
HAL Id: hal-01121293
https://hal.science/hal-01121293

Submitted on 2 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Batch-Based CP-ABE with Attribute Revocation
Mechanism for the Internet of Things

Lyes Touati, Yacine Challal

To cite this version:
Lyes Touati, Yacine Challal. Batch-Based CP-ABE with Attribute Revocation Mechanism for the In-
ternet of Things. International Conference on Computing, Networking and Communications (ICNC
2015), Feb 2015, Anaheim, United States. pp.1044-1049, �10.1109/ICCNC.2015.7069492�. �hal-
01121293�

https://hal.science/hal-01121293
https://hal.archives-ouvertes.fr


Batch-Based CP-ABE with Attribute Revocation

Mechanism for the Internet of Things

Lyes Touati and Yacine Challal

Université de Technologie de Compiègne - CNRS

Heudiasyc UMR 7253. BP 20529

60205 Compiègne, France

Email:{ lyes.touati,ychallal}@hds.utc.fr

Abstract—Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) is an extremely powerful asymmetric encryption mecha-
nism, it allows to achieve fine-grained access control. However,
there is no solution to manage efficiently key/attribute revocation
problem in CP-ABE scheme. Key revocation problem is very
important in dynamic environment like Internet of Things
(IoT), where billions of things are connected together and are
cooperating without human intervention. Existing solutions are
not efficient due to their overhead (traffic) and complexity (big
access trees). Other solutions require the use of powerful semi-
trusted proxies to re-encrypt data.

The proposed solution in this paper called Batch-Based CP-
ABE reduces the complexity and the overhead, and does not
require extra nodes in the system. We propose to split time axis
into intervals (time slots) and to send only the necessary key parts
to allow refreshing the secrets keys. An analysis is conducted on
the way to choose the best time slot duration in order to maximize
system performances and minimize average waiting time.

Index Terms—CP-ABE, Internet of Things, Access Control,
Attribute Revocation, Batch-Based,

I. INTRODUCTION

Internet of things [1] is a new paradigm where many objects

that surround us are provided with a unique identifier and sens-

ing, actuating, computation and communication capabilities.

These objects can be Radio-Frequency IDentification (RFID)

tags, sensors, actuators, smart-phones, etc. All these entities

will be able to interact with each other and cooperate together

to reach common goals. It is expected that more than 50 billion

devices will be connected to the Internet by 2020 (sensors,

smart-phones, laptops, cars, clothes, wristwatches, etc.). The

Internet of Things is an enabling technology for several appli-

cations like smart cities, domotic and home automation (smart

homes), smart grid, smart healthcare and remote monitoring

etc.

In the Internet of Things, all objects communicate between

them without human intervention; Therefore, securing IoT

communications is a tricky challenge, especially since security

protocols developed for the internet, like IPsec or TSL, are not

suitable for IoT environments. Indeed, these protocols have a

high overhead that cannot be supported by constrained devices

in the Internet of Things.

Attribute-based encryption (ABE) is a public key encryption

mechanism that allows users to encrypt and decrypt messages

based on descriptive user attributes. There are two main ver-

sions of ABE: Ciphertext-Policy Attribute-Based Encryption

[2] and Key-Policy Attribute-Based Encryption [3]. In KP-

ABE, attributes are used to describe the encrypted data and

policies are built into user’s keys; while in CP-ABE, the

attributes are used to describe a user’s private key, and an

encryptor determines a policy on who can decrypt the data

and include it in the encrypted data.

Ciphertext-Policy Attribute-Based Encryption [2] is an ex-

tremely powerful asymmetric encryption mechanism, it is a

promising cryptographic solution to enforce access control in

the Internet of Things. Using CP-ABE allows keeping en-

crypted data confidential even if the storage server is untrusted.

Key revocation, or more generally, attribute revocation is a

challenging issue in the CP-ABE scheme since there are many

entities that might match the decryption policy.

In this work, we define a batch-based CP-ABE with an

efficient attribute revocation mechanism. Our solution reduces

the complexity and the overhead comparing to other solutions,

and it does not require proxies to re-encrypt messages.

The remainder of this paper is organized as follows. We

discuss related works in section II. In section III we present

some preliminaries of our work. We define the AMVVI

problem in IV. Our solution is presented in V. Section VI

presents a study of the impact of time slot duration on system

performances. We conclude our paper in section VII.

