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Introduction

Due to its importance for many applied problems, the study of boundary value problems where the domain and/or the coefficients have a large number of heterogeneities has attracted the interest of many researchers of the mathematical, of the physical and of the engineering communities. Hence the corresponding literature is huge. When the heterogeneities (inclusions, holes, layers, fibres) are periodically distributed in all the volume (the ratio between a characteristic size of the period and a characteristic size of the whole structure being traditionally denoted ε) and (still with respect to the whole structure) the characteristic size of the heterogeneities is a power of ε, in order to obtain numerically efficient (i.e. precise and not too much computationally expensive) simplified models, it is now classical to use an homogenization method. An advantage of the homogenization methods is that they have been developed and fully mathematically justified for many different geometrical and/or mechanical situations (in particular when also the ratio between the mechanical characteristics of the heterogeneities and of the surrounding material can depend on ε), see, e.g., [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], [START_REF] Palencia | Non-homogeneous media and vibration theory[END_REF], [START_REF] Khruslov | Homogenized models of composite media[END_REF], [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], [START_REF] Pideri | A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium[END_REF], [START_REF] Bellieud | Bouchitté: Homogenization of a soft elastic material reinforced by fibres[END_REF], [START_REF] Cioranescu | An introduction to homogenization[END_REF], and also [START_REF] Cherednichenko | Two-scale Γ -convergence of integral functionals and its application to homogenisation of nonlinear high-contrast periodic composites[END_REF][START_REF] Neukamm | Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from 3d elasticity[END_REF][START_REF] Stelzig | On problems in homogenization and two-scale convergence[END_REF] in the context of nonlinear elasticity.

Another situation of interest for the engineering community arises when there exists only one layer of heterogeneity located in the interior of the whole domain. This is for instance the situation when two bodies of different (or equal) nature are pasted together using an homogeneous thin layer "centred" around a surface Σ and whose transversal depth has a ratio to the whole structure generally denoted ε. In this case many numerically efficient simplified models have been constructed and mathematically fully justified for various mechanical and /or geometrical circumstances; see, e.g., [START_REF] Geymonat | Bonded joint with a soft thin adhesive[END_REF], [20], [START_REF] Bessoud | Multi-materials with strong interface: variational modelings[END_REF], [START_REF] Bessoud | Asymptotic analysis of shell-like inclusions with high rigidity[END_REF], and also [START_REF] Cherednichenko | Two-scale Γ -convergence of integral functionals and its application to homogenisation of nonlinear high-contrast periodic composites[END_REF][START_REF] Neukamm | Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from 3d elasticity[END_REF][START_REF] Stelzig | On problems in homogenization and two-scale convergence[END_REF] in the context of nonlinear elasticity.

Still another situation arises when the heterogeneities are periodically distributed in a thin layer "centred" around a surface Σ . In some cases of inclusions one can use matched asymptotic expansion methods (see, e.g., [START_REF] Nguetseng | Stress concentration for defects distributed near a surface, Local Effects in the Analysis of Structures[END_REF], [START_REF] Abdelmoula | The effective behavior of a fiber bridged crack[END_REF], [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF], ...). The aim of this paper is to study the situation when the heterogeneities in the layer "centred" around a surface Σ are linearly elastic isotropic parallel fibres periodically distributed and whose rigidity is higher with respect of the rigidity of the surrounding linearly elastic material.

In Section 2 we describe the problem and we state the main results; in Section 3 we introduce the notion of two-scale convergence with respect to a family of measures m ε essentially connected with the total volume of the fibres. This is a variant of the two-scale convergence introduced by Nguetseng [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] and developed by G. Allaire in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]. In Section 4 we prove the a priori estimates and we identify the limits obtained with the two-scale method; these results are fundamental for the proof of the weak convergence (Section 5.1) and the strong convergence (Section 5.2).

Notations. In the sequel, {e e e 1 , e e e 2 , e e e 3 } stands for the canonical basis of R 3 . Points in R 3 or in Z 3 and real-valued functions are represented by symbols beginning by a light-face minuscule (example x, i, det A A A...), vectors and vector-valued functions by symbols beginning by a boldface minuscule (examples: x x x, x x x S , i i i, u u u, f f f , g g g, divΨ Ψ Ψ ,...). Matrices and matrix-valued functions are represented by symbols beginning by a capital boldface with the following exceptions: ∇ ∇ ∇u u u (displacement gradient), e e e(u u u) (linearised strain tensor) . We denote by u i or (u u u) i the components of a vector u u u and by A ij or (A A A) ij those of a matrix A A A (that is u u u = 3 i=1 u i e e e i = 3 i=1 (u u u) i e e e i ; A A A = 3 i,j=1 A ij e e e i ⊗e e e j = 3 i,j=1 (A A A) ij e e e i ⊗e e e j ). t A A A denotes the transposed matrix of A A A. We do not employ the usual repeated index convention for summation. We denote by A A A :B B B = 3 i,j=1 A ij B ij the inner product of two matrices, by S N the set of all real symmetric matrices of order N , and by I I I N the N × N identity matrix. The symbols L N and H k represent, respectively, the Lebesgue outer measure on R N and the k-dimensional Hausdorff outer measure on R N . For any x = (x 1 , x 2 , x 3 ) ∈ R 3 , we set x = (x 1 , x 2 ). Given an open subset A of R 2 we note -A f f f dy the mean value of f on A . Given an open subset Ω of R 3 and a 2-dimensional Lipschitz sub-manifold Σ of Ω, the trace on Σ of an element ϕ ϕ ϕ of H 1 (Ω; R k ) is denoted by γ γ γ Σ (ϕ ϕ ϕ) (resp. γ Σ (ϕ) if k = 1), or occasionally by the same symbol ϕ ϕ ϕ when ambiguity is not possible. If A is a subset of Ω, the symbol 1 A represents the characteristic function of A. The letter C denotes different constants whose precise values may vary.

