and Vk,n by the induction
relation

[Vk+1,n(nτn)ξ]i,j = τn

n∑
k=1

[V0,n(nτn − kτn)Vk,n(kτn)Anξ]i,j (5.2)

with

[Anξ]i,j =
1
2
pikn

µn−1∑
l=−µn

ξi,l.

which is independent of j. Since U1,n(nτn) is a bounded operator in Xn, by a simple
induction argument it follows from (5.2) that

‖Vk,n(nτn)ξ‖n = O(τk
n) (5.3)

Theorem 5.2. Under the assumption 2kM < sm, we have the convergence of
WN,n(t) to U(t) in the sense of Kato.

Proof. We have to prove that

‖WN,n(t)Pnf − PnU(t)f‖n → 0, (5.4)

as n →∞.
First we prove that

WN,n(kτn)Pnf = PnUN (τn)kf. (5.5)

The fact that Pn

∫ τn

0
U1(τn − s)Vk−1(s)Af(x, v)ds = τk

n [U1,n(τn)Ak
n)ξ]i,j , shows

PnUN (τn)f = Pn[
N+1∑
k=0

Vk(τn)f(x, v)] = [U1,n(τn)
N+1∑
k=0

τk
nAk

nξ]i,j

= [U1,n(τn)
N+1∑
k=0

τk
nAk

nPnf = WN,n(τn)Pnf.
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Hence, by taking g = UN (τn)f , we obtain

PnUN (τn)2f = PnUN (τn)g = WN,n(τn)Png = WN,n(τn)2Pnf,

and by induction we retrieve (5.5). Once the identity (5.5) is proven, we replace
WN,n(t)Pnf by PnUN (τn)nf in (5.4) and we use the isometric character of Pn (see
Lemma 1.6), then we get

‖WN,n(t)Pnf − PnU(t)f‖n = ‖UN (t/n)nf − U(t)f‖.

Now, if ω = sm− kM , thanks to Theorem 7.3, U(t) satisfies ‖U(t)‖ ≤ e−ωt, and since
2kM < sm, we get kM < ω. So we can replace in Theorem 7.2, S0(t) by U1(t) and
B(s) by our operator defined in (5.1), and the Chernoff’s Theorem (Theorem 7.1)
proves that (5.4) holds. �

Remark 5.3. Since the numerical computation of [WN (τn)ξ]i,j is too complicated
we restricted ourself to the standard schemes and thank to the above Theorem we make
our comparison with WN (τn).

5.1. Euler’s explicit and implicit schemes for linear transport equation
with production. In the sequel we will use also the following operators Σn defined
by

[Σnξ]i,j,k = τnσiξj,k (5.6)

and

[Anξ]i,j =
1
2
pikn

µn−1∑
l=−µn

ξj,l, (5.7)

for (i, j) ∈ N and −µn ≤ k ≤ µn. We remark that according to convention of Remark
3.1, in (5.7) j can take any values out of rang of x.

For these scheme we define two matrix operators T
Euler−exp
2,n and T

Euler−imp
2,n in

B(Xn) by

[T Euler−exp
2,n ξ]i,j = (ξi−j,j − ξi,j)− [Σnξ]i−j,i−j,j + [Anξ]i−j,i−j ,

if (i, j) ∈ N and

[T Euler−imp
2,n ξ]i,j = (ξi,j − ξi+j,j)− τnσiξi+j,j +

1
2
piτnkn

µn−1∑
l=−µn

ξi+l,l,

if (i, j) ∈ N . For explicit Euler’s scheme the approximated solution would be

[UEuler−exp
2,n ξ]i,j := [ξ + T

(1)
2,nξ]i,j = (1− τnσi−j)ξi−j,j +

1
2
pi−jhn

pn∑
l=−pn

ξi−j,l.

Our aim for explicit and implicit Euler’s schemes is to get the order p = 1. So
according to (5.3) for this scheme all the terms Vk,n, k ≥ 2 can be neglected and it is
enough to take into account V0,n and V1,n, in other words, make a comparison only
with W0,n which leads the following estimation:

|[W0,n(τn)ξ − U
Euler−exp
2,n ξ]i,j | = |(exp (−τnσi−j)− 1 + τnσi−j)ξi−j,j

+
1
2
pi−jτnkn

µn−1∑
l=−µn

ξi−j,l(exp (−τnσi−j)− 1)|.
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Consequently

‖W0,n(τn)ξ − η‖n ≤ Aτ2
n‖ξ‖n

where the constant A depends only on σ, but independent of τn.