II. RELATED WORKS

In [4], authors gave an idea on how attribute revocation

could be implemented. The main idea of their proposition is to

add expiration date to each attribute. Once this expiration date

comes, the attribute authority rename the attribute and send it

to all entities in the system, it regenerates all the secret keys

to the non-revoked users (the revocation is materialized by not

receiving a new secret key including the renamed attribute).

In [2], authors propose a way to transform numerical

attribute to non-numeric attribute, by this way, they can express

conditions on dates and include the revocation condition into

the access tree. But this transformation makes access trees

bigger than before, thus, the overhead considerably increases.

In [5], authors addressed user revocation and key refreshing

issue for CP-ABE in data-owner-centric environments like



those for cloud storage. Their solution named DURKR uses

the proxy re-encryption mechanism (PRE [6]), it only consid-

ers user revocation and requires a cloud storage provider to

re-encrypt a data for every user request.

In [7], authors considered data storage and delivery system.

authors proposed a solution that consists on encrypting a data

to be shared with symmetric key and splitting it into several

slices via an (n,n) secret sharing scheme.

In [8], Yu et al. tried to resolve the challenging issue of

key revocation in CP-ABE by considering practical scenarios

like data sharing in which semi-trustable on-line proxy servers

are available. Their solution integrates Proxy Re-Encryption

(PRE [6]) technique with CP-ABE and enables the authority to

revoke user attributes and to delegate laborious tasks to proxy

servers. This solution necessitates to regenerate all users secret

keys and re-encrypting data after every change occurred in the

system.

III. PRELIMINARIES

In this section we review some basic concepts as well as

notions related to CP-ABE scheme [2].

A. Access Structure

Let {P1, P2, · · · , Pn} be a set of parties. A collection A ⊆
2{P1,P2,··· ,Pn} is monotone if ∀B,C : if B ⊆ C then C ∈ A.

an access structure (respectively, monotone access structure) is

a collection (respectively, monotone collection) A of nonempty

subsets of {P1, P2, · · · , Pn}, i.e., A ⊆ 2{P1,P2,··· ,Pn}\ {∅}.

the sets in A are called the authorized sets, and the sets not

in A are called the unauthorized sets.

B. Access tree

Each non-leaf node of the tree represents a threshold gate,

described by its children and a threshold value. If numx is

the number of children of a node x and kx is its threshold

value, then 0 < kx ≤ numx. Each leaf node x of the tree is

described by an attribute and a threshold value kx = 1.

Some functions are defined to facilitate working with access

trees:

• parent(x): denotes the parent of the node x in the tree.

• att(x): is defined only if x is a leaf node, and denotes the

attribute associated with the leaf node x in the tree.

• index(x): denotes the order of the node x between its

brothers. The nodes are numbered from 1 to num.

Satisfying an access tree. Let T be an access tree with

root r. Denote by Tx the sub-tree of T rooted at the node x.

Hence T is the same as Tr. If a set of attributes γ satisfies

the access tree Tx, we denote it as Tx (γ) = 1. We compute

Tx (γ) recursively as follows. if x is a non-leaf node, evaluate

Tx′ (γ) for all children x′ of node x. Tx (γ) returns 1 if and

only if at least kx children return 1. if x is a leaf node, then

Tx (γ) returns 1 if and only if att (x) ∈ γ.

C. Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of prime

order p. Let g be a generator of G0 and e be a bilinear map,

e : G0 × G0 → G1. the bilinear map e has the following

properties:

1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have

e
(

ga, gb
)

= e (u, v)
ab

.

2) Non-degeneracy: e (g, g) 6= 1.

We say that G0 is a bilinear group if the group operation in

G0 and the bilinear map e are both efficiently computable. No-

tice that the map e is symmetric since e
(

ga, gb
)

= e (g, g)
ab

=
e
(

gb, ga
)

.

D. Lagrange coefficient

Let i be an element in Zp, and S a set of elements in Zp.

We define the Lagrange coefficient as:

∆i,S (x) =
∏

j∈S,j 6=i (x− j) / (i− j) .

E. Revocation in ABE schemes

In Attribute Based Encryption systems, attribute revocation

is a challenge issue even more difficult then in Identity-Based

Encryption because each attribute is conceivably shared by

multiple users. Revocation of any single attribute for a user

would affect other users who share that attribute.

