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Transcendental Morse Inequality

and Generalized Okounkov Bodies

Ya Deng

Abstract

The main goal of this article is to construct “arithmetic Okounkov bodies” for an

arbitrary pseudo-effective (1,1)-class α on a Kähler manifold. Firstly, using Bouck-

som’s divisorial Zariski decompositions for pseudo-effective (1,1)-classes on com-

pact Kähler manifolds, we prove the differentiability of volumes of big classes for

Kähler manifolds on which modified nef cones and nef cones coincide; this includes

Kähler surfaces. We then apply our differentiability results to prove Demailly’s tran-

scendental Morse inequality for these particular classes of Kähler manifolds. In the

second part, we construct the convex body ∆(α) for any big class α with respect to a

fixed flag by using positive currents, and prove that this newly defined convex body

coincides with the Okounkov body when α ∈ NSR(X); such convex sets ∆(α) will

be called generalized Okounkov bodies. As an application we prove that any rational

point in the interior of Okounkov bodies is “valuative”. Next we give a complete

characterisation of generalized Okounkov bodies on surfaces, and show that the gen-

eralized Okounkov bodies behave very similarly to original Okounkov bodies. By

the differentiability formula, we can relate the standard Euclidean volume of ∆(α)
in R2 to the volume of a big class α, as defined by Boucksom; this solves a problem

raised by Lazarsfeld in the case of surfaces. Finally, we study the behavior of the gen-

eralized Okounkov bodies on the boundary of the big cone, which are characterized

by numerical dimension.
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1 Introduction

In [Oko96] Okounkov introduced a natural procedure to associate a convex body ∆(D) in

Rn to any ample divisorD on an n-dimensional projective variety. Relying on the work of

Okounkov, Lazarsfeld and Mustaţă [LM09], and Kaveh and Khovanskii [KK09, KK10],

have systematically studied Okounkov’s construction, and associated to any big divisor

and any fixed flag of subvarieties a convex body which is now called the Okounkov body.

We now briefly recall the construction of the Okounkov body. We start with a complex

projective variety X of dimension n. Fix a flag

Y• : X = Y0 ⊃ Y1 ⊃ Y2 ⊃ . . . ⊃ Yn−1 ⊃ Yn = {p}

where Yi is a smooth irreducible subvariety of codimension i inX . For a given big divisor

D, one defines a valuation-like function

µ = µY•,D : (H0(X,OX(D))− {0}) → Zn.

as follows. First set µ1 = µ1(s) = ordY1(s). Dividing s by a local equation of Y1, we

obtain a section

s̃1 ∈ H0(X,OX(D − µ1Y1))

that does not vanish identically along Y1. We restrict s̃1 on Y1 to get a non-zero section

s1 ∈ H0(Y1,OY1(D − µ1Y1)),

then we write µ2(s) = ordY2(s1), and continue in this fashion to define the remaining

integers µi(s). The image of the function µ in Zn is denoted by µ(D). With this in hand,

we define the Okounkov body of D with respect to the fixed flag Y• to be

∆(D) = ∆Y•(D) = closed convex hull

(
⋃

m≥1

1

m
· µ(mD)

)
⊆ Rn.

According to the open question raised in the final part of [LM09], it is quite natural to

wonder whether one can construct “arithmetic Okounkov bodies” for an arbitrary pseudo-

effective (1,1)-class α on a Kähler manifold, and realize the volumes of these classes by

convex bodies as well. In our paper, using positive currents in a natural way, we give a

construction of a convex body ∆(α) associated to such a class α, and show that this newly

defined convex body coincides with the Okounkov body when α ∈ NSR(X).

Theorem 1.1. LetX be a smooth projective variety of dimension n, L be a big line bundle

on X and Y• be a fixed admissible flag. Then we have

∆(c1(L)) = ∆(L) =
∞⋃

m=1

1

m
ν(mL).
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Moreover, in the definition of Okounkov body ∆(L), it suffices to take the closure of the

set of normalized valuation vectors instead of the closure of the convex hull.

By Theorem 1.1, we know that our definition of the Okounkov body for any pseudo-

efffective class could be treated as a generalization of the original Okounkov body. A very

interesting problem is to find out exactly which points in the Okounkov body ∆(L) are

given by valuations of sections. This is expressed by saying that a rational point of ∆(L)

is “valuative”. By Theorem 1.1 we can give some partial answers to this question which

have been given in [KL14] in the case of surfaces.

Corollary 1.2. Let X be a projective variety of dimension n and Y• be an admissible flag.

If L is a big line bundle, then any rational point in int(∆(L)) is a valuative point.

It is quite natural to wonder whether our newly defined convex body for big classes

behaves similarly as the original Okounkov body. In the situation of complex surfaces, we

give an affirmative answer to the question raised in [LM09], as follows:

Theorem 1.3. Let X be a compact Kähler surface, α ∈ H1,1(X,R) be a big class. If C

is an irreducible divisor of X , there are piecewise linear continuous functions

f , g : [a, s] 7→ R+

with f convex, g concave, and f ≤ g, such that ∆(α) ⊂ R2 is the region bounded by the

graphs of f and g:

∆(α) = {(t, y) ∈ R2 | a ≤ t ≤ s, and f(t) ≤ y ≤ g(t)}.

Here ∆(α) is the generalized Okounkov body with respect to the fixed flag

X ⊇ C ⊇ {x},

and s = sup{t > 0 | α− tC is big}. If C is nef, a = 0 and f(t) is increasing; otherwise,

a = sup{t > 0 | C ⊆ EnK(α−tC)}, where EnK :=
⋂
T E+(T ) for T ranging among the

Kähler currents in α, which is the non-Kähler locus. Moreover, ∆(α) is a finite polygon

whose number of vertices is bounded by 2ρ(X) + 2, where ρ(X) is the Picard number of

X , and

volX(α) = 2 volR2(∆(α)).

In [LM09], it was asked whether the Okounkov body of a divisor on a complex surface

could be an infinite polygon. In [KLM10], it was shown that the Okounkov body is always

a finite polygon. Here we give an explicit description for the “finiteness” of the polygons

appearing as generalized Okounkov bodies of big classes, and conclude that it also holds

for the original Okounkov bodies by Theorem 1.1.
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As one might suspect from the construction of Okounkov bodies, the Euclidean vol-

ume of ∆(D) has a strong connection with the growth of the groups H0(X,OX(mD)).

In [LM09], the following precise relations were shown:

n! · volRn(∆(D)) = volX(D) := lim
k→∞

n!

kn
h0(X,OX(kD)). (1.1)

The proof of (1.1) relies on properties of sub-semigroups of Nn+1 constructed from the

graded linear series {H0(X,OX(mD))}m≥0. However, when α is a big class which does

not belong to NSR(X), there are no such algebraic objects which correspond to volX(α),

and we only have the following analytic definition due to Boucksom:

volX(α) := sup
T

∫

X

T nac,

where T ranges among all positive (1, 1)-currents. Therefore, it is quite natural to propose

the following conjecture:

Conjecture 1.4. Let X be a compact Kähler manifold of dimension n. For any big class

α ∈ H1,1(X,R), we have

volRn(∆(α)) =
1

n!
· volX(α).

In Theorem 1.3, we prove this conjecture in dimension 2. Our method is to relate the

Euclidean volume of the slice of the generalized Okounkov body to the differential of the

volume of the big class. We prove the following differentiability formula for volumes of

big classses.

Theorem 1.5 (Differentiability of volumes). Let X be a compact Kähler surface and α

be a big class. If β is a nef class or β = {C} where C is an irreducible curve, we have

d

dt

∣∣∣∣
t=0

volX(α + tβ) = 2Z(α) · β,

where Z(α) is the divisorial Zariski decomposition of α defined in Section 2.6.

A direct corollary of this formula is the transcendental Morse inequality:

Theorem 1.6. Let X be a compact Kähler surface. If α and β are nef classes satisfying

the inequality α2 − 2α · β > 0, then α− β is big and volX(α− β) ≥ α2 − 2α · β.

In higher dimension, we also have a differentiability formula for big classes on some

special Kähler manifolds.
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Theorem 1.7. Let X be a compact Kähler manifold of dimension n on which the modified

nef cone MN coincides with the nef cone N . If α ∈ H1,1(X,R) is a big class, β ∈

H1,1(X,R) is a nef class, then

volX(α + β) = volX(α) + n

∫ 1

0

Z(α+ tβ)n−1 · β dt. (1.2)

As a consequence, volX(α + tβ) is C1 for t ∈ R+ and we have

d

dt

∣∣∣∣
t=t0

volX(α + tβ) = nZ(α + t0β)
n−1 · β (1.3)

for t0 ≥ 0.

Finally, we study the generalized Okounkov bodies for pseudo-effective classes in

Kähler surfaces. We summerize our results as follows

Theorem 1.8. Let X be a Kähler surface, α be any pseudo-effective but not big class,

(i) if the numerical dimension n(α) = 0, then for any irreducible curve C which is not

contained in the negative part N(α), we have the generalized Okounkov body

∆(C,x)(α) = 0× νx(N(α)|C),

where νx(N(α)|C) = ν(N(α)|C , x) is the Lelong number of N(α) at x;

(ii) if n(α) = 1, then for any irreducible curve C satisfying Z(α) · C > 0, we have

∆(C,x)(α) = 0× [νx(N(α)|C), νx(N(α)|C) + Z(α) · C].