For implicit Euler’s scheme the approximated solution would be

[UEuler−imp
2,n ξ]i,j = [

(
I − T

Euler−imp
2,n

)−1

ξ]i,j

or

ξi,j = [η − T
(2)
2,nη]i,j = ηi,j − (ηi,j − ηi+j,j)− τnσiηi+j,j +

1
2
piτnkn

µn−1∑
l=−µn

ηi+l,l

= ηi+j,j + τnσiηi+j,j −
1
2
piτnkn

µn−1∑
l=−µn

ηi+l,l = [(I + S)η]i+j,j

where [Sη]i,j = τnσi−jηi,j − 1
2pi−jτnkn

∑µn−1
l=−µn

ηi−j+l,l. So, we get ξi−j,j = [(I +
S)η]i,j which gives,

[η]i,j = [(I + S)−1Nξ]i,j where [Nξ]i,j = ξi−j,j .

Therefore

[η]i,j = [(I − S)Nξ]i,j +O(τ2
n)[Nξ]i,j

= ξi−j,j − τnσi−jξi−j,j −
1
2
pi−jτnkn

µn−1∑
l=−µn

[Nξ]i−j+l,l +O(τ2
n)ξi−j,j

= (1− τnσi−j)ξi−j,j +
1
2
pi−jτnkn

µn−1∑
l=−µn

ξi−j,l +O(τ2
n)ξi−j,j

Once more a comparison with respect to the our approximate solution W0,n(t)
leads the following estimation:

|[W0,n(τn)ξ − UEuler−imp
2,n ξ]i,j | = |(exp (−τnσi−j)− 1 + τnσi−j)ξi−j,j +

1
2
pi−jτnkn

µn−1∑
l=−µn

ξi−j,l(exp (−τnσi−j)− 1)|+O(τ2
n)ξi−j,j

and

‖W0,n(τn)ξ − η‖n = O(τ2
n)

which gives the desired result.

5.2. Crank-Nicholson scheme for linear transport equation with pro-
duction. For this scheme, we define two matrix operators T

(1)
2,n and T

(2)
2,n in L(Xn)

as
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[T (1)
2,nξ]i,j := 2(ξi− j

2 ,j − ξi,j)− τnσi− j
2
ξi− j

2 ,j + [Anξ]i− j
2 ,i− j

2

and

[T (2)
2,nξ]i,j := 2(ξi,j − ξi+ j

2 ,j)− τnσi+ j
2
ξi+ j

2 ,j + [Anξ]i+ j
2 ,i+ j

2

We define also the following operator

[M1ξ]i,j = [(I − 1
2
T1)(I +

1
2
T1)−1ξ]i,j where [T1ξ]i,j = τnσiξi,j − [Anξ]i,i

We remark that

[(I +
1
2
T

(1)
2,n)ξ]i,j = ξi,j + (ξi− j

2 ,j − ξi,j)−
τnσi− j

2

2
ξi− j

2 ,j +
1
2
[Anξ]i− j

2 ,i− j
2

= [(I − 1
2
T1)ξ]i− j

2 ,j

and

[(I − 1
2
T

(2)
2,n)M1ξ]i−j,j = [M1ξ]i−j,j − ([M1ξ]i−j,j − [M1ξ]i− j

2 ,j)

+
σi− j

2
τn

2
[M1ξ]i− j

2 ,j −
pi− j

2
τn

4
kn

µn−1∑
l=−µn

[M1ξ]i− j
2 ,l

= [(I +
1
2
T1)M1ξ]i− j

2 ,j = [(I +
1
2
T1)(I −

1
2
T1)(I +

1
2
T1)−1ξ]i− j

2 ,j

= [(I − 1
2
T1)ξ]i− j

2 ,j = [(I +
1
2
T

(1)
2,n)ξ]i,j

By defining the approximate solution as

[η]i,j = [UCr−Ni
2,n ξ]i,j := [(1 +

1
2
T

(1)
2,n)(1− 1

2
T

(2)
2,n)−1ξ]i,j = [M1ξ]i−j,j

= [(I − 1
2
T1)(I +

1
2
T1)−1ξ]i−j,j

= [(I − 1
2
T1)(I −

1
2
T1 +

1
4
T 2

1 +O(τ3
n))ξ]i−j,j

= [(I − T1 +
1
2
T 2

1 +O(τ3
n))ξ]i−j,j

we get

[η]i,j = ξi−j,j − σi−jτnξi−j,j +
σ2

i−jτ
2
n

2
ξi−j,j + [Anξ]i−j,i−j − σi−jτn[Anξ]i−j,i−j

+
[pi−jτn

2
Anξ

]
i−j,i−j

+O(τ3
n)[ξ]i−j,j

= (1− σi−jτn +
σ2

i−jτ
2
n

2
)ξi−j,j +

1
2
pi−jτnkn

µn−1∑
l=−µn

ξi−j,l(1− σi−jτn)