IV. AMVVI: ATTRIBUTES MANAGEMENT WITH

VARIABLE VALIDITY INTERVALS

A. AMVVI Problem: Definition and Motivation

Let us consider a system where users unpredictably join and

leave the system in a completely asynchronous and dynamic

way. Users attributes validity periods are then unpredictable.

We mean by AMVVI, the problem consisting of managing

keys (granting and/or revoking attributes access) that supports

variable validity intervals of relating attributes. In order to

optimize and significantly reduce the complexity and the

number of exchanged messages, a more practical solution is to

allow the Attribute Authority (AA) to handle simultaneously

a number of attribute-based access policy changes. This can

be achieved by splitting time into intervals (referred to as time

slots or simply slots) and letting the AA handle all attribute-

based access policy changes that occur in the same interval at

the beginning of the next one.

This solution may cause a delay for entities when joining

the system. Indeed, an entity which requests a secret key for

some attributes at the middle of a time slot must wait until

the beginning of the next time slot to get its own secret key

and effectively join the system. System performances closely

depend on the choice of the time slot duration: a small time

slot forces the Attribute Authority to frequently refresh users’

keys and consequently increase the overall system overhead.

Conversely, a high time slot increases the delay and reduces

users’ keys refresh.

The choice of the time slot duration is an important and

a critical issue as it directly influences the overall system

performances. Generally, the time slot duration depends on



the application scenario, it is very common to choose a day

or a month as time slot.

Example: Consider a system with three entities (users)

i.e. U = {U1, U2, U3}, and a set of three attributes: A =
{Att1, Att2, Att3} (Figure 1).

With a color continuous line (red, blue or green) we depict

the asked validity period of each attribute for system’s users.

Below each continuous line, we represented with dotted lines

the delivered validity period of the attribute.

We notice here, that an attribute with a validity period

starting at the middle of a time slot has its delivered validity

period delayed until the beginning of the following time slot,

ex. the first attribute (red line) of the first user U1 in figure 1.

Similarly, if the asked validity period of an attribute ends at

the middle of a time slot, the delivered validity period ends at

the beginning of the following time slot, ex. second attribute

(green line) of the fist user U1 in figure 1.

U1

U2

U3

t
Time slot0 5 10 15 20

Requested attribute validity period
Delivered secret key parts validity period

Figure 1: Example

B. Security requirements

In our solution, we aim to target the following security

requirements:

• Backward secrecy: A new user joining the system should

not have any access to previous encrypted data.

• Forward secrecy: A former user should have no access

to current and future ciphertexts.

• Collusion free: Collusion resistance is a required prop-

erty of any ABE system. Even if many users not sat-

isfying the access policy collude, they can obtain no

information about the plaintext of the ciphertext.

• Data Confidentiality: Unauthorized users who do not

have the required attributes satisfying the access policy

of a ciphertext must be prevented from accessing the

plaintext of the data.

C. Application scenario

The application scenario that motivates our solution is

security management of exchanged messages and data in a

hospital. In this case, attributes could be administrative grades

(Director, Department Chief, Secretary, Employee, ... etc.),

Departments (Cardiology Department, Neurology Department,

Emergency Department, ... etc.), functional grades (Nurse,

Doctor, Trainee, ... etc.).

A trainee who has finished his/her internship in a hospital

must see its secret key revoked, more precisely, the system

should revoke its "Trainee" attribute. Thus he/she can not use

its secret key part related to the attribute "Trainee" to decrypt

ciphertexts. Similarly, a nurse who has moved from cardiology

department to emergency one must lose her abilities to decrypt

ciphertexts destined to cardiology department employee, this

is resulting in revoking her "Cardiology Department" attribute.

Attribute revocation is an important task in Attribute Based

Encryption systems. This is because systems are generally

dynamic and are changing over time, so we cannot consider

entities with a predefined and static sets of attributes during

throughout the system life.

V. OUR APPROACH

In this section, we present our approach. First, we present

our motivations and the concept of our approach. Then, we

define assumptions and system model.

A. Concept

Here we describe the basic idea of our solution to implement

attribute revocation mechanism in CP-ABE scheme.

As we mentioned in section IV, our approach is a batch-

based method, which means that time axis is split into intervals

of the same duration called time slots, and policy access

changes (granting and/or revoking access) occur only between

two successive time slots.