In particular, the numerical dimension determines the dimension of the generalized Ok-

ounkov body.

2 Technical preliminaries

2.1 Siu decomposition

Let T be a closed positive current of bidegree (p, p) on a complex manifoldX . We denote

by ν(T, x) its Lelong number at a point x ∈ X . For any c > 0, the Lelong upperlevel sets

are defined by

Ec(T ) := {x ∈ X, ν(T, x) ≥ c}.

In [Siu74], Siu proved that Ec(T ) is an analytic subset of X , of codimension at least p.

Moreover, T can be written as a convergent series of closed positive currents

T =
+∞∑

k=1

ν(T, Zk)[Zk] +R



6 Ya Deng

where [Zk] is a current of integration over an irreducible analytic set of dimension p,

and R is a residual current with the property that dimEc(R) < p for every c > 0. This

decomposition is locally and globally unique: the sets Zk are precisely the p-dimensional

components occurring in the upperlevel setsEc(T ), and ν(T, Zk) := inf{ν(T, x)|x ∈ Zk}

is the generic Lelong number of T along Zk.

2.2 Currents with analytic singularities

A closed positive (1,1) current T on a compact complex manifold X is said to have ana-

lytic (resp. algebraic) singularities along a subscheme V (I) defined by an ideal I if there

exists some c ∈ R>0 (resp. Q>0) such that locally we have

T =
c

2
ddc log(|f1|

2 + . . .+ |fk|
2) + ddcv

where f1, . . . , fk are local generators of I and v ∈ L∞
loc (resp. and additionally, X and

V (I) are algebraic). Moreover, if v is smooth, T will be said to have mild analytic sin-

gularities. In these situations, we call the sum
∑
ν(T,D)D which appears in the Siu

decomposition of T the divisorial part of T . Using the Lelong-Poincaré formula, it is

straightforward to check that the divisorial part
∑
ν(T,D)D of a closed (1,1)-current

T with analytic singularities along the subscheme V (I) is just the divisorial part of

V (I), times the constant c > 0 appearing in the definition of analytic singularities.

The residual part R has analytic singularities in codimension at least 2. If we denote

E+(T ) := {x ∈ X|ν(T, x) > 0}, then E+(T ) is exactly the support of V (I). Moreover,

if V 6⊆ E+(T ) for some smooth variety V , T |V := c
2
ddclog(|f1|2+ . . .+ |fk|2)|V +ddcv|V

is well defined, for |f1|2 + . . . + |fk|2 and v are not identically equal to −∞ on V . It is

easy to check that this definition does not depend on the choice of the local potential of

T .

Definition 2.1 (Non-Kähler locus). If α ∈ H
1,1

∂∂
(X,R) is a big class, we define its non-

Kähler locus as EnK :=
⋂
T E+(T ) for T ranging among the Kähler currents in α.

We will usually use the following theorem due to Collins and Tosatti.

Theorem 2.2 ([CT13]). Let X be a compact Kähler manifold of dimension n. Given a

nef and big class α, we define a subset of X which measures its non-Kählerianity, namely

the null locus

Null(α) :=
⋃

∫
V
αdimV =0

V,

where the union is taken over all positive dimensional irreducible analytic subvarieties of

X. Then we have

Null(α) = EnK(α).
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2.3 Regularization of currents

We will need Demailly’s regularization theorem for closed (1,1)-currents, which enables

us to approximate a given current by currents with analytic singularities, with a loss of

positivity that is arbitrary small. In particular, we could approximate a Kähler current

T inside its cohomology class by Kähler currents Tk with algebraic singularities, with a

good control of the singularities. A big class therefore contains plenty of Kähler currents

with analytic singularities.

Theorem 2.3. Let T be a closed almost positive (1,1)-current on a compact complex

manifold X , and fix a Hermitian form ω. Suppose that T ≥ γ for some real (1,1)-form

γ on X . Then there exists a sequence Tk of currents with algebraic singularities in the

cohomology class {T} which converges weakly to T, such that Tk ≥ γ − ǫkω for some

sequence ǫk > 0 decreasing to 0, and ν(Tk, x) increases to ν(T, x) uniformly with respect

to x ∈ X .

2.4 Currents with minimal singularities

Let T1 = θ1 + ddcϕ1 and T2 = θ2 + ddcϕ2 be two closed almost positive (1,1)-currents

on X , where θi are smooth forms and ϕi are almost pluri-subharmonic functions, we say

that T1 is less singular than T2 (write T1 � T2) if we have ϕ2 ≤ ϕ1+C for some constant

C.

Let α be a class inH
1,1

∂∂
(X,R) and γ be a smooth real (1,1)-form, we denote by α[γ] the

set of closed almost positive (1,1)-currents T ∈ α with T ≥ γ. Since the set of potentials

of such currents is stable by taking a supremum, we conclude by standard pluripotential

theory that there exists a closed almost positive (1,1)-current Tmin,γ ∈ α[γ] which has

minimal singularities in α[γ]. Tmin,γ is well defined modulo ddcL∞. For each ǫ > 0,

denote by Tmin,ǫ = Tmin,ǫ(α) a current with minimal singularities in α[−ω], where ω

is some reference Hermitian form. The minimal multiplicity at x ∈ X of the pseudo-

effective class α ∈ H
1,1

∂∂
(X,R) is defined as

ν(α, x) := sup
ǫ>0

ν(Tmin,ǫ, x).

For a prime divisor D, we define the generic minimal multiplicity of α along D as

ν(α,D) := inf{ν(α, x)|x ∈ D)}.

We then have ν(α,D) = supǫ>0 ν(Tmin,ǫ, D).

2.5 Lebesgue decomposition

A current T can be locally seen as a form with distribution coefficients. When T is posi-

tive, the distributions are positive measures which admit a Lebesgue decomposition into
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an absolutely continuous part (with respect to the Lebesgue measure on X) and a singu-

lar part. Therefore we obtain the decomposition T = Tac + Tsing, with Tac (resp. Tsing)

globally determined thanks to the uniqueness of the Lebesgue decomposition.

Now we assume that T is a (1,1)-current. The absolutely continuous part Tac is consid-

ered as a (1,1)-form with L1
loc coefficients, and more generally we have Tac ≥ γ whenever

T ≥ γ for some real smooth real form γ. Thus we can define the product T kac of Tac almost

everywhere. This yields a positive Borel (k, k)-form.

2.6 Modified nef cone and divisorial Zariski decomposition

In this subsection, we collect some definitions and properties of the modified nef cone

and divisorial Zariski decomposition. See [Bou04] for more details.

Definition 2.4. Let X be compact complex manifold, and ω be some reference Hermitian

form. Let α be a class in H
1,1

∂∂
(X,R).

(i) α is said to be a modified Kähler class iff it contains a Kähler current T with

ν(T,D) = 0 for all prime divisors D in X .

(ii) α is said to be a modified nef class iff, for every ǫ > 0, there exists a closed (1,1)-

current Tǫ ≥ −ǫω and ν(Tǫ, D) = 0 for every prime D.

Remark 2.5. The modified nef cone MN is a closed convex cone which contains the nef

cone N . When X is a Kähler manifold, MN is just the interior of the modified Kähler

cone MK.

Remark 2.6. For a complex surface, the Kähler (nef) cone and the modified Kähler (mod-

ified nef) cone coincide. Indeed, analytic singularities in codimension 2 of a Kähler cur-

rent T are just isolated points. Therefore the class {T} is a Kähler class.

Definition 2.7 (Divisorial Zariski decomposition). The negative part of a pseudo-effective

class α ∈ H
1,1

∂∂
(X,R) is defined as N(α) :=

∑
ν(α,D)D. The Zariski projection of α

is Z(α) := α − {N(α)}. We call the decomposition α = Z(α) + {N(α)} the divisorial

Zariski decomposition of α.

Remark 2.8. We claim that the volume of Z(α) is equal to the volume of α. Indeed, if T

is a positive current in α, then we have T ≥ N(α) since T ∈ α[−ǫω] for each ǫ > 0 and

we conclude that T 7→ T − N(α) is a bijection between the positive currents in α and

those in Z(α). Furthermore, we notice that (T−N(α))ac = Tac, and thus by the definition

of volume of the pseudo-effective classes we conclude that volX(α) = volX(Z(α)).

Definition 2.9 (Exceptional divisors). (i) A family D1, . . . , Dq of prime divisors is

said to be an exceptional family iff the convex cone generated by their cohomol-

ogy classes meets the modified nef cone at 0 only.
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(ii) An effective R-divisorE is said to be exceptional iff its prime components constitute

an exceptional family.

We have the following properties of exceptional divisors:

Theorem 2.10. (i) An effective R-divisor E is exceptional iff Z(E) = 0.

(ii) If E is an exceptional effective R-divisor, we have E = N({E}).