+
p2

i−jτ
2
n

4
kn

µn−1∑
l=−µn

ξi−j,l +O(τ3
n)[ξ]i−j,j
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In this scheme any Vk,n, when k ≥ 3 cannot affect on the order of rational approx-
imation, so we shall make the comparison only with W1,n(t) which leads following
estimation :

|[W1,n(τn)ξ − UCr−Ni
2,n ξ]i,j | = |(exp(τnσi−j)− 1 + τnσi−j +

σ2
i−jτ

2
n

2
)ξi−j,j

+
1
2
pi−jτnkn

µn−1∑
l=−µn

ξi−j,l(exp(−τnσi−j)− 1 + τnσi−j)

+
p2

i−jτ
2
n

4
kn

µn−1∑
l=−µn

ξi−j,l(2 exp(−τnσi−j)− 1)| − O(τ3
n))ξi−j,j .

and

‖[W1,n(τn)ξ − UCr−Ni
2,n ξ‖n = O(τ3

n),

consequently the order of the scheme would be p = 2.

5.3. Predictor-corrector scheme for linear transport equation with pro-
duction. . Here we define four matrix operators

• [T̃ (1)
2,nξ]i,j := 3[T Euler−exp

0,n ξ]i,j+[T Euler−exp
0,n ξ]i−j,j−3[T Euler−exp

0,n ξ]i− j
2 ,j−

2
3 [Σnξ]i−j,i−j,j

− 1
3 [Σnξ]i−2j,i−2j,j−[Σnξ]i− j

2 ,i− j
2 ,j+[Σnξ]i− 3j

2 ,i− 3j
2 ,j+

2
3 [Anξ]i−j,i−j+ 1

3 [Anξ]i−2j,i−2j

+ [Anξ]i− j
2 ,i− j

2
− [Anξ]i− 3j

2 ,i− 3j
2

;

• [T̃ (2)
2,nξ]i,j := [T̃ (2)

0,nξ]i,j+ 1
2 [Σnξ]i+ j

2 ,i+j,j−
3
4 [Σnξ]i−j,i−j,j−

3
4 [Σnξ]i,i,j−

1
2 [Σnξ]i− j

2 ,i,j

+ 1
3 [Σnξ]i,i+ j

2 ,j−
3
2 [Σnξ]i+ j

2 ,i+ j
2 ,j+

1
6 [Σnξ]i−j,i− j

2 ,j+
3
2 [Σnξ]i− j

2 ,i− j
2 ,j+

3
4 [Anξ]i,i

+ 1
2 [Anξ]i− j

2 ,i +
3
4 [Anξ]i−j,i−j + 3

2 [Anξ]i+ j
2 ,i+ j

2
− 1

3 [Anξ]i,i+ j
2
− 3

2 [Anξ]i− j
2 ,i− j

2

− 1
6 [Anξ]i−j,i− j

2
− 1

2 [Anξ]i+ j
2 ,i+j ;

• [T̃ (3)
2,nξ]i,j := [T̃ (3)

0,nξ]i,j − 2
3 [Σnξ]i,i+ j

2 ,j −
1
3 [Σnξ]i−j,i− j

2 ,j − [Σnξ]i+ j
2 ,i+j,j +

[Σnξ]i− j
2 ,i,j

+ 2
3 [Anξ]i,i+ j

2
+ 1

3 [Anξ]i−j,i− j
2

+ [Anξ]i+ j
2 ,i+j − [Anξ]i− j

2 ,i;

• [T̃ (4)
2,nξ]i,j = 2(ξi− j

2 ,j − ξi,j)− [Σnξ]i− j
2 ,i− j

2 ,j + [Anξ]i− j
2 ,i− j

2
.

And we define also the following operator

[M2ξ]i,j = [(I − 1
3
T1)(I +

2
3
T1 +

1
6
T 2

1 )−1ξ]i,j where [T1ξ]i,j = [Σnξ]i,i,j − [Anξ]i,i.