To implement attribute revocation in CP-ABE, our solution

is not based on renaming attributes or using access tree to

include a policy that considers expiration time for an attribute

as proposed in [2] and [4]. In our approach, the Attribute

Authority send only the necessary attribute key parts every

time slot to allow an entity to refresh its secret key. This

technique reduces the overhead and the complexity of the

solution comparing to the existing ones.

B. Syntax

Our Batch Based CP-ABE scheme consists of the following

primitives:

• Setup. The setup algorithm is run by the Attribute

Authority at the bootstrap phase. It takes no input other

than the implicit security parameter. It outputs the public

parameters PK which is shared with all the entities of

the system and a master key MK kept secret.

• KeyGen(MK, S). The KeyGen primitive is run by the

Attribute Authority for each user joining the system. It

takes as input the master key MK, a set of triplet S.

Each element of the set S contains three information: an

attribute att ∈ D and the validity period materialized by

T att
begin and T att

end
1.

• Encrypt(PK, M, γ, T). The encryption algorithm takes

as input the public parameters PK, a message M , an

access structure γ over the universe of attributes, and the

current time slot number T . The algorithm will encrypt

1Tatt
begin

and Tatt
end

are two time slot numbers that represent respectively

the first and the last time slot of the validity period of the attribute att.



M and produce a ciphertext CT such that only a user

that possesses a set of attributes that satisfies the access

structure during the T th time slot will be able to decrypt

the message. We will assume that the ciphertext implicitly

contains γ and T.

• Decrypt(PK, CT, SKT ). The decryption algorithm takes

as input the public parameters PK, a ciphertext CT ,

which contains an access policy γ and encryption time

slot number T , and a private key SKT , which is a private

key for a set ST of valid attributes at the T th time slot.

If the set ST of attributes satisfies the access structure γ
then the algorithm will be able to decrypt the ciphertext

and return a message M .

C. Our model

Let A denotes the set of all attributes used by the Attribute

Authority in the system, and T represents the set of all time

slots numbers (we have T ⊂ N). G0 is a bilinear group of

prime order p. The one-way hash function H used in our

scheme is defined as follows:

H : A× T −→ G0

(att, i) 7−→ H (att, i)

The hash function we use in our approach takes two

parameters. The first parameter is an element from the set of

all attributes maintained by the Attribute Authority, the second

one is an integer that represents a time slot number.

We suppose that the probability of collision existence in

the one-way hash function defined above is infinitely small.

We mean by collision the existence of two different couples

(atti, k) , (attj , l) ∈ A × N (with: (atti, k) 6= (attj , l)), such

that H (atti, k) = H (attj , l). This assumption is described in

the following formula:

∀atti, attj ∈ A, ∀k, l ∈ T : (atti, k) 6= (attj , l)

⇒ P (H (atti, k) = H (attj , l)) ≈ 0 (1)

D. Assumptions

1) Synchronization: We assume that the system is running

a synchronization protocol that takes care to ensure

synchronization between all entities in the system.

E. CP-ABE with attribute revocation

Let G0 be a bilinear group of prime order p, and let g be a

generator of G0. In addition, let e : denote the bilinear map.

Setup. It chooses a bilinear group G0 of prime order p
with generator g. Next it will choose two random exponents

α, β ∈ Zp. The public key is published as:

PK =
(

G0, g, h = gβ , f = g1/β , e (g, g)
α
)

(2)

and the master key is:

MK = (β, gα) (3)

Note that f is used only for delegation, so we can omit it

here as we do not talk about a delegation primitive. For more

information we invite the reader to see [2].

KeyGen(MK, S).

This KeyGen primitive takes as input the master key MK
and a set S which contains a set of attributes and all the

corresponding time slot numbers of their validity period. We

can write the set S as:

S =
{(

a, T a
begin, T

a
end

)

, for all attribute a
}

(4)

The Key generation algorithm chooses a random r ∈ Zp,

and then random rj ∈ Zp for each attribute j ∈ A. Then it

computes the key as

SK =
(

D = g(α+r)/β , ∀j ∈ A, ∀k ∈ JT j
begin, T

j
endK :

Dj,k = grH (j, k)
rj , D′

j = grj
)

(5)

Note here that the parameter Dj,k is related to the attribute

j for the time slot k.

Encrypt(PK, M, γ, T).