(iii) If D1, . . . , Dq is an exceptional family of primes, then their classes {D1}, . . . , {Dq}

are linearly independent in NSR(X) ⊂ H1,1(X,R). In particular, the length of the

exceptional families of primes is uniformly bounded by the Picard number ρ(X).

(iv) Let X be a surface, a familyD1, . . . , Dr of prime divisors is exceptional iff its inter-

section matrix (Di ·Dj) is negative definite.

In this paper, we need the following properties of the modified nef cone MN and the

divisorial Zariski decomposition due to Boucksom (ref. [Bou04]). We state these proper-

ties without proofs.

Theorem 2.11. Let α ∈ H1,1(X,R) be a pseudo-effective class. Then we have:

(i) Its Zariski projection Z(α) is a modified nef class.

(ii) Z(α) = α iff α is modified nef.

(iii) Z(α) is big iff α is.

Remark 2.12. Let X be a complex Kähler surface. For a big class α ∈ H1,1(X,R), Z(α)

is a big and modified nef class. By Remark 2.5, any modified nef class is nef, it follows

that Z(α) is big and nef.

Theorem 2.13. (i) The mapα 7→ N(α) is convex and homogeneous on pseudo-effective

class cone E . It is continuous on the interior of E .

(ii) The Zariski projection Z : E → MN is concave and homogeneous. It is continuous

on the interior of E .

Theorem 2.14. Let p be a big and modified nef class. Then the primes D1, . . . , Dq con-

tained in the non-Kähler locus EnK(p) form an exceptional family A, and the fiber of Z

over p is the simplicial cone Z−1(p) = p+ V+(A), where V+(A) :=
∑

D∈AR+{D}.

Theorem 2.15. Let X be a compact surface. If α ∈ H1,1(X,R) is a pseudo-effective

class, its divisorial Zariski decomposition α = Z(α) + {N(α)} is the unique orthogonal

decomposition of α with respect to the non-degenerate quadratic form q(α) :=
∫
α2 into

the sum of a modified nef class and the class of an exceptional effective R-divisor.
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Remark 2.16. Let X be a surface, α is the class of an effective Q-divisor D on a projec-

tive surface, the divisorial Zariski decomposition of α is just the original Zariski decom-

position of D.

3 Transcendental Morse inequality

3.1 Proof of the transcendental Morse inequality for complex sur-

faces

The main goal of this section is to prove the differentiability of the volume function and

the transcendental Morse inequality for complex surfaces. In fact, in the next subsection

we will give a more general method to prove the transcendental Morse inequality for

Kähler manifolds on which modified nef cones MN coincide with the nef cones; this

includes complex surfaces. However, since the methods and results here are very spe-

cial in studying generalized Okounkov bodies, we will treat complex surface and higher

dimensional Kähler manifolds separately. Throughout this subsection, if not specially

mentioned, X will stand for a complex Kähler surface. We denote by q(α) :=
∫
α2 the

quadratic form on H1,1(X,R). By the Hodge index theorem, (H1,1(X,R), q) has signa-

ture (1, h1,1(X)−1). The open cone {α ∈ H1,1(X,R)|q(α) > 0} has thus two connected

components which are convex cones, and we denote by P the component containing the

Kähler cone K.

Lemma 3.1. Let X be a compact Kähler manifold of dimension n. If α ∈ H1,1(X,R) is a

big class, β ∈ H1,1(X,R) is a nef class, then N(α + tβ) ≤ N(α) as effective R-divisors

for t ≥ 0. Furthermore, when t is small enough, the prime components of N(α+ tβ) will

be the same as those of N(α).

Proof. Since β is nef, by Theorem 2.13, we have

N(α + tβ) ≤ N(α) + tN(β) = N(α).

Since the map α 7→ N(α) is convex on pseudo-effective class cone E , it is continuous on

the interior of E , and thus the theorem follows.

Theorem 3.2. If α ∈ H1,1(X,R) is a big class and β ∈ H1,1(X,R) is a nef class, then

d

dt

∣∣∣∣
t=0

volX(α + tβ) = 2Z(α) · β (3.1)

Proof. By Lemma 3.1, there exists an ǫ > 0 such that when 0 ≤ t < ǫ, we can write

N(α + tβ) =
∑r

i=1 ai(t)Ni, where 0 < ai(t) ≤ ai(0) =: ai, and each ai(t) is a contin-

uous and decreasing function with respect to t. According to the orthogonal property of
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divisorial Zariski decomposition (ref. Theorem 2.15), Z(α+tβ)·N(α+tβ) = 0 for t ≥ 0.

Since Z(α+tβ) is modified nef and thus nef (by Remark 2.6), we have Z(α+tβ)·Ni ≥ 0

for every i. When 0 ≤ t < ǫ, we have ai(t) > 0 for i = 1, . . . , r, therefore, Z(α + tβ)

is orthogonal to each {Ni} with respect to q. We denote by V ⊂ H1,1(X,R) the finite

vector space spanned by {N1}, . . . , {Nr}, by V ⊥ the orthogonal space of V with respect

to q. Thus α+ tβ = Z(α+ tβ) +
∑r

i=1 ai(t){Ni} is the decomposition in the direct sum

V ⊥ ⊕ V . We decompose β = β⊥ + β0 in the direct sum V ⊥ ⊕ V , and we have

Z(α + tβ) = Z(α) + tβ⊥,
r∑

i=1

ai(t){Ni} =

r∑

i=1

ai{Ni}+ tβ0.

Since volX(α + tβ) = volX(Z(α + tβ)) = Z(α + tβ)2 (by Remark 2.8), it is easy to

deduce that
d

dt

∣∣∣∣
t=0

volX(α + tβ) = 2Z(α) · β⊥ = 2Z(α) · β.

The last equality follows from β0 ∈ V and Z(α) ∈ V ⊥. We get the first half of Theorem

1.5.

To prove the transcendental Morse inequality for complex surfaces, we will need a

criterion for bigness of a class:

Theorem 3.3. Let α and β be two nef classes such that α2 − 2α · β > 0, then α− β is a

big class.

Proof. We denote by P the connected component of the open cone {α ∈ H1,1(X,R) |

q(α) > 0} containing the Kähler cone K, then P ⊂ E0. As a consequence of the Nakai-

Moishezon criterion for surfaces (ref. [Lam99]), we know that, if γ is a real (1,1)-class

with γ2 > 0, then γ or −γ is big. Since α and β are both nef, we have that (α− tβ)2 > 0

for 0 ≤ t ≤ 1. This means that α − tβ is contained in some component of the open cone

{α ∈ H1,1(X,R)|q(α) > 0}. But since α is big, α − tβ is contained in P ⊂ B, and a

fortiori α− β is.

Now we are ready to prove the transcendental Morse inequality for complex surfaces.

Proof of Theorem 1.6. By Theorem 3.3, when α2 − 2α · β > 0, the cohomology class

α− β is big. By the differentiability formula (3.1), we have

volX(α− β) = α2 − 2

∫ 1

0

Z(α− tβ) · β dt.

Since the Zariski projection Z : E → MN is concave and homogeneous by Theorem

2.13, we have

α = Z(α) ≥ Z(α− tβ) + Z(tβ) ≥ Z(α− tβ).
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Since β is nef, we have

α · β ≥ Z(α− tβ) · β,

and thus

volX(α− β) ≥ α2 − 2α · β.

In the last part of this subsection, we prove the second half of Theorem 1.5.

Theorem 3.4. Let α ∈ H1,1(X,R) be a big class and C be an irreducible divisor, then

d

dt

∣∣∣∣
t=0

volX(α + tC) = 2Z(α) · C. (3.2)

Proof. It suffices to prove the theorem for C not nef. Thus we have C2 < 0. Write

N(α) =
∑r

i=1 aiNi, where each Ni is prime divisor. If C ⊆ EnK(Z(α)), we deduce

that Z(α) · C = 0 by Theorem 2.2, and {C,N1, . . . , Nr} forms an exceptional family by

Theorem 2.14. Thus we have

Z(α+ tC) = Z(α),

and

N(α + tC) = N(α) + tC

for t ≥ 0. The theorem is thus proved in this case.

From now on we assume C 6⊆ EnK(Z(α)), thus we have Z(α) · C > 0 and C 6⊆

Supp(N(α)). We define




b1
...

br


 = −S−1 ·




C ·N1
...

C ·Nr


 ,

where S = (sij) denotes the intersection matrix of {N1, . . . , Nr}. By Theorem 2.15 we

know that S is negative definite satisfying sij ≥ 0 for all i 6= j. We claim that Z(α) +

t({C} +
∑r

i=1 bi{Ni}) is big and nef if 0 ≤ t < −Z(α)·C
C2 . We need the following lemma

from [BKS03] to prove our claim.

Lemma 3.5. Let A be a negative definite r× r-matrix over the reals such that aij ≥ 0 for

all i 6= j. Then all entries of the inverse matrix A−1 are ≤ 0.