Description of the problem and statement of the result

Let Ω := (-L, L) 3 , let S be a bounded Lipschitz domain of R 2 satisfying

D ⊂ S ⊂ S ⊂ Y, Y := Å - 1 2 , 1 2 
ã 2 , - S y y ydy = 0, (1) 
for some open disk D of R 2 centred at the origin and let T := S × (-L, L). For ε > 0 we set (see fig. 1):

Y i ε := ε((0, i) + Y ), I ε := {i ∈ Z, Y i ε × (-L, L) ⊂ Ω} S i ε := ε((0, i) + S), T i ε = S i ε × (-L, L), T ε = i∈Iε T i ε , (2) 
i min := min I ε , i max := max I ε , Σ := Ω ∩ {0} × R 2 , Σ ε := Σ ∩ T ε = x ∈ Σ, εi min - ε 2 < x 2 < εi max + ε 2 , Ω -:= Ω ∩ ((-∞, 0) × R 2 ), Ω + := Ω ∩ ((0, +∞) × R 2 ). (3) 
Let us remark that

L 3 (T ε ) ε|S||Σ| as ε → 0, (4) 
where, for simplicity, |S| (resp. |Σ|) denotes the area, that is the two-dimensional Hausdorff measure of S (resp. Σ). Hence from a geometrical point of view there are two natural length scales: the first is a global one (i.e. the 3D-diameter of Ω ) the other one is a local one connected with the heterogeneities (the diameter of the cross section of every fiber). The ratio between these two scales will be denoted by ε. More precisely, the parameter ε is a non-dimensional parameter characterizing the geometrical distribution of the heterogeneities in the structure since, at the same time, it characterizes the ratio between the diameter of the cross section of the fibres and the diameter of Ω and the ratio between the diameter of the cross section of the fibres and the length in the transversal direction e e e 2 of the planar set Σ supporting the heterogeneities.

Fig. 1 The layer of fibres

We consider the case of a linear isotropic elastic structure occupying the set Ω reinforced by the linear isotropic elastic parallel fibres T i ε of very high stiffness surrounded by a matrix of constant stiffness. More precisely we assume that the Young's modulus E ε depends on ε as follows :

   E ε (x) = 1 ε m E T if x ∈ T ε , E ε (x) = E if x ∈ Ω \ T ε , (5) 
with m > 0. Instead the Poisson's coefficient denoted by ν ε is independent from ε :

® ν ε (x) = ν 1 if x ∈ T ε , ν ε (x) = ν if x ∈ Ω \ T ε . (6) 
We also assume that they satisfy the usual conditions E, E T > 0 and 0 < ν, ν 1 < 1 2 . Let us stress that, with this choice, the parameter ε characterizes at the same time the geometrical distribution of the heterogeneities in the structure and the ratio between the rigidity of the heterogeneities and the rigidity of the structure. We are concerned with the behaviour for ε -→ 0 of the following elasticity problem where we have taken for simplicity homogeneous Dirichlet boundary data:

         -divσ σ σ ε = f f f in Ω, u u u ε ∈ H 1 0 (Ω, R 3 ), f f f ∈ L 2 (Ω, R 3 ), σ σ σ ε = E ε 1 + ν ε Å ν ε 1 -2ν ε
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã , e e e(u u u

ε ) = 1 2 (∇ ∇ ∇u u u ε + t ∇ ∇ ∇u u u ε ). (7) 
The limit problem we derive in Theorem 1 depends on the value of m. Case 0 < m < 1. The limit problem reads:

         -divσ σ σ 0 = f f f in Ω, σ σ σ 0 = E 1 + ν Å ν 1 -2ν
tr(e e e(u u u))I I I + e e e(u u u)

ã , u u u ∈ D m , (8) 
where

D m = H 1 0 (Ω; R 3 ). ( 9 
)
Case m = 1. The limit problem reads:

                   -divσ σ σ 0 = f f f in Ω + ∪ Ω -, σ σ σ 0 = E 1 + ν Å ν 1 -2ν
tr(e e e(u u u))I I I + e e e(u u u) ã ,

(σ σ σ + 0 -σ σ σ - 0 )e e e 1 + |S|E T ∂ 2 γ Σ (u 3 ) ∂x 2 3
e e e 3 = 0 on Σ,

u u u ∈ D 1 , (10) 
where σ σ σ - 0 (resp. σ σ σ + 0 ) denotes the restriction of σ σ σ 0 to Ω -(resp. Ω + ) and

D 1 = ß u u u ∈ H 1 0 (Ω; R 3 ); ∂γ Σ (u 3 ) ∂x 3 ∈ L 2 (Σ), γ Σ (u 3 ) = 0 on ∂Σ ∩ {x ∈ R 3 , x 3 ∈ {-L; L}} ™ . (11) 
Note that the effective superficial density of forces exerted by the fibres on the matrix along Σ, given by

(σ σ σ + 0 -σ σ σ - 0 )e e e 1 = -|S|E T ∂ 2 γ Σ (u 3 ) ∂x 2 3 e e e 3 ,
is parallel to the fibres.