The encryption primitive encrypts a message M under the

tree access γ and the time slot T . The algorithm first chooses

a polynomial qx for each node x (including the leaves) in the

access tree A. These polynomials are chosen in the following

way in a top-down manner, starting from the root R. For each

node x in the tree, set the degree dx of the polynomial qx to

be one less than the threshold value kx of that node, that is,

dx = kx − 1.

Starting with the root node R the algorithm chooses a

random s ∈ Zp and sets qR (0) = s. Then, it chooses dR other

points of the polynomial qR randomly to define it completely.

For any other node x, it sets qx (0) = qparent(x) (index (x))
and chooses dx other points randomly to completely define

qx.

Let Y be the set of leaf nodes in γ. The ciphertext is

then constructed by giving the tree access structure γ, the

decryption time slot T and computing:

CT =
(

γ, T, C̃ = Me (g, g)
αs

, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H (att (y) , T )

qy(0)
)

(6)

Only users that satisfy the access tree γ during the time

slot T can decrypt the ciphertext CT . We notice here that a

user encrypting a message during the time slot T1 can specify

a different time slot T2 for decryption.

Decrypt(CT, SKT ).

The decryption primitive takes the ciphertext CT and a

secret key SKT , it is quite similar to the first form proposed

in [2] with the unique difference in using our one-way hash

function H defined in subsection V-C instead of a standard

one.



We first define a recursive function

DecryptNode (CT, SKT , x) that takes as input a ciphertext

CT =
(

A, T, C̃, C, ∀y ∈ Y : Cy, C
′
y

)

, a secret key

SKT =
(

D, ∀j ∈ ST : Dj,T , D
′
j

)

, which is associated

with a set ST of valid attributes at the time slot T , and a

node x from the access tree A.

If the node x is a leaf node then we let i = att (x) and

define DecryptNode as follows: If i ∈ ST , then

DecryptNode (CT, SKT , x) =
e (Di,T , Cx)

e (D′
i, C

′x)

=
e
(

gr ·H (i, T )
ri , gqx(0)

)

e
(

gri , H (i, T )
qx(0)

)

= e (g, g)
rqx(0) .

If i /∈ ST , then DecryptNode (CT, SKT , x) = ⊥.

Now, we consider the recursive case when x is a non-

leaf node. The algorithm DecryptNode (CT, SKT , x) then

proceeds as follows: For all nodes z that are children of x,

it calls DecryptNode (CT, SKT , z) and stores the output as

Fz . Let Sx be an arbitrary kx-sized set of child nodes z such

that Fz 6= ⊥. If no such set exists then the node was not

satisfied and the function returns ⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆i,S′

x
(0)

z ;Where: i = index (z) , S′

x = {index (z) : z ∈ Sx}

=
∏

z∈Sx

(

e (g, g)
r·qz(0)

)∆i,S′
x
(0)

=
∏

z∈Sx

(

e (g, g)
r·qparent(z)(index(z))

)∆i,S′
x
(0)

(by construction)

=
∏

z∈Sx

e (g, g)
r·qx(i)·∆i,S′

x
(0)

= e (g, g)
r·qx(0) (Using polynomial interpolation)

and return the result.

After defining our function DecryptNode, we can now

define the decryption algorithm. The algorithm begins by

calling the function on the root node R of the tree A. If the tree

is satisfied by ST we set A = DecryptNode (CT, SKT , r) =

e (g, g)
rqR(0)

= e (g, g)
rs

. The algorithm now decrypts by

computing

C̃/ (e (C,D) /A) = C̃/
(

e
(

hs, g(α+r)/β
)

/e (g, g)
rs
)

= Me (g, g)
αs

/
(

e (g, g)
s(α+r)

/e (g, g)
rs
)

= M.

VI. PERFORMANCE EVALUATION

In this section, we present a series of simulations that we

carried out in order to study the effect of the time slot duration

on system performances. We consider two system performance

parameters: (i) the Average Number of Time slots in an

attribute validity period (ANT). This is because the number

of time slots in a validity period determines the number of

associated secret key parts to be sent, (ii) the Average Waiting

Time that refers to the average delay between access request

to an attribute and the beginning of the true validity period for

that attribute.

A. Simulation Model

For the sake of simplicity, we considered a group of users

which ask gaining the access right to only one attribute.