By Lemma 3.5 we know that all entries of S−1 are ≤ 0, thus bj ≥ 0 for all 1 ≤ j ≤ r

and we get the bigness of Z(α) + t({C} +
∑r

i=1 bi{Ni}). By the construction of bj , we

have

(Z(α) + t({C}+
r∑

i=1

bi{Ni})) ·Nj = 0
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for 1 ≤ j ≤ r, and

(Z(α) + t({C}+
r∑

i=1

bi{Ni})) · C > 0

for 0 ≤ t < −Z(α)·C
C2 . Thus we have the nefness and our claim follows. Since the divisorial

Zariski decomposition is orthogonal and unique (see Theorem 2.15), we conclude that

N(α + t{C}) =
r∑

i=1

(ai − tbi)Ni, (3.3)

Z(α + t{C}) = Z(α) + t{C}+
r∑

i=1

tbi{Ni}, (3.4)

for t small enough. Since volX(α + tC) = Z(α + t{C})2, we have thus also obtained

formula (3.2) in this case.

3.2 Transcendental Morse inequality for some special Kähler mani-

folds

One can modify the proof of Theorem 1.6 a little bit, to extend the transcendental Morse

inequality to Kähler manifolds whose modified nef cone MN coincides with the nef

cone N . In this subsection, we assume X to be a compact Kähler manifold of dimension

n which satisfies this condition.

Lemma 3.6. If α ∈ E◦, then the divisorial Zariski decomposition α = Z(α) + N(α) is

such that

Z(α)n−1 ·N(α) = 0.

Remark 3.7. Lemma 3.6 is very similar to the Corollary 4.5 in [BDPP13]: If α ∈ ENS,

then the divisorial Zariski decomposition α = Z(α) + N(α) is such that 〈Z(α)n−1〉 ·

N(α) = 0. However, the proof of [BDPP13] is based on the orthogonal estimate for

divisorial Zariski decomposition of ENS, which is still a conjecture for α ∈ E . Here we

will use Theorem 2.2 to prove this lemma directly.

Proof of Lemma 3.6. By Theorem 2.11, if α is big, then Z(α) is big and modified nef,

thus nef by the assumption for X . By Theorem 2.14, the primes D1, . . . , Dq contained in

the non-Kähler locusEnK(Z(α)) form an exceptional family, and α = Z(α)+
∑r

i=1 aiDi

for ai ≥ 0 . Since Null(Z(α)) = EnK(Z(α)) by Theorem 2.2, we have Z(α)n−1 ·Di = 0

for each i, and thus Z(α)n−1 ·N(α) = 0. The lemma is proved.

Proof of Theorem 1.7. By Lemma 3.1, there exists ǫ > 0 such that the prime components

of N(α + tβ) will be the same when 0 ≤ t ≤ ǫ. Moreover if we denote N(α + tβ) =
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∑r

i=1 ai(t)Ni, then each ai(t) is continuous and decreasing satisfying ai(t) > 0. By

Lemma 3.6, we have

Z(α+ tβ)n−1 ·N(α + tβ) =
r∑

i=1

ai(t)Z(α + tβ)n−1 ·Ni = 0.

Since Z(α + tβ) is modified nef thus nef, we deduce that Z(α + tβ)n−1 · Ni = 0 for

0 ≤ t ≤ ǫ and i = 1, . . . , r.

Since ai(t) is continuous and decreasing, it is almost everywhere differentiable. Thus

Z(α+ tβ) = α+ tβ−
∑r

i=1 ai(t)Ni is an a.e. differentiable and continuous curves in the

finite dimensional space H1,1(X,R) parametrized by t. Meanwhile, since α 7→ αn is a

quadratic form (possibly degenerate) in H1,1(X,R), we thus deduce that volX(α+ tβ) =

Z(α+ tβ)n is an a.e. differentiable function with respect to t. Therefore, if volX(α+ tβ)

and ai(t) are both differentiable at t = t0, we have

d

dt

∣∣∣∣
t=t0

volX(α + tβ) = nZ(α + t0β)
n−1 · (β −

r∑

i=1

ai
′(t0)Ni) = nZ(α + t0β)

n−1 · β.

Since volX(α+ tβ) is increasing and continuous, it is also a.e. differentiable and thus we

have

volX(α + sβ) = volX(α) +

∫ s

0

d

dt
volX(α + tβ)dt

= volX(α) + n

∫ s

0

Z(α+ tβ)n−1 · β dt. (3.5)

for 0 ≤ s ≤ ǫ. Since Z(α+ tβ) is continuous (by Theorem 2.13), by (3.5) we deduce that

volX(α + tβ) is differentiable with respect to t and its derivative

d

dt

∣∣∣∣
t=t0

volX(α + tβ) = nZ(α+ t0β)
n−1 · β.

In order to prove transcendental Morse inequality, we will need the following bigness

criterion obtained in [Xia13] and [Popo14].

Theorem 3.8. Let X be an n-dimensional compact Kähler manifold. Assume α and β are

two nef classes on X satisfying αn − nαn−1 · β > 0, then α− β is a big class.

The proof of the next theorem is similar to that of Theorem 1.6 and is therefore omit-

ted.

Theorem 3.9. Let X be a compact Kähler manifold on which the modified nef cone MN

and the nef cone N coincide. If α and β are nef cohomology classes of type (1,1) on X

satisfying the inequality αn − nαn−1 · β > 0. Then α − β contains a Kähler current and

volX(α− β) ≥ αn−1 − nαn−1 · β.
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Remark 3.10. In [BCJ09], the authors proved the following differentiability theorem:

d

dt

∣∣∣∣
t=t0

volX(L+ tD) = n〈Ln−1〉 ·D, (3.6)

where L is a big line bundle on the smooth projective variety X and D is a prime divi-

sor. The right-hand side of the equation above involves the positive intersection product

〈Ln−1〉 ∈ H
n−1,n−1
≥0 (X,R), first introduced in the analytic context in [BDPP13]. Theorem

1.7 could be seen as a transcendental version of (3.6) for some special Kähler manifolds.

In the general Kähler situation, we propose the following conjecture:

Conjecture 3.11. Let X be a Kähler manifold of dimensional n, α be a big class. If β is

a pseudo-effective class, then we have

d

dt

∣∣∣∣
t=0

volX(α + tβ) = n〈αn−1〉 · β.

4 Generalized Okounkov bodies on Kähler manifolds

4.1 Definition and relation with the algebraic case

Throughout this subsection, X will stand for a Kähler manifold of dimensional n. Our

main goal in this subsection is to generalize the definition of Okounkov body to any

pseudo-effective class α ∈ H1,1(X,R). First of all, we define a valuation-like function.

For any positive current T ∈ α with analytic singularites, we define the valuation-like

function

T → ν(T ) = νY•(T ) = (ν1(T ), . . . νn(T ))

as follows. First, set

ν1(T ) = sup{λ | T − λ[Y1] ≥ 0},

where [Y1] is the current of integration over Y1. By Section 2.1 we know that ν1(T ) is the

coefficient ν(T, Y1) of the positive current [Y1] appearing in the Siu decomposition of T .

Since T has analytic singularities, by the arguments in Section 2.2, T1 := (T − ν1[Y1])|Y1
is a well-defined positive current in the pseudo-effective class (α− ν1{Y1})|Y1 and it also

has analytic singularities. Then take

ν2(T ) = sup{λ | T1 − λ[Y2] ≥ 0},

and continue in this manner to define the remaining values νi(T ) ∈ R+.

Remark 4.1. If one assumes α ∈ NSZ(X), there exists a holomorphic line bundle L such

that α = c1(L). If D is the divisor of some holomorphic section sD ∈ H0(X,OX(L)),

then we have

ν([D]) = µ(sD),
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where µ is the valuation-like function appeared in the definition of the original Okounkov

body. Roughly speaking our definition of valuation-like function has a bigger domain of

definition and thus the image of our valuation-like function contains
⋃∞
m=1

1
m
µ(mL).

For any big class α, we define a Q-convex body ∆Q(α) (resp. R-convex body ∆R(α)) to

be the set of valuation vectors ν(T ), where T ranges among all the Kähler (resp. positive)

currents with algebraic (resp. analytic) singularities. Then ∆Q(α) ⊆ ∆R(α). It is easy

to check that this is a convex set in Qn (resp. Rn). Indeed, for any two positive currents

T0 and T1 with algebraic (resp. analytic) singularities, we have ν(ǫT0 + (1 − ǫ)T1) =

ǫν(T0) + (1 − ǫ)ν(T1) for 0 ≤ ǫ ≤ 1 rational (resp. real). It is also obvious to see the

homogeneous property of ∆Q(α), that is, for all c ∈ Q+, we have

∆Q(cα) = c∆Q(α).

Indeed, since we have ν(cT ) = cν(T ) for all c ∈ R+, the claim follows directly.

Example 4.2. Let L be a line bundle of degree c > 0 on a smooth curve C of genus g.

Then we have

∆Q(c1(L)) = Q ∩ [0, c).

Since NSR(C) = H1,1(C,R), for any ample class α on C we have

∆Q(α) = Q ∩ [0, α · C).

Lemma 4.3. Let α be a big class, then the R-convex body ∆R(α) lies in a bounded subset

of Rn.

Proof. It suffices to show that there exists a b > 0 large enough such that νi(T ) < b for

any positive current T with analytic singularities. We fix a Kähler class ω. Choose first of

all b1 > 0 such that

(α− b1Y1) · ω
n−1 < 0.