Case 1 < m < 3. The limit problem reads:

         -divσ σ σ 0 = f f f in Ω + ∪ Ω -, σ σ σ 0 = E 1 + ν Å ν 1 -2ν
tr(e e e(u u u))I I I + e e e(u u u)

ã , u u u ∈ D m , (12) 
where

D m = u u u ∈ H 1 0 (Ω; R 3 ); γ Σ (u 3 ) = 0 . ( 13 
)
Case m = 3. The limit problem reads:

                     -divσ σ σ 0 = f f f in Ω + ∪ Ω -, σ σ σ 0 = E 1 + ν Å ν 1 -2ν
tr(e e e(u u u))I I I + e e e(u u u) ã ,

(σ σ σ - 0 -σ σ σ + 0 )e e e 1 + |S|E T 2 α,β=1 J αβ ∂ 4 γ Σ (u β ) ∂x 4 
3 e e e α = 0 on Σ,

u u u ∈ D 3 , (14) 
where

J αβ := - S y α y β dy, (15) 
and

D 3 =        u u u ∈ H 1 0 (Ω; R 3 ); γ Σ (u 3 ) = 0, ∂ 2 γ Σ (u 1 ) ∂x 2 3 , ∂ 2 γ Σ (u 2 ) ∂x 2 3 ∈ L 2 (Σ), γ Σ (u α ) = ∂γ Σ (u α ) ∂x 3 = 0 on Σ ∩ {x ∈ R 3 , x 3 ∈ {-L; L}} ∀α ∈ {1, 2}        . ( 16 
)
Unlike the case m = 1, the effective superficial density of forces exerted by the fibres on the matrix along Σ, given by

h h h = (σ σ σ + 0 -σ σ σ - 0 )e e e 1 = |S|E 1 2 α,β=1 J αβ ∂ 4 γ Σ (u β ) ∂x 4 
3 e e e α , is orthogonal to the direction of the fibres.

Case m > 3. The limit problem reads:

         -divσ σ σ 0 = f f f in Ω + ∪ Ω -, σ σ σ 0 = E 1 + ν Å ν 1 -2ν
tr(e e e(u u u))I I I + e e e(u u u)

ã , u u u ∈ D m , (17) 
where

D m = u u u ∈ H 1 0 (Ω; R 3 ); γ γ γ Σ (u u u) = 0 . ( 18 
)
Theorem 1 Assume ( 5) and ( 6), then for ε → 0 the solution u u u ε of (7) strongly converges in H 1 0 (Ω; R 3 )) to the unique solution u u u of (8

) if 0 < m < 1, of (10) if m = 1, of (12) if 1 < m < 3, of (14) if m = 3, and of (17) if m > 3.
Remark 1 For every m > 0 the limit problem does not depend on the value ν 1 of the Poisson's coefficient of the material of the fibres.

The problem [START_REF] Bellieud | Bouchitté: Homogenization of a soft elastic material reinforced by fibres[END_REF] has a unique solution u u u ε that realizes the minimum in H 1 0 (Ω, R 3 ) of the functional

F ε,m (v v v) : = 1 2 a ε,m (v v v, v v v) - Ω f f f .v v vdx, with 1 2 a ε,m (v v v, v v v) := 1 2 a ε (v v v, v v v) + 1 2ε m a ε,T (v v v, v v v), (19) 
where a ε (., .) and a ε,T (., .) are the symetric bilinear forms on H 1 0 (Ω, R 3 ) × H 1 0 (Ω, R 3 ) given by :

a ε (v v v, φ φ φ) = Ω\Tε { E 1 + ν Å ν 1 -2ν
tr(e e e(v v v))I I I + e e e(v v v)

ã :e e e(φ φ φ)}dx,

a ε,T (v v v, φ φ φ) = Tε { E T 1 + ν 1 Å ν 1 1 -2ν 1
tr(e e e(v v v))I I I + e e e(v v v)

ã :e e e(φ φ φ)}dx.

(20)

Let us point out that the limit problems have a unique solution u u u ∈ D m that realizes the minimum in D m of the functional F m defined on D m by

F m (v v v) := 1 2 a m (v v v, v v v) - Ω f f f .v v v, (21) 
where a m (., .) is the bilinear form on D m × D m given by:

a 0 (v v v, φ φ φ) := Ω E 1 + ν Å ν 1 -2ν
tr(e e e(v v v))I I I + e e e(v v v)