By a calculation one can prove that †

[(I +
1
3
T̃

(1)
2,n)ξ]i,j =

2
3
(I − 1

3
T1)ξi−j,j +

1
3
(I − 1

3
T1)ξi−2j,j + (I − 1

3
T1)ξi− j

2 ,j

− (I − 1
3
T1)ξi− 3

2 j,j (5.8)

and

[(I − 2
3
T̃

(2)
2,n +

1
6
T̃

(3)
2,nT̃

(4)
2,n)M2ξ]i−j,j =

2
3
[(I − 1

3
T1) ξ]i−j,j +

1
3
[(I − 1

3
T1)ξ]i−2j,j

+ [(I − 1
3
T1)ξ]i− j

2 ,j − [(I − 1
3
T1)ξ]i− 3

2 j,j .

(5.9)

† This is a long calculation which can be find in an extended version of this paper located in
the second author’s webpage http://www-math.univ-poitiers.fr/∼emamirad/
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Therefore, we have

[(I +
1
3
T̃

(1)
2,n)ξ]i,j = [(I − 2

3
T̃

(2)
2,n +

1
6
T̃

(3)
2,nT

(4)
2,n)M2ξ]i−j,j

and consequently, by defining

[η]i,j = [Upre−cor
2,n ξ]i,j := [(1− 2

3
T

(2)
2,n +

1
6
T

(3)
2,nT

(4)
2,n)−1(1 +

1
3
T

(1)
2,n)ξ]i,j = [M2ξ]i−j,j

= [(I − 1
3
T1)(I +

2
3
T1 +

1
6
T 2

1 )−1ξ]i−j,j

= [(I − T1 +
1
2
T 2

1 −
1
6
T 3

1 +O(τ4
n))ξ]i−j,j

= (1− σi−jτn +
σ2

i−jτ
2
n

2
−

σ3
i−jτ

3
n

6
)ξi−j,j +

(
1− σi−jτn +

σ2
i−jτ

2
n

2

+
1
2
pi−j(1− σi−jτn +

1
3
pi−jτ

2
n)

)
[Anξ]i−j,i−j +O(τ4

n))ξi−j,j

In this scheme any Vk,n, when k ≥ 4 cannot affect on the order of rational
approximation, so we shall take W2,n(t) as the approximate solution and a comparison
with respect to this approximate solution leads to following estimation :

|[W2,n(τn)ξ − η]i,j | = |(exp(−τnσi−j)− 1 + τnσi−j −
σ2

i−jτ
2
n

2
+

σ3
i−jτ

3
n

6
)ξi−j,j

+
1
2
pi−jτnkn

µn−1∑
l=−µn

ξi−j,l(exp(−τnσi−j)− 1 + τnσi−j −
σ2

i−jτ
2
n

2
)

+
1
4
p2

i−jτ
2
nkn

µn−1∑
l=−µn

ξi−j,l(2 exp(−τnσi−j)− 1 + τnσi−j)

+
1
12

p3
i−jτ

3
nkn

µn−1∑
l=−µn

ξi−j,l(6 exp(−τnσi−j)− 1)− θ(τ4
n))ξi−j,j |

and

‖[W2,n(τn)ξ − Upre−cor
2,n ξ‖n = O(τ4

n),

consequently the order of the scheme would be p = 3.

6. The numerical illustrations . This section is devoted to give the numerical
illustrations for Euler explicit and implicit, Crank-Nicolson and Predictor-Corrector
methods. So, we use the Fortran 77 compiler to give the numerical approximation in
different cases of our transport equation. The numerical simulations which realized
for a positive function and with non entrance boundary condition give an idea on the
distribution of particles in the phases space and verify also our theoretical results in
this work.

In the sequel, we will give some numerical examples for our different schemes. In
those examples, we look to the evolution of the transport equation in five times. For
a = 1,mn = 200 and µn = 100n or, in order to get τnkn/hn = 1 we have to take
τn = 0.5 which fix the choice of n. The five times which will be illustrated there are:
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t = kτn for k = 1, 3 and k = 400. Also, for those examples we will take the following
initial data

f(x, v) = exp
(

−1
1− x2

)
(6.1)

which is independent of the velocity v.

6.1. The numerical approach in the case of collision-free transport. To
have an idea on the evolution of particles in the case of collision-free transport problem
we have compiled the approximation of the exact solution given by (3.2), since as we
have proved in Theorem 3.3 all the different schemes ends to this discrete form of
the exact solution. In the following figures we illustrate numerically the evolution of
the pure translation of an initial solution with non entrance boundary condition. We
remark that the large time, which corresponds here to k = 400, it remains always a
residual that corresponds to f(x, 0) of the initial data, since we have not excluded
zero from the velocity interval [−1, 1].