This guarantees that ν1(T ) < b1 since α− b1Y1 6∈ E . Next choose b2 large enough so that

((α− aY1)|Y1 − b2Y2) · ω
n−2 < 0

for all real numbers 0 ≤ a ≤ b1. Then ν2(T ) ≤ b2 for any positive current T with

analytic singularities. Continuing in this manner we construct bi > 0 for i = 1, . . . , n

such that νi(T ) ≤ bi for any positive current T with analytic singularities. We take b =

max{bi}.

Lemma 4.4. For any big class α, ∆Q(α) is dense in ∆R(α). Thus we have ∆Q(α) =

∆R(α).
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Proof. It is easy to verify that if T is a Kähler current with analytic singularities, then

for any ǫ > 0, there exists a Kähler current Sǫ with algebraic singularities such that

‖ν(Sǫ)− ν(T )‖ < ǫ with respect to the standard norm in Rn. For the general case, We fix

a Kähler current T0 ∈ iΘ(L) with algebraic singularities. Then for any positive current T

with analytic singularities, Tǫ := (1− ǫ)T + ǫT0 is still a Kähler current. By Lemma 4.3,

‖ν(Tǫ)− ν(T )‖ = ǫ ‖(ν(T0)− ν(T ))‖ will tend to 0 since ν(T ) is uniformly bounded

for any positive current T with analytic singularities. Thus ∆Q(α) is dense in ∆R(α).

Now we study the relations between ∆Q(c1(L)) and ∆(L) for L a big line bundle on

X . First we begin with the following two lemmas.

Lemma 4.5 (Extension property). Let L be a big line bundle on the projective variety X

of dimension n, with a singular Hermitian metric h = e−ϕ satisfying

iΘL,h = ddcϕ ≥ ǫω

for some ǫ > 0 and a given Kähler form ω. If the restriction of ϕ on a smooth hypersurface

Y is not identically equal to −∞, then there exists a positive integer m0 which depends

only on Y so that any holomorphic section sm ∈ H0(Y,OY (mL) ⊗ I(mϕ|Y )) can be

extended to Sm ∈ H0(X,OX(mL)⊗ I(mϕ)) for any m ≥ m0.

We need the following Ohsawa-Takegoshi extension theorem to prove Lemma 4.5.

Theorem 4.6 (Ohsawa-Takegoshi). Let X be a smooth projective variety. Let Y be a

smooth divisor defined by a holomorphic section of the line bunleH with a smooth metric

h0 = e−ψ. Let L be a holomorphic line bunle with a singular metric h = e−φ, satisfying

the curvature assumptions

ddcφ ≥ 0

and

ddcφ ≥ δddcψ

with δ > 0. Then for any holomorphic section s ∈ H0(Y,OY (KY + L)⊗ I(h|Y )), there

exists a global holomorphic section S ∈ H0(X,OX(KX + L + Y ) ⊗ I(h)) such that

S|Y = s.

Proof of Lemma 4.5. Taking a smooth metric e−ψ and e−η on Y and KX , we can choose

m0 large enough satisfying the curvature assumptions

ddc(mφ− η − ψ) ≥ 0

and

ddc(mφ− η − ψ) ≥ ddcψ
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for any m ≥ m0.

By Theorem 4.6, any holomorphic section s ∈ H0(Y,OY (KY +(mL−KX−Y )|Y )⊗

I(hm|Y )) can be extended to a global holomorphic section S ∈ H0(X,OX(mL)⊗I(hm))

such that S|Y = s. By the adjunction theorem, we have (KX + Y )|Y = KY , thus the

lemma is proved.

Lemma 4.7. Let L be a big line bundle on the Riemann surface C with a singular Her-

mitian metric h = e−ϕ such that ϕ has algebraic singularities and

iΘL,h = ddcϕ ≥ ǫω

for some ǫ > 0. Then for a fixed point p, there exists an integer k > 0 such that we have a

holomorphic section sk ∈ H0(C,OC(kL)⊗ I(hk)) satisfying ordp(sk) = kν(iΘL,h, p).

Proof. Since ϕ has algebraic singularities, we have the following Lebsegue decomposi-

tion

iΘL,h = (iΘL,h)ac +

r∑

i=1

cixi,

where each ci > 0 is rational and x1, . . . , xr are the log poles of iΘL,h (possibly p is

among them). Since we have

∫

C

i(ΘL,h)ac +
r∑

i=1

ci = deg(L),

thus
r∑

i=1

ci < deg(L).

By Riemann-Roch theorem there exists an integer k > 0 satisfying

(i) kci is integer,

(ii) there is a holomorphic section sk ∈ H0(C,OC(kL)) such that ordxi(sk) ≥ kci and

ordp(sk) = kν(iΘL,h, p).

Thus sk is locally integrable with respect to the weight e−kϕ. The theorem is proved.

Theorem 4.8. Let X be a smooth projective manifold of dimension n. For any Kähler

current T ∈ c1(L) with algebraic singularities, there exists a holomorphic section s ∈

H0(X,OX(kL)) such that µ(s) = kν(T ), i.e., we have

ν(T ) ∈
∞⋃

m=1

1

m
µ(mL).
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In particular,

∆Q(c1(L)) ⊆
∞⋃

m=1

1

m
µ(mL) ⊆ ∆(L).

Proof. First, set νi = νi(T ) and define

T0 := T, T1 := (T0 − ν1[Y1])|Y1 , . . . , Tn−1 := (Tn−2 − νn−1[Yn−1])|Yn−1
;

L0 := L− ν1Y1, L1 := L0|Y1 − ν2Y2, . . . , Ln−2 := Ln−3|Yn−2
− νn−1Yn−1.

Since T0 ≥ ǫω, we have T1 ≥ ǫω|Y1 , . . . , Tn−1 ≥ ǫω|Yn−1
. Since each νi is rational, we

could find an integer m to make each mνi be integer so that each mLi is a big line bundle

on Yi. If we could prove

ν(mT ) ∈
∞⋃

k=1

1

k
µ(kmL),

then we will have

ν(T ) ∈
∞⋃

m=1

1

m
µ(mL),

by the homogeneous property 1
m
ν(mT ) = ν(T ). Thus we can assume that each νi(T ) is

an integer after we replace L by mL and T by mT .

Firstly, since T0 ∈ c1(L) is a Kähler current with algebraic singularities, there exists

a singular metric h = e−ϕ0 on L whose curvature current is T0 and ϕ has algebraic

singularities; on the other hand, there is a canonical metric e−η0 on OY0(Y1) such that

ddcη0 = [Y1] in the sense of currents, thus by the definition of ν1 we deduce that h0 :=

e−ϕ0+ν1η0 is a singular metric of L0 such that −ϕ0 + ν1η0 does not vanish identically on

Y1, and h0|Y1 is a singular metric of L0|Y1 with algebraic singularities whose curvature

current is T1 ≥ ǫω|Y1 .

Secondly, there is a canonical singular metric e−η1 of OY1(Y2) on Y1 with the curvature

current [Y2]. Thus the singular metric h1 := h0|Y1 + eν2η1 of the big line bundle L1 gives a

curvature current T1−ν2[Y2] ≥ ǫω|Y1 . We continue in this manner to define the remaining

singular metrics hi := hi−1|Yi + eνi+1ηi of the big line bundle Li on Yi with curvature

current Ti − νi+1[Yi+1] ≥ ǫω|Yi for i = 0, . . . , n − 1. It is easy to see that hi|Yi+1
is

well-defined.

By Lemma 4.5, there exists a k0 such that for each k ≥ k0, the following short se-

quence is exact

H0(Yi−1,OYi−1
(kLi−1)⊗ I(hki−1)) −→ H0(Yi,OYi(kLi−1)⊗ I(hki−1|Yi)) −→ 0 (4.1)

for i = 1, . . . , n− 1.

Now we begin our construction. Tn−1 is the curvature current of the singular metric

hn−2|Yn−1
of Ln−2|Yn−1

over the Riemann surface Yn−1. By Lemma 4.7, there exists a
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k ≥ k0 and a holomorphic section sn−1 ∈ H0(Yn−1,OYn−1
(kLn−2) ⊗ I(hkn−2|Yn−1

)),

such that ordp(sn−1) = kν(Tn−1, p) = kνn.

By the exact sequence (4.1), sn−1 could be extend to

s̃n−2 ∈ H0(Yn−2,OYn−2
(kLn−2)⊗ I(hkn−2)).

Now we choose a canonical section tn−2 of H0(Yn−2,OYn−2
(Yn−1)) such that the divisor

of tn−2 is Yn−1. We define sn−2 := s̃n−2t
⊗νn−1

n−2 , by the construction of hn−2 := hn−3|Yn−2
+

eνn−1ηn−2 , we obtain that

sn−2 ∈ H0(Yn−2,OYn−2
(kLn−3)⊗ I(hkn−3|Yn−2

).

We can continue in this manner to construct a section s0 ∈ H0(X,OX(kL)) and by our

construction we have

µ(s0) = (kν1, . . . , kνn) = kν(T ),

this concludes the theorem.