ã : e e e(φ φ φ)dx,

a 1 (v v v, φ φ φ) := a 0 (v v v, φ φ φ) + |S|E T Σ ∂γ Σ (v 3 ) ∂x 3 ∂γ Σ (φ 3 ) ∂x 3 dH 2 , a 3 (v v v, φ φ φ) := a 0 (v v v, φ φ φ) + |S|E T 2 α,β=1 Σ J αβ ∂ 2 γ Σ (v α ) ∂x 2 3 ∂ 2 γ Σ (φ β ) ∂x 2 3 dH 2 (x), a m (v v v, φ φ φ) := a 0 (v v v, φ φ φ) if m ∈ (0, +∞) \ {1; 3}. ( 22 
)
The proof of Theorem 1 is structured as follows:

i) In Sect.3, we introduce a two-scale convergence method adapted to the particular geometry of our problem (layer of fibres) and we prove some useful properties of this method. ii) In Sect.4, we study the behaviour when ε → 0 of the solution (u u u ε ) of [START_REF] Bellieud | Bouchitté: Homogenization of a soft elastic material reinforced by fibres[END_REF]. The most delicate task resides in the study of the behaviour of (u u u ε ) in the fibres and here we use the properties of the two-scale method introduced in Sect.3 iii) In Sect.5.1, we multiply [START_REF] Bellieud | Bouchitté: Homogenization of a soft elastic material reinforced by fibres[END_REF] by an appropriate sequence of oscillating test fields (φ φ φ ε ) and, by passing to the limit as ε → 0 in accordance with the convergences established in ii), we obtain a variational formulation of the limit problem satisfied by u u u. iv) We prove in Sect.5.2 the strong convergence using the linearity of the problem.

3 Two-scale convergence with respect to (m ε )

As a mean to particularize the oscillatory behaviour of the displacement in the fibres, we consider a variant of the two-scale convergence introduced by G. Nguetseng in [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. This seminal idea has been further developed by G. Allaire in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] (see also a more general presentation in [START_REF] Lukkassen | Wall: Two-scale convergence[END_REF]) and extended in various ways (e.g. for the two-scale convergence with respect to a sequence of measures see [START_REF] Bouchitté | Fragalà: Homogenization of thin structures by two-scale method with respect to measures[END_REF], [START_REF] Lukkassen | Wall: Two-scale convergence with respect to measures and homogenization of monotone operators[END_REF]), [START_REF] Zhikov | On an extension and an application of the two-scale convergence method[END_REF],...). Here the two-scale convergence is adapted to the geometry of the problem i.e. that the heterogeneities are a layer of fibres.

Let us at first introduce the following shortened notation for R-valued functions of L 1 (Ω) (the analogous notation will also be used for R k -valued functions):

f (x)dm ε := 1 ε|S| Tε f (x 1 , x 2 , x 3 )dx 1 dx 2 dx 3 = 1 ε|S| i∈Iε L -L dx 3 S i ε f (x 1 , x 2 , x 3 )dx 1 dx 2 , ( 23 
)
where |S| denotes the two-dimensional Lebesgue measure of S. Notice that by (4) there holds

dm ε |Σ|. (24) 
In the study of the behaviour when ε → 0 of the solution (u u u ε ) of ( 7) a delicate task resides in the study of the behaviour of the fibres. For this we use the operator

v ε : L 2 (Ω) → L 2 (Ω) defined by v ε (ϕ)(x) := i∈Iε Ç - S i ε ϕ(s, x 3 )dH 2 (s) å 1 Y i ε (x 1 , x 2 ) (25) 
(in the case of R k -valued functions the analogous definition will be used). We also define the R 2 -valued function (see [START_REF] Allaire | Homogenization and two-scale convergence[END_REF])

y ε (x ) = y ε (x 1 , x 2 ) := i∈Iε (x 1 e e e 1 + (x 2 -εi)e e e 2 )1 Y i ε (x 1 , x 2 ). (26) 
A sequence (f f f ε ) in L 2 (Ω; R k ) will be said to two-scale converge with respect to (m ε ) to some

f f f 0 ∈ L 2 (Σ × S; R k ) (notation: f f f ε mε f f f 0 ) if for all ψ ψ ψ ∈ C(Ω × S; R k ) lim ε→0 f f f ε (x).ψ ψ ψ Å x, y ε (x ) ε ã dm ε (x) = 1 |S| Σ×S f f f 0 (x 2 , x 3 ; y 1 , y 2 ).ψ ψ ψ(0, x 2 , x 3 ; y 1 , y 2 )dH 2 (x)dy, (27) 
where y ε (x ) is given by [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF] and |S| denotes the two-dimensional Lebesgue measure of S. Similar notions have been considered in [START_REF] Bouchitté | Fragalà: Homogenization of thin structures by two-scale method with respect to measures[END_REF], [START_REF] Lukkassen | Wall: Two-scale convergence with respect to measures and homogenization of monotone operators[END_REF], [START_REF] Zhikov | On an extension and an application of the two-scale convergence method[END_REF]. As shown in the next proposition, the two-scale convergence with respect to (m ε ) enjoys a compactness property for sequences satisfying an uniform bound of the type