We modeled users’ requests, which represent starting dates

of attribute validity periods, by Poisson process with the

parameter λ. The attribute validity periods durations for all

users follow exponential distribution with parameter µ.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Time slot duration

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

ti
m

e
 s

lo
ts

mu = 0.01

mu = 0.02

mu = 0.04

Figure 2: Average number of time slots

B. Average Number of time slots (ANT)

The figure 2 shows the impact of the time slot duration on

the system performance i.e. the average number of time slots

per user. The figure shows also the impact of the parameter µ
on the average number time slots per user. From this figure and

figure 3, we can deduce empirically that the average number

of time slots ANT is inversely proportional to the chosen time

slot duration ∆t:

ANT ≈
1

µ∆t
(7)

C. Average Waiting Time (AWT)

We are also interested on the average waiting time AWT ,

figure 4 shows the result of a experiment simulating the

variation of the overall average waiting time of all users

depending on the the time slot duration. We set λ = 0.01.

We note that the average waiting time AWT is independent

of the Poisson process parameter λ, on the other side it

increases linearly with the time slot duration ∆t, we can

deduce empirically:

AWT ≈ 1/2 ·∆t (8)



Figure 3: Average number of time slots

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Time slot duration

A
v
e
ra

g
e
 w

a
it
in

g
 t

im
e

Figure 4: Average waiting time

D. ANT vs AWT

We notice here that we are trying to minimize both of the

Average Waiting Time AWT and the Average Number of

Time slots per user ANT which are two conflicting objectives

i.e. minimizing AWT leads to maximizing ANT and vice

versa. In real life applications we choose a tradeoff between

performance and delay.

From formulas 8 and 7, we can deduce that:

ANT ≈
1

2µAWT
(9)

and this is shown in figure 5.

In real applications we define some conditions and con-

straints related to the system requirements such as:

{

AWT < α/µ

ANT < β/µ

α and β are to be determined according to the application

requirements. In figure 5, we show in red color the set of

solutions that satisfy these conditions where α = 1/10 and

β = 1/5.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Average waiting time (AWT)

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

ti
m

e
 s

lo
ts

 (
A

N
T

)

Figure 5: AWT vs ANT

VII. CONCLUSION

In this paper we have proposed a batch-based version

for Ciphertext Policy Attribute-Based Encryption to achieve

attributes revocation in an Internet of Things environment. Our

solution reduces the overhead and the complexity comparing

to previous solutions, and it does not require to re-encrypt data

every attribute policy change. We carried out some simulations

to show the effect of the variation of the time slot duration on

the system performances.

VIII. ACKNOWLEDGMENT

This work was carried out and funded in the framework of

the Labex MS2T. It was supported by the French Government,

through the program "Investments for the future" managed by

the National Agency for Research (Reference ANR-11-IDEX-

0004-02).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.comnet.2010.05.010

[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of the 2007 IEEE Symposium on

Security and Privacy. IEEE Computer Society, 2007, pp. 321–334.
[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption

for fine-grained access control of encrypted data,” in Proceedings of the

13th ACM Conference on Computer and Communications Security, ser.
CCS ’06. New York, NY, USA: ACM, 2006, pp. 89–98.

[4] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure
attribute-based systems,” in Proceedings of the 13th ACM Conference

on Computer and Communications Security, ser. CCS ’06. New
York, NY, USA: ACM, 2006, pp. 99–112. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180419

[5] Z. Xu and K. Martin, “Dynamic user revocation and key refreshing
for attribute-based encryption in cloud storage,” in Trust, Security and

Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th

International Conference on, June 2012, pp. 844–849.
[6] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic

proxy cryptography,” in In EUROCRYPT. Springer-Verlag, 1998, pp.
127–144.

[7] Y. Cheng, Z.-y. Wang, J. Ma, J.-j. Wu, S.-z. Mei, and J.-c. Ren,
“Efficient revocation in ciphertext-policy attribute-based encryption
based cryptographic cloud storage,” Journal of Zhejiang University

SCIENCE C, vol. 14, no. 2, pp. 85–97, 2012. [Online]. Available:
http://dx.doi.org/10.1631/jzus.C1200240

[8] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proceedings of the 5th ACM Symposium

on Information, Computer and Communications Security, ser. ASIACCS
’10. New York, NY, USA: ACM, 2010, pp. 261–270. [Online].
Available: http://doi.acm.org/10.1145/1755688.1755720