Proposition 4.9. For any big line bundleL and any admissible flag Y•, one has ∆Q(c1(L)) =

∆(L). In particular,

∆(L) =

∞⋃

m=1

1

m
ν(mL).

Proof. Firstly, since ∆Q(c1(L)) is a convex set in Qn, its closure ∆Q(c1(L)) is also a

closed convex set in Rn. By Proposition 4.8, we have

∆Q(c1(L)) ⊂
∞⋃

m=1

1

m
· ν(mL),

thus

∆Q(c1(L)) ⊆ ∆(L).

By Remark 4.1, we have
⋃∞
m=1

1
m
ν(mL) ⊆ ∆R(c1(L)), thus by the definition of Ok-

ounkov body ∆(L), we deduce that

∆(L) ⊆ ∆R(c1(L)).

By Lemma 4.4, we have ∆Q(c1(L)) = ∆R(c1(L)), thus the theorem is proved.

Remark 4.10. By Proposition 4.9, in the definition of the Okounkov body ∆(L), it suf-

fices to close up the set of normalized valuation vectors instead of the closure of the

convex hull of this set.
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Remark 4.11. It is easy to reprove that the Okounkov body ∆(L) depends only on the

numerical equivalence class of the big line bundle L. Indeed, if L1 and L2 are numerically

equivalent, we have c1(L1) = c1(L2) thus

∆Q(c1(L1)) = ∆Q(c1(L2)).

By Proposition 4.9, we have

∆(L1) = ∆(L2).

Now we are ready to find some valuative points in the Okounkov bodies.

Proof of Corollary 1.2. In [LM09] we know that volRn(∆(L)) = volX(L) > 0 by the

bigness of L. Since we have ∆(L) = ∆Q(c1(L)) by Proposition 4.9, then for any p ∈

int(∆(L)) ∩ Qn, there exists an n-simplex ∆n containing p with all the vertices lying in

∆Q(c1(L)). Since ∆Q(c1(L)) is a convex set in Qn, we have ∆n ∩Qn ⊆ ∆Q(c1(L)), and

thus

∆Q(c1(L)) ⊇ int(∆(L)) ∩Qn.

From Theorem 4.8 we have ∆Q(c1(L)) ⊆
∞⋃

m=1

1

m
µ(mL), thus we get the inclusion

int(∆(L)) ∩Qn ⊆
∞⋃

m=1

1

m
µ(mL),

which means that all rational interior points of ∆(L) are valuative.

Pursuing the same philosophy as in Proposition 4.9, it is natual to extend results related

to Okounkov bodies for big line bundles, to the more general case of an arbitrary big class

α ∈ H1,1(X,R). We propose the following definition.

Definition 4.12 (Generalized Okounkov body). Let X be a Kähler manifold of dimension

n. We define the generalized Okounkov body of a big class α ∈ H1,1(X,R) with respect

to the fixed flag Y• by

∆(α) = ∆R(α) = ∆Q(α).

We have the following properties for generalized Okounkov bodies:

Proposition 4.13. Let α and β be big classes, ω be any Kähler class. Then:

(i) ∆(α) + ∆(β) ⊆ ∆(α + β).

(ii) volRn(∆(ω)) > 0.

(iii) ∆(α) =
⋂
ǫ>0∆(α + ǫω).
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Proof. (i) is obvious from the definition of generalized Okounkov body. To prove (ii), we

use induction for dimension. The result is obvious if n = 1, assume now that (ii) is true

for n− 1. We choose t > 0 small enough such that ω − tY1 is still a Kähler class. By the

main theorem of [CT14], any Kähler current T ∈ (ω − tY1)|Y1 with analytic singularities

can be extended to a Kähler current T̃ ∈ ω − tY1, thus we have

∆(ω)
⋂

t× Rn−1 = t×∆((ω − tY1)|Y1),

where ∆((ω − tY1)|Y1) is the generalized Okounkov body of (ω − tY1)|Y1 with respect to

the flag

Y1 ⊃ Y2 ⊃ . . . ⊃ Yn = {p}.

By the induction, we have volRn−1(∆((ω− tY1)|Y1)) > 0. Since ∆(ω) contains the origin,

we have volRn(∆(ω)) > 0.

Now we are ready to prove (iii). By the concavity we have

∆(α + ǫ1ω) + ∆((ǫ2 − ǫ1)ω) ⊆ ∆(α + ǫ2ω)

if 0 ≤ ǫ1 < ǫ2. Since ∆(ω) contains the origin, we have

∆(α) ⊆
⋂

ǫ>0

∆(α + ǫω),

and

∆(α + ǫ1ω) ⊆ ∆(α + ǫ2ω).

From the concavity property, we conclude that volRn(∆(α+tω)) is a concave function

for t ≥ 0, thus continuous. Then we have

volRn(
⋂

ǫ>0

∆(α + ǫω)) = volRn(∆(α)) > 0.

Since they are all closed and convex, we have

∆(α) =
⋂

ǫ>0

∆(α + ǫω).

Remark 4.14. We don’t know whether volRn(∆(α)) is independent of the choice of the

admissible flag. However, in the next subsection we will prove that in the case of surfaces

we have

volX(α) = 2 volR2(∆((α)),

in particular the Euclidean volume of the generalized Okounkov body is independent of

the choice of the flag. We conjecture that

volRn(∆(α)) =
1

n!
· volX(α),

as we proposed in the introduction.
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4.2 Generalized Okounkov bodies on complex surfaces

Now we will mainly focus on generalized Okounkov bodies of compact Kähler surfaces.

In this section, X denotes a compact Kähler surface. We fix henceforth an admissible flag

X ⊇ C ⊇ {x},

on X , where C ⊂ X is an irreducible curve and x ∈ C is a smooth point.

Definition 4.15. For any big class α ∈ H1,1(X,R), we denote the restricted R-convex

body of α along C by ∆R,X|C(α), which is defined to be the set of Lelong numbers

ν(T |C , x), where T ∈ α ranges among all the positive currents with analytic singularities

such that C 6⊆ E+(T ). The restricted Okounkov body of α along C is defined as

∆X|C(α) := ∆R,X|C(α).

When α = c1(L) for some big line bunle L on X, it is noticeable that ∆X|C(α) =

∆X|C(L), where ∆X|C(L) is defined in [LM09]. When L is ample, we have ∆X|C(L) =

∆(L|C). Indeed, it is suffice to show that for any section s ∈ H0(C,OC(L)), there exists

an integer m such that s⊗m can be extended to a section Sm ∈ H0(X,OX(mL)). This

can be garanteed by Kodaira vanishing theorem. When α is any ample class, there is a

very similar theorem which has appeared in the proof of Proposition 4.13. However, the

proof there relies on the difficult extension theorem in [CT14]. Here we give a simple and

direct proof when X is a complex surface. Anyway, the idea of proof here is borrowed

from [CT14].

Proposition 4.16. If α is an ample class, then we have

∆X|C(α) = ∆(α|C) = [0, α · C].

Proof. From Definition 4.15, we have ∆X|C(α) ⊆ ∆(α|C). It suffices to prove that for

any Kähler current T ∈ α|C with mild analytic singularities, we have a positive current

T̃ ∈ αwith analytic singularites such that T̃ |C = T . First we choose a Kähler form ω ∈ α.

By assumption, we can write T = ω|V + ddcϕ for some quasi-plurisubharmonic function

ϕ on C which has mild analytic singularities. Our goal is to extend ϕ to a function Φ on

X such that ω + ddcΦ is a Kähler current with analytic singularities.

Choose ǫ > 0 small enough so that

T = ω|C + iddcϕ ≥ 3ǫω,

holds as currents on C. We can coverC by finitely many charts {Wj}1≤j≤N satisfying the

following properties:
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(i) On each Wj(j ≤ k) there are local coordinates (z
(j)
1 , z

(j)
2 ) such that C

⋂
Wj =

{z(j)2 = 0} and

ϕ =
cj

2
log |z(j)1 |2 + gj(z

(j)
1 )

where gj(z
(j)
1 ) is smooth and bounded on Wj

⋂
C. We denote the single pole of T

in Wj(j ≤ k) by xj ;

(ii) On each Wj(j > k) the local potential ϕ is smooth and bounded on Wj

⋂
C;

(iii) xi 6∈ Wj for i = 1, . . . , k and j 6= i.

Define a function ϕj on Wj (with analytic singularities) by

ϕj(z
(j)
1 , z

(j)
2 ) =





ϕ(z

(j)
1 ) + A|z(j)2 |2 if j > k,

cj

2
log(|z(j)1 |2 + |z(j)2 |2) + gj(z

(j)
1 ) + A|z(j)2 |2 if j ≤ k,

where A > 0 is a constant. If we shrink theWj’s slightly, still preserving the property that

C ⊆
⋃
Wj , we can choose A sufficiently large so that

ω + ddcϕj ≥ 2ǫω,

holds on Wj for all j. We also need to construct slightly smaller open sets W ′
j ⊂⊂ Uj ⊂⊂

Wj such that
⋃
W ′
j is still a covering of C.