sup ε>0 |f f f ε | 2 dm ε ≤ C.
Proposition 1 (i) There holds

lim ε→0 ψ ψ ψ Å x, y ε (x ) ε ã dm ε (x) = 1 |S| Σ×S ψ ψ ψ(x, y)dH 2 (x)dy ∀ψ ψ ψ ∈ C(Ω × S; R k ). ( 28 
) (ii) Let (f f f ε ) be a sequence in L 2 (Ω; R k ) such that sup ε>0 |f f f ε | 2 dm ε < +∞. Then, the sequence (f f f ε ) two-scale converges with respect to (m ε ), up to a subsequence, to some f f f 0 ∈ L 2 (Σ × S; R k ). (iii) Let (f f f ε ) be a sequence in L 2 (Ω; R k ) such that sup ε>0 |f f f ε | 2 dm ε < +∞ and that (f f f ε ) two-scale converges with respect to (m ε ) to f f f 0 ∈ L 2 (Σ × S; R k ). Then: a) the sequence (v v v ε (f f f ε )) two-scale converges with respect to (m ε ) to 1 |S| S f f f 0 (x, y)dy; b) the sequence of traces (γ γ γ Σ (v v v ε (f f f ε ))) is well defined and weakly converges in L 2 (Σ; R k ) to 1 |S| S f f f 0 (x, y)dy; c) if f f f ε takes constant values for a.e. x 3 ∈ (-L, L) on each set Y i ε × {x 3 }
, and vanishes elsewhere, then the sequence of traces

(γ γ γ Σ (f f f ε )) is well defined, f f f ε = v v v ε (f f f ε ), f f f 0 (x, y) = -S f f f 0 (x, y )dy a.e. on Σ × S, and (γ γ γ Σ (f f f ε )) weakly converges in L 2 (Σ; R k ), up to a subsequence, to 1 |S| S f f f 0 (x, y)dy.
Proof. 1 In analogy to [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF][START_REF] Neukamm | Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from 3d elasticity[END_REF][START_REF] Stelzig | On problems in homogenization and two-scale convergence[END_REF][START_REF] Visintin | Toward a two-scale calculus[END_REF] (and in the spirit of the periodic unfolding method [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF]), denoting by [s] the integer part of a real s, we define the transformation S ε : Σ ε × S → T ε as follows

S ε (x, y) := (εy 1 , ε[x 2 /ε + 1/2] + εy 2 , x 3 ). ( 29 
)
For

arbitrary f ∈ L 1 (T ε ) the function (f • S ε )(x, y) ∈ L 1 (Σ ε × S). Its extension by zero to Σ × S will be indicated f ε • S ε 1 Σ ε ×S or simply (f • S ε
) when there are no ambiguities. By the following isometry property

f dm ε := 1 ε|S| Tε f dx = 1 |S| Σ ε ×S (f • S ε )(x, y)dH 2 (x)dy , (30) 
any sequence

f ε ∈ L 2 (T ε ) with sup ε>0 |f ε | 2 dm ε < +∞ yields a subsequence with f ε • S ε 1 Σ ε ×S f 0 weakly in L 2 (Σ × S). ( 31 
) If ψ ∈ C(Ω × S) and ψ ε (x) := ψ Ä x, yε(x ) ε ä then ψ ε • S ε 1 Σ ε ×S (x, y) = ψ (εy 1 , ε[x 2 /ε + 1/2] + εy 2 , x 3 , y) 1 Σ ε ×S (x, y) (32) 
is uniformly bounded in Σ × S and converges uniformly to ψ on Σ ε0 × S for each fixed ε 0 > 0, therefore, since

H 2 (Σ \ Σ ε ) → 0, ψ ε • S ε 1 Σ ε ×S → ψ strongly in L p (Σ × S), ∀p ∈ [1, +∞[. ( 33 
) Assertion (i) (resp. (ii)) follows from ( 30) and (33) (resp. ( 30), ( 31) and ( 33)). Moreover, the combination of ( 30), ( 31) and [START_REF] Stelzig | On problems in homogenization and two-scale convergence[END_REF] shows that

î f f f ε mε f f f 0 ó ⇔ f ε • S ε 1 Σ ε ×S f 0 weakly in L 2 (Σ × S) . (34) 
In order to prove the assertions (iii) we note at first that

v v v ε (f f f ε )(x)1 Tε (x) = Å 1 |S| S f f f ε (εy 1 , ε[x 2 /ε + 1/2] + εy 2 , x 3 )dy ã 1 Tε (x),
and we deduce from ( 30) and ( 32) that

v v v ε (f f f ε )(x).ψ ψ ψ Å x, y ε (x ) ε ã dm ε = 1 |S| Σ ε ×S f f f ε (εy 1 , [x 2 /ε + 1/2] + εy 2 , x 3 ) ψ ψ ψ ε (x)dH 2 (x)dy, (35) 
where

ψ ψ ψ ε (x) := 1 |S| S ψ ψ ψ (εy 1 , ε[x 2 /ε + 1/2] + εy 2 , x 3 , y) dy.
By the uniform continuity of ψ ψ ψ, we have