Initial solution Solution for k = 1

Solution for k = 3 Solution for k = 400

6.2. Error estimates. In the case of transport with pure absorption, we find
the same feature of numerical illustration. Since in this case we have an explicit
representation of the solution given in (4.1) it is more interesting to give the error
made by the schemes of Euler, Crank-Nicolson and Predictor-Corrector.

In fact, if εn = ‖U1,n(kτn)Pnf − PnU1(kτn)f‖n, then for the function f given in
(6.1) and k = 1 we have
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Euler’s implicit Euler’s explicit Crank-Nicolson Predictor-Corrector
εn < 4.5× 10−4 εn < 4.5× 10−4 εn < 4× 10−6 εn < 3× 10−8

In the case of transport problem with production term, we do not have an explicit
solution at our disposal, so we compute εn = ‖WN,n(kτn)ξ− η‖n, then for N = k = 1
and we get the following table for correspondent η.

Euler’s implicit Euler’s explicit Crank-Nicolson Predictor-Corrector
εn < 4.5× 10−4 εn < 4.5× 10−4 εn < 7× 10−6 εn < 3× 10−7

7. Appendix. The well-known Chernoff’s Theorem asserts that
Theorem 7.1. If X is a Banach space and {V (t)}t≥0 is a family of contractions

on X with V (0) = I. Suppose that the derivative V ′(0)f exists for all f in a set D
and the closure Λ of V ′(0) |D generates a C0–semigroup S(t) of contractions. Then,
for each f ∈ X,

lim
n→∞

‖V (
t

n
)nf − S(t)f‖ = 0, (7.1)

uniformly for t in compact subsets of R+.
In this section we will use the Chernoff’s theorem to prove the following result.
Theorem 7.2. Let A be the generator of a C0-semigroup S0(t) such that ‖S0(t)‖ ≤

e−ωt (ω ≥ 0), and B(t) be a family of bounded operators such that ‖B(t)‖ < ω for all
t ≥ 0, and A + B(0) defined in the D(A) generates a C0-semigroup S(t) of contrac-
tions. Then, the conclusion of (7.1) holds for V (t) := S0(t) +

∫ t

0
S0(t− s)B(s)ds.

Proof. We remark that V (0) = I, V ′(0)f = (A + B(0))f for all f ∈ D(A) and
finally V (t) is of contraction. In fact,

‖V (t)‖ ≤ ‖S0(t)‖+ ‖
∫ t

0

S0(t− s)B(s)ds‖

≤ e−ωt + b

∫ t

0

e−ω(t−s)ds =
(

1− b

ω

)
e−ωt +

b

ω
≤ 1,

where b = supt≥0 ‖B(t)‖. Since all the assumptions of Theorem 7.1 are fulfilled, the
conclusion infers from this Theorem. �

In [5], we have proved a similar version of this theorem where V (t) := S0(t) +∫ t

0
S0(s)B(0)ds and we have proved also the following theorem:
Theorem 7.3. In the Banach space X = L1((−a, a)× [−1, 1]) let us define the

operators T0f := −v∂f/∂x, T1f := T0f−σ(x)f , T̃ f := T0f +Af and Tf := T1f +Af
(A being defined in Remark 1.5). Any of these operators defined on D(T0) := {f ∈
X : v∂f/∂x ∈ X, f(−a, v ≥ 0) = 0 and f(a, v ≤ 0) = 0} generates a C0-semigroup
which is given respectively by:
(0) U0(t) which are contractions;
(1) U1(t) with ‖U1(t)‖ ≤ e−smt;
(2) V (t) with ‖V (t)‖ ≤ ekM t;
(3) U(t) with ‖U(t)‖ ≤ e(kM−sm)t.

This Theorem is already used in the proof of Theorem 5.2.

REFERENCES



Rational approximation 23

[1] N. Y. Bakaev , On the bounds of approximations of holomorphic semigroups., BIT, 35 (1995),
pp. 605–608.

[2] P. Brenner and V. Thomée, Stability and convergence rates in Lp for certain difference
schemes, Math. Scand. 27 (1970), pp 5–23.

[3] P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer.Anal.
16 (1979) pp. 683-694.

[4] P. R. Chernoff, Note on product formulas for operator semigroups, J. Funct. Analysis. 2
(1968) pp. 238–242.

[5] M. A. Cherif and H. Emamirad, Approximation in the sens of Kato for the transport problem,
Elect. J. Diff. Eq. 92 (2009) pp. 1-7.
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