By construction ϕj is smooth when j > k, and ϕj is smooth outside the log pole xj

when j ≤ k. By property (iii) above, we can glue the functions ϕj together to produce a

Kähler current

T̃ = ω|U + ddcϕ̃ ≥ ǫω

defined in a neighborhoodU ofC inX , thanks to Richberg’s gluing procedure. Indeed, ϕi

is smooth on Wi

⋂
Wj for any j 6= i, which is a sufficient condition in using the Richberg

technique. From the construction of ϕ̃, we know that ϕ̃|C = ϕ, ϕ̃ has log poles in every

xi and is continuous outside x1, . . . , xk.

On the other hand, since α is an ample class, there exists a rational number δ > 0 such

that α − δ{C} is still ample, thus we have a Kähler form ω1 ∈ α − δ{C}. We can write

ω1 + δ[C] = ω + ddcφ, where φ is smooth outside C, and for any point x ∈ C, we have

φ =
δ

2
log |z2|

2 +O(1),

where z2 is the local equation of C.

Since φ is continuous outside C, we can choose a large constant B > 0 such that

φ > ϕ̃− B in a neighborhood of ∂U . Therefore we define
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Φ =

{
max{ϕ̃, φ+B} on U

φ+B on X − U,

which is well defined on the whole of X , and satisfies ω + ddcΦ ≥ ǫ′ω for some ǫ′ > 0.

Since φ = −∞ on C, while ϕ̃|C = ϕ, it follows that Φ|C = ϕ.

We claim that Φ also has analytic singularities. Since around xj , we have

ϕ̃(z1, z2) =
cj

2
log(|z1|

2 + |z2|
2) +O(1),

and

φ(z1, z2) =
δ

2
log |z2|

2 +O(1),

for some local coordinates (z1, z2) of xj . Thus locally we have

max{ϕ̃, φ+ A} =
1

2
log(|z1|

2cj + |z2|
2cj + |z2|

2δ) +O(1).

Since Φ is continuous outside x1, . . . , xk, our claim is proved.

Lemma 4.17. Let α be a big and nef class onX , then for any ǫ > 0, there exsists a Kähler

current Tǫ ∈ α with analytic singularities such that the Lelong number ν(Tǫ, x) < ǫ for

any point in X . Moreover, Tǫ also satisfies

E+(T ) = EnK(α).

Proof. Since α is big, there exists a Kähler current with analytic singularities such that

E+(T0) = EnK(α) and T0 > ω for some Kähler form ω. Since α is also a nef class, for any

δ > 0, there exists a smooth form θδ such that θδ ≥ −δω. Thus Tδ := δT0 + (1− δ)θδ ≥

δ2ω is a Kähler current with analytic singularities satisfying that

E+(Tδ) = E+(T0) = EnK(α),

and

ν(Tδ, x) = δν(T0, x)

for x ∈ X . Since the Lelong number ν(T0, x) is an upper continuous function (thus

bounded from above), ν(Tδ, x) converges uniformly to zero as δ tends to 0. The lemma is

proved.

Proposition 4.18. Let α be a big and nef class, C 6⊆ EnK(α). Then we have

∆X|C(α) = ∆(α|C) = [0, α · C].
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Proof. Asumme EnK(α) =
⋃r

i=1Ci, where each Ci is an irreducible curve. By Lemma

4.17, for any ǫ > 0 there exists a Kähler current Tǫ ∈ α with analytic singularities such

that

E+(Tǫ) = EnK(α) = Null(α) =

r⋃

i=1

Ci

and ν(Tǫ, x) < ǫ for all x ∈ X . Thus the Siu decomposition

Tǫ = Rǫ +

r∑

i=1

ai,ǫCi

satisfies 0 ≤ ai,ǫ < ǫ, and Rǫ is a Kähler current whose analytic singularities are isolated

points. By Remark 2.5, the cohomology class {Rǫ} is a Kähler class and converges to α

as ǫ→ 0. In particular, |{Rǫ} · C − α · C| < Aǫ, where A is a constant.

By Proposition 4.16, there exists a Kähler current Sǫ ∈ {Rǫ} with analytic singularities

such that C 6⊆ E+(Sǫ) and −ǫ < ν(Sǫ|C, x)−{Rǫ} ·C < 0. Thus T ′
ǫ := Sǫ+

∑r

i=1 ai,ǫCi

is a Kähler current in α with analytic singularities, and −(1 + A)ǫ < ν(T ′
ǫ |C , x)− α · C.

Since α is big and nef, there exists a Kähler current Pǫ in αwith analytic singularities such

that ν(Pǫ|C , x) < ǫ. Therefore, by the definition of ∆X|C(α) and the convexity property

we deduce that [0, α ·C] ⊆ ∆X|C(α). On the other hand, ∆X|C(α) ⊆ ∆(α|C) = [0, α ·C]

by definition. The proposition is proved.

Lemma 4.19. Let α be a big class on X with divisorial Zariski decomposition α =

Z(α)+N(α). Assume that C 6⊆ EnK(Z(α)), so that C 6⊆ Supp(N(α)) by Theorem 2.14.

Moreover, set

f(α) = νx(N(α)|C), g(α) = νx(N(α)|C) + Z(α) · C,

where νx(N(α)|C) = ν(N(α)|C , x). Then the restricted Okounkov body of α along C is

the interval

∆X|C(α) = [f(α), g(α)]

Proof. First, by Remark 2.8 we conclude that T 7→ T −N(α) is a bijection between the

positive currents in α and those in Z(α), thus we have

EnK(α) = EnK(Z(α))
⋃

supp(N(α)),

and

C 6⊆ EnK(Z(α)) ⇐⇒ C 6⊆ EnK(α). (4.2)

By the assumption of theorem, N(α)|C is a well-defined positive current with analytic

singularites on C. By the definition of ∆R,X|C(α), we have

∆R,X|C(α) = ∆R,X|C(Z(α)) + νx(N(α)|C).
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We take the closure of the sets to get

∆X|C(α) = ∆X|C(Z(α)) + νx(N(α)|C).

Since α is big, thus Z(α) is big and nef, and by Proposition 4.18 we have ∆X|C(Z(α)) =

[0, Z(α) · C]. We have proved the lemma.

Definition 4.20. If α is big and β is pseudo-effective, then the slope of β with respect to

α is defined as

s = s(α, β) = sup{t > 0 | α− tβ is big}.

Remark 4.21. Since the big cone is open, we know that {t > 0 | α > tβ} is an open set

in R+. Thus α− sβ belongs to the boundary of the big cone E , and volX(α− sβ) = 0.

Proof of Theorem 1.3. For t ∈ [0, s), we put αt = α − t{C}, and let Zt := Z(αt) and

Nt := N(αt) be the positive and negative part of the divisorial Zariski decomposition of

αt.

(i) First we assumeC is nef. By Theorem 2.14, the prime divisors inEnK(Z(αt)) form

an exceptional family, thus C 6⊆ EnK(Z(αt)), thus C 6⊆ EnK(αt) by (4.2). By Lemma

4.19 we have ∆X|C(αt) = [νx(Nt|C), Zt · C + νx(Nt|C)].

By the definition of R-convex body and restrict R-convex body, we have

∆R(α)
⋂
t× R = t×∆R,X|C(αt).

Thus

t×∆R,X|C(αt) ⊆ ∆R(α)
⋂

t× R.

However, since both ∆R,X(α) and ∆R,X|C(αt) are closed convex sets in R2 and R, we

have

t×∆R,X|C(αt) = ∆R(α)
⋂

t× R,

therefore

t×∆X|C(αt) = ∆(α)
⋂

t× R. (4.3)

Let

f(t) = νx(Nt|C) , g(t) = Zt · C + νx(Nt|C),

then ∆(α)
⋂
[0, s)× R is the region bounded by the graphs of f(t) and g(t).

Now we prove the piecewise linear property of f(t) and g(t). By Lemma 3.1, we have

Nt1 ≤ Nt2 if 0 ≤ t1 ≤ t2 < s, thus f(t) is increasing. Since Nt is an exceptional divisor

by Theorem 2.15, the number of the prime components of Nt is uniformly bounded by

the Picard number ρ(X). Thus we can denote Nt =
∑r

i=1 ai(t)Ni, where ai(t) ≥ 0 is an

increasing and continuous function. Moreover, there exsists 0 = t0 < t1 < . . . < tk = s
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such that the prime components of Nt are the same when t lies in the interval (ti, ti+1) for

i = 0, . . . , k − 1, and the number of prime components of Nt will increase at every ti for

i = 1, . . . , k − 1. We write si =
ti−1+ti

2
for i = 1, . . . , k.