ψ ψ ψ ε (x) -ψ ψ ψ(εy 1 , [x 2 /ε + 1/2] + εy 2 , x 3 ) 1 Σ ε ×S ≤ Cε, ψ ψ ψ(x) := 1 |S| S ψ ψ ψ(x, y)dH 2 (y). (36) 
Testing the two-scale convergence with respect to (m ε ) of (f

f f ε ) to f f f 0 with the test function ψ ψ ψ(x), taking (34) 
into account, we infer from ( 35) and ( 36) that

lim ε→0 v v v ε (f f f ε )(x).ψ ψ ψ Å x, y ε (x ) ε ã dm ε = lim ε→0 1 |S| Σ ε ×S f f f ε (εy 1 , [x 2 /ε + 1/2] + εy 2 , x 3 ).ψ ψ ψ(εy 1 , [x 2 /ε + 1/2] + εy 2 , x 3 )dydH 2 (x) = 1 |S| Σ×S f f f 0 (x, y).ψ ψ ψ(x)dH 2 (x)dy = 1 |S| Σ×S Å 1 |S| Σ×S f f f 0 (x, y)dH 2 (y) ã .ψ ψ ψ(x, y)dH 2 (x)dy. ( 37 
) Assertion (iii) a) is proved. For each (x 2 , x 3 ) ∈ Σ the mapping x 1 → v v v ε (f f f ε )(x 1 , x 2 , x 3 ) is constant on the set (-ε, ε) × (x 2 , x 3 ), and so in particular equal to v v v ε (f f f ε )(0, x 2 , x 3 ). Hence the field v v v ε (f f f ε )(0, x 2 , x 3 )
is a well defined element of L 2 (Σ; R k ) which will also be denoted by γ γ γ Σ (v v v ε (f f f ε )), using for simplicity the same notation as for the trace operator from

H 1 (Ω; R k ) to L 2 (Σ; R k ). One can easily check that Σ |γ γ γ Σ (v v v ε (f f f ε ))| 2 dH 2 = |v v v ε (f f f ε )| 2 dm ε ≤ |f f f ε | 2 dm ε , hence γ γ γ Σ (v v v ε (f f f ε )) is bounded in L 2 (Σ; R k ). Given ϕ ϕ ϕ ∈ C(Ω; R k ), a straightforward computation yields Σ γ γ γ Σ (v v v ε (f f f ε )).ϕ ϕ ϕ(0, x 2 , x 3 )dH 2 = f f f ε .Û ϕ ϕ ϕ ε dm ε , Û ϕ ϕ ϕ ε (x) := i∈Iε Ç - εi+ ε 2 εi-ε 2 ϕ ϕ ϕ(0, t, x 3 )dt å 1 S i ε (x ). ( 38 
)
Noticing that, by the uniform continuity of ϕ ϕ ϕ on Ω, there holds sup

x∈Tε |ϕ ϕ ϕ(x) -Û ϕ ϕ ϕ ε (x)| ≤ Cε, we deduce from the two-scale convergence with respect to (m ε ) of (f f f ε ) to f f f 0 that lim ε→0 Σ γ γ γ Σ (v v v ε (f f f ε ))ϕ ϕ ϕ(x)dH 2 = lim ε→0 f f f ε .ϕ ϕ ϕdm ε = 1 |S| Σ×S f f f 0 (x, y)ϕ ϕ ϕ(x)dH 2 (x)dy = Σ Å - S f f f 0 (x, y)dy ã .ϕ ϕ ϕdH 2 . Assertion (iii) b) is proved. The proof of Assertion (iii) c) is straightforward.
The next proposition states a lower semicontinuity property related to the two-scale convergence with respect to (m ε ) when dealing with convex integrands.

Proposition 2 Let (f f f ε ) be a sequence in L 2 (Ω; R k ) such that (f f f ε ) two-scale converges to f f f 0 with respect to (m ε )
, and let j : R k → R be a convex function. Then

lim inf ε→0 j(f f f ε )dm ε ≥ 1 |S| Σ×S j(f f f 0 )dH 2 ⊗ dL 2 . ( 39 
)
Proof. Let us fix ψ ψ ψ ∈ C(Ω × S; R k ). Denoting by j the Fenchel transform of j, by applying Fenchel inequality and then [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] to the function j

(ψ ψ ψ) ∈ C(Ω × S), we get lim inf ε→0 j(f f f ε )dm ε (x) ≥ lim ε→0 f f f ε ψ ψ ψ Å x, y ε (x ) ε ã -j Å ψ ψ ψ Å x, y ε (x ) ε ãã dm ε (x) = 1 |S| Σ×S f f f 0 ψ ψ ψ -j (ψ ψ ψ)dH 2 (x)dy. ( 40 
)
Taking the supremum of the right-hand side of (40) when ψ ψ ψ varies in C(Ω × S; R k ), using a classical localization argument and the convexity assumption on j, we get

lim inf ε→0 j(f f f ε )dm ε (x) ≥ sup ψ ψ ψ∈C(Ω×S;R k ) 1 |S| Σ×S f f f 0 ψ ψ ψ -j (ψ ψ ψ)dH 2 (x)dy = 1 |S| Σ×S sup ψ ψ ψ∈R k {f f f 0 ψ ψ ψ -j (ψ ψ ψ)}dH 2 (x)dy = 1 |S| Σ×S j (f f f 0 )dH 2 (x)dy = 1 |S| Σ×S j(f f f 0 )dH 2 (x)dy.
The estimates established in the next lemma will be employed to study the link between the two-scale limit with respect to (m ε ) of a bounded sequence in H 1 (Ω; R k ) and the strong limit of its traces in L 2 (Σ; R k ). Also, they will take a crucial part in the proof of the apriori estimates established in Proposition 4. In what follows, for each ϕ ϕ ϕ ∈ H 1 (Ω; R 3 ), we denote by Û ϕ ϕ ϕ and ϕ ϕ ϕ ε the elements of H 1 (Ω; R 3 ) defined by

ϕ ϕ ϕ ε (x) := - (-ε 2 , ε 2 ) ϕ ϕ ϕ(s 1 , x 2 , x 3 )ds 1 , Û ϕ ϕ ϕ(x) := ϕ ϕ ϕ(0, x 2 , x 3 ). ( 41 
)
Lemma 1 There exists a constant C such that, for all ϕ ϕ ϕ ∈ H 1 (Ω; R 3 ), see (3),

Σε |γ γ γ Σ (v v v ε (ϕ ϕ ϕ)) -γ γ γ Σ (ϕ ϕ ϕ)| 2 dH 2 ≤ Cε ε/2 -ε/2 Σ |∇ ∇ ∇ϕ ϕ ϕ| 2 dx, |ϕ ϕ ϕ -v v v ε (ϕ ϕ ϕ)| 2 dm ε ≤ Cε 2 |∇ ∇ ∇ϕ ϕ ϕ| 2 dm ε , |ϕ ϕ ϕ -Û ϕ ϕ ϕ| 2 dm ε ≤ Cε Σε |∇ ∇ ∇ϕ ϕ ϕ| 2 dx, (42) 
and

|Û ϕ ϕ ϕ| 2 dm ε ≤ C Σ |γ γ γ Σ (ϕ ϕ ϕ)| 2 dH 2 , Σ ∂γ Σ (v ε3 (ϕ ϕ ϕ)) ∂x 3 2 dH 2 ≤ C |e e e(ϕ ϕ ϕ)| 2 dm ε . (43) 
Moreover for all ϕ ϕ ϕ ∈ L 2 (Ω; R 3 ) and k ∈ {1, 2, 3}

Σ |γ Σ (v εk (ϕ ϕ ϕ))| 2 dH 2 = |v εk (ϕ ϕ ϕ)| 2 dm ε . (44) 
Proof. We use the following estimate, whose proof is postponed to the end:

1 2 -1 2 - S ψ ψ ψds -ψ ψ ψ(0, y 2 ) 2 dy 2 ≤ C Y |∇ ∇ ∇ψ ψ ψ| 2 dy 1 dy 2 ∀ψ ψ ψ ∈ H 1 (Y ; R 3 ). ( 45 
)
By making suitable changes of variables in (45), we infer that for all i ∈ I ε , there holds

ε(i+1/2) ε(i-1/2) - S i ε ψ ψ ψds -ψ ψ ψ(0, x 2 ) 2 dx 2 ≤ Cε Y i ε |∇ ∇ ∇ψ ψ ψ| 2 dx 1 dx 2 ∀ψ ψ ψ ∈ H 1 (Y i ε ; R 3 ). ( 46 
)
Fixing ϕ ϕ ϕ ∈ H 1 (Ω; R 3 ) and applying (46) for a.e. x 3 ∈ (-L, L) to ψ ψ ψ(x 1 , x 2 ) := ϕ ϕ ϕ(x 1 , x 2 , x 3 ), then integrating with respect to x 3 over (-L, L) and summing over i ∈ I ε , we infer

Σε |γ γ γ Σ (v v v ε (ϕ ϕ ϕ)) -γ γ γ Σ (ϕ ϕ ϕ)| 2 dH 2 ≤ Cε ε/2 -ε/2 Σ |∇ ∇ ∇ϕ ϕ ϕ| 2 dx.
The proof of the first line of (42) is achieved.

Let us prove the second line of (42). By making suitable changes of variables in the classical Poincaré-Wirtinger inequality

S ψ ψ ψ -- S ψ ψ ψ 2 dy ≤ C S |∇ ∇ ∇ψ ψ ψ| 2 dy ∀ψ ψ ψ ∈ H 1 (S; R 2 ),
we infer

S i ε ψ ψ ψ -- S i ε ψ ψ ψ 2 dx ≤ Cε 2 S i ε |∇ ∇ ∇ψ ψ ψ| 2 dx ∀i ∈ I ε , ∀ψ ψ ψ ∈ H 1 (S i ε ; R 2 ). ( 47 
)
By applying (47) for a.e. x 3 ∈ (-L, L) to ψ ψ ψ(x 1 , x 2 ) = ϕ ϕ ϕ(x 1 , x 2 , x 3 ), integrating with respect to x 3 over (-L, L) and summing with respect to i over I ε , we deduce the second line of (42).

By Jensen's inequality we have

|ϕ ϕ ϕ -Û ϕ ϕ ϕ| 2 dm ε ≤ C ε Σε |ϕ ϕ ϕ -Û ϕ ϕ ϕ| 2 dx ≤ C ε (-ε 2 , ε 2 ) dx 1 Σ |ϕ ϕ ϕ(x 1 , x 2 , x 3 ) -ϕ ϕ ϕ(0, x 2 , x 3 )| 2 dx 2 dx 3 ≤ Σ (-ε 2 , ε 2 ) ∂ϕ ϕ ϕ ∂x 1 (t 1 , x 2 , x 3 ) dt 1 2 dx 2 dx 3 ≤ Cε Σε |∇ ∇ ∇ϕ ϕ ϕ| 2 dx,
which proves the third line of (42).