We denote the linear subspace ofH1,1(X,R) spanned by the prime components ofNsi

by Vi, and let V ⊥
i be the orthogonal space of Vi with respect to q. By the proof of Lemma

3.1, for t ∈ (ti−1, ti) we have

Zt = Zsi + (si − t){C}⊥i (4.4)

Nt = Nsi + (ti − t)C
‖
i , (4.5)

where {C}⊥i is the projection of {C} to V ⊥
i , and C

‖
i is a linear combination of the prime

components of Nsi satisfying that the cohomology class {C‖
i } is equal to the projection

of {C} to Vi. By Theorem 2.14, the prime components of Nsi are independent, thus C
‖
i

is uniquely defined. The piecewise linearity property of f(t) and g(t) follows directly

from (4.4) and (4.5), and thus f(t) and g(t) can be continuously extended to s. Therefore

we conclude that ∆(α) is the region bounded by the graphs of f(t) and g(t) for t ∈

[0, s]. Thus the vertices of ∆(α) are contained in the set {(ti, f(ti)), (tj, g(tj)) ∈ R2 |

i, j = 0, . . . , k}. This means that a vertex of ∆(α) may only occur for those t ∈ [0, s],

where a new curve appears in Nt. Since r ≤ ρ(X), the number of vertices is bounded by

2ρ(X)+2. The fact that f(t) is convex and g(t) concave is a consequence of the convexity

of ∆(α).

By (4.3), we have

2 volR2(∆(α)) = 2

∫ s

0

volR(∆X|C(αt))dt

= 2

∫ s

0

Zt · Cdt

= volX(α)− volX(α− sC)

= volX(α).

where the second equality follows by Proposition 4.18, the third one by Theorem 3.2 and

the last one by Remark 4.21. We have proved the theorem under the assumption that C is

nef.

(ii) Now we prove the theorem when C is not nef, i.e., C2 < 0. Recall that a :=

sup{t > 0 | C ⊆ EnK(α)}. By (4.2), if C ⊆ EnK(αt) for some t ∈ [0, s), we have

C ⊆ EnK(Z(αt)). By the proof in Theorem 3.4 we have

Z(αs) · C = 0,

Z(αs) = Z(αt),

for 0 ≤ s ≤ t. Thus we have

{0 ≤ t < s | C 6⊆ EnK(αt)} = (a, s),
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and ∆(α) is contained in [a, s]× R. By Theorem 3.4 we also have

2 volR2(∆(α)) = 2

∫ s

a

volR(∆X|C(αt))dt

= 2

∫ s

a

Zt · Cdt

= volX(αa)− volX(αs)

= volX(α).

Since the prime components of Nt1 is contained in that of Nt2 if a < t1 ≤ t2 < s, using

the same arguments above, we obtain the piecewise linear property of f(t) and g(t) which

can also be extended to s. The theorem is proved completely.

Remark 4.22. If X is a projective surface, by the main result in [BKS03], the cone of

big divisors of X admits a locally finite decomposition into locally polyhedral subcones

such that the support of the negative part in the Zariski decomposition is constant on each

subcone. It is noticeable that if we only assume X to be Kähler, this decomposition still

holds if we replace the cone of big divisors by the cone of big classes and use diviso-

rial Zariski decomposition instead. This property ensures that the generalized Okounkov

bodies should also be polygons.

4.3 Generalized Okounkov bodies for pseudo-effective classes

Throughout this subsection, X will stand for a Kähler surface if not specially mentioned.

Our main goal in this subsection is to study the behavior of generalized Okounkov bodies

on the boundary of the big cone.

Definition 4.23. Let X be any Kähler manifold, if α ∈ H1,1(X,R) is any pseudo-

effective class. We define the generalized Okounkov body ∆(α) with respect to the fixed

flag by

∆(α) :=
⋂

ǫ>0

∆(α + ǫω),

where ω is any Kähler class.

It is easy to check that our definition does not depend on the choice of ω, and if α is

big, by Proposition 4.13, the definition is consistent with Definition 4.12. Now we recall

the definition of numerical dimension for any real (1,1)-class.

Definition 4.24 (numerical dimension). Let X be a compact Kähler manifold. For a class

α ∈ H1,1(X,R), the numerical dimension n(α) is defined to be −∞ if α is not pseudo-

effective, and

n(α) = max{p ∈ N, 〈αp〉 6= 0},

if α is pseudo-effective.
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We recall that the right-hand side of the equation above involves the positive intersec-

tion product 〈αp〉 ∈ H
p,p
≥0 (X,R) defined in [BDPP13]. When X is a Kähler surface, we

simply have

n(α) = max{p ∈ N, Z(α)p 6= 0}, p ∈ {0, 1, 2}.

If n(α) = 2, α is big and the situation is studied in the last subsection. Throughout this

subsection, we assume α ∈ ∂E .

Lemma 4.25. Let {N1, . . . , Nr} be an exceptional family of prime divisors, ω be any

Kähler class. Then there exists unique positive numbers b1, . . . , br such that ω+
∑r

i=1 biNi

is big and nef satisfying Null(ω +
∑r

i=1 biNi) =
⋃r

i=1Ni.

Proof. If we set 


b1
...

br


 = −S−1 ·




ω ·N1
...

ω ·Nr


 ,

where S denotes the intersection matrix of {N1, . . . , Nr}, we have (ω +
∑r

i=1 biNi) ·

Nj = 0 for j = 1, . . . , r. By Lemma 3.5, we conclude that all bi are positive and thus

ω +
∑r

i=1 biNi is big and nef.

Proposition 4.26. Let α be any pseudo-effective class with N(α) =
∑r

i=1 aiNi, ω be a

Kähler class. Then for ǫ > 0 small enough, we have the divisorial Zariski decomposition

Z(α + ǫω) = Z(α) + ǫ(ω +

r∑

i=1

biNi),

N(α + ǫω) =
r∑

i=1

(ai − ǫbi)Ni,

where bi is the positive number defined in Lemma 4.25.

Proof. Since Z(α) + ǫ(ω +
∑r

i=1 biNi) is nef and orthogonal to all Ni by Lemma 4.25,

by Theorem 2.15, if ǫ satisfies that ai − ǫbi > 0 for all i, the divisorial decomposition in

the proposition holds.

If n(α) = 0, we have Z(α) = 0 and thus α =
∑r

i=1 aiNi is an exceptional effective

R-divisor. We fix a flag

X ⊇ C ⊇ {x},

where C 6= Ni for all i. Then we have

Theorem 4.27. For any pseudo-effective class α whose numerical dimension n(α) = 0,

we have

∆(C,x)(α) = 0× νx(N(α)|C).
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Proof. We asumme N(α) =
∑r

i=1 aiNi. Fix a Kähler class ω, by Proposition 4.26, we

have

Z(α+ ǫω) = ǫ(ω +
r∑

i=1

biNi), (4.6)

N(α + ǫω) =

r∑

i=1

(ai − ǫbi)Ni, (4.7)

where bi is the positive number defined in Lemma 4.25. Since T 7→ T − N(α + ǫω) is a

bijection between the positive currents in α+ ǫω and those in Z(α + ǫω), we have

∆(α + ǫω) = ǫ∆(ω +

r∑

i=1

biNi) + ν(

r∑

i=1

(ai − ǫbi)Ni),

where ν(
∑r

i=1(ai − ǫbi)Ni) = ν(C,x)(
∑r

i=1(ai − ǫbi)Ni) is the valuation-like function

defined in Section 4.1. Thus the diameter of ∆(α+ ǫω) converges to 0 when ǫ tends to 0,

and we conclude that ∆(α) is a single point in R2. Since

∆(α + ǫω)
⋂

0× R = 0×∆X|C(α + ǫω)

= 0× [νx(N(α + ǫω)|C), νx(N(α + ǫω)|C) + Z(α + ǫω) · C],

by (4.6) and (4.7) we have

∆(α)
⋂

0× R = 0× νx(

r∑

i=1

aiNi|C),

and we prove the first part of Theorem 1.8..

If n(α) = 1, Z(α) is nef but not big. If there exists one irreducible curve C such that

Z(α) · C > 0, we fix the flag

X ⊇ C ⊇ {x},

then we have

Theorem 4.28. For any pseudo-effective class α whose numerical dimension n(α) = 1,

we have

∆(α) = 0× [νx(N(α)|C), νx(N(α)|C) + Z(α) · C].

Proof. By the assumption Z(α) ·C > 0 we know that C 6⊆ Supp(N(α)). By Proposition

4.26, when ǫ small enough, the divisorial Zariski decomposition for α + ǫω is

Z(α + ǫω) = Z(α) + ǫ(ω +
r∑

i=1

biNi), (4.8)

N(α + ǫω) =

r∑

i=1

(ai − ǫbi)Ni, (4.9)
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where bi is the positive number defined in Lemma 4.25. Combine (4.8) and (4.9), we have

∆(α)
⋂

0× R =
⋂

ǫ>0

∆(α + ǫω)
⋂

0× R

=
⋂

ǫ>0

0× [νx(N(α + ǫω)|C), νx(N(α + ǫω)|C) + Z(α+ ǫω) · C]

= 0× [νx(
r∑

i=1

aiNi|C), νx(
r∑

i=1

aiNi|C) + Z(α) · C].

Since we have

volR2(∆(α)) = lim
ǫ→0

volR2(∆(α + ǫω)) = lim
ǫ→0

Z(α + ǫω)2 = 0,

and ∆(α) is a closed convex set, we conclude that there are no points of ∆(α) which lie

outside 0 × R as volR(∆(α)
⋂
0 × R) = Z(α) · C > 0. We finish the proof of Theorem

1.8.
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