By [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF] and Jensen's inequality, there holds

Σ ∂γ Σ (v ε3 (ϕ ϕ ϕ)) ∂x 3 2 dH 2 = i∈Iε L -L dx 3 ε(i+ 1 2 ) ε(i-1 2 ) dx 2 - S i ε ∂ϕ 3 ∂x 3 (s 1 , s 2 , x 3 )ds 1 ds 2 2 ≤ i∈Iε L -L dx 3 ε(i+ 1 2 ) ε(i-1 2 ) dx 2 - S i ε ∂ϕ 3 ∂x 3 2 (s 1 , s 2 , x 3 )ds 1 ds 2 = ε i∈Iε L -L dx 3 - S i ε ∂ϕ 3 ∂x 3 2 (s 1 , s 2 , x 3 )ds 1 ds 2 = 1 ε|S| Tε ∂ϕ 3 ∂x 3 2 dx ≤ C |e e e(ϕ ϕ ϕ)| 2 dm ε ,
yielding the second line of (43). Moreover, we have

|Û ϕ ϕ ϕ| 2 dm ε = 1 ε|S| Tε |ϕ ϕ ϕ(0, x 2 , x 3 )| 2 dx ≤ 1 ε|S| (-ε 2 , ε 2 )×Σ |ϕ ϕ ϕ(0, x 2 , x 3 )| 2 dx = 1 |S| Σ |γ γ γ Σ (ϕ ϕ ϕ)| 2 dH 2 .
The estimates (43) are proved. The estimate (44) results from the next computation, holding for k ∈ {1, 2, 3}:

Σ |γ Σ (v εk (ϕ ϕ ϕ))| 2 dH 2 = i∈Iε L -L dx 3 ε(i+ 1 2 ) ε(i-1 2 ) dx 2 - S i ε ϕ k (s, x 3 )dH 2 (s) 2 = i∈Iε L -L dx 3 ε - S i ε ϕ k (s, x 3 )dH 2 (s) 2 = i∈Iε L -L dx 3 ε 1 |S i ε | S i ε - S i ε ϕ k (s, x 3 )dH 2 (s) 2 dx 1 dx 2 = 1 ε|S| Tε |v εk (ϕ ϕ ϕ)| 2 dx = |v εk (ϕ ϕ ϕ)| 2 dm ε . (48) 
Proof of (45). If the first line of (45) is not satisfied, there exists (ψ

ψ ψ n ) ⊂ H 1 (Y ; R 3 ) such that ( -1 2 , 1 2 ) - S ψ ψ ψ n ds -ψ ψ ψ n (0, y 2 ) 2 dy 2 = 1, Y |∇ ∇ ∇ψ ψ ψ n | 2 dy 1 dy 2 ≤ 1 n . (49) 
After possibly substracting a constant vector to ψ ψ ψ n , we can assume that

- S ψ ψ ψ n dy = 0. ( 50 
)
From the Poincaré-Wirtinger inequality

Y ψ ψ ψ -- S ψ ψ ψds 2 dy ≤ C Y |∇ ∇ ∇ψ ψ ψ| 2 dy ∀ψ ψ ψ ∈ H 1 (Y ; R 3 ),
we deduce that (ψ ψ ψ n ) is bounded in H 1 (Y ; R 3 ) and weakly converges, thanks to (50) and up to a subsequence (still denoted by ψ n ), to 0. By the continuity of the trace application from H 1 (Y ; R 3 ) weak to L 2 {0} × -1 2 , 1 2 ; R 3 strong, the trace ψ ψ ψ n (0, y 2 ) converges strongly to 0 in L 2 {0} × -1 2 , 1 2 ; R 3 . This is in contradiction with the fact that by (49) and (50), the norm in L 2 {0} × -1 2 , 1 2 ; R 3 of ψ ψ ψ n (0, y 2 ) is equal to 1.

We are now in a position to investigate the link between the two-scale limit with respect to (m ε ) of a bounded sequence in H 1 (Ω; R k ) and the strong limit of its traces in L 2 (Σ; R k ).

Proposition 3 Assume that (f f f ε ) weakly converges in H 1 (Ω; R k ) to some f f f ∈ H 1 (Ω; R k ). Then, (f f f ε ) two-scale converges with respect to (m ε ) to the field f f f 0 ∈ L 2 (Σ × S; R k ) defined by f f f 0 (x, y) := γ γ γ Σ (f f f )(x) for H 2 ⊗ L 2 -a.e. (x, y) ∈ Σ × S.
(51) In addition, the sequence (v v v ε (f f f ε )) defined by [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF] two-scale converges with respect to (m ε ) to f f f 0 . Furthermore, the sequence

(γ γ γ Σ (v v v ε (f f f ε ))) strongly converges in L 2 (Σ; R k ) to γ γ γ Σ (f f f ).
Proof. By the first line of (42), we have

Σ |γ γ γ Σ (v v v ε (f f f ε )) -γ γ γ Σ (f f f )| 2 dH 2 ≤ C Σε |γ γ γ Σ (v v v ε (f f f ε )) -γ γ γ Σ (f f f ε )| 2 dH 2 + C Σε |γ γ γ Σ (f f f ε ) -γ γ γ Σ (f f f )| 2 dH 2 + C Σ\Σε |γ γ γ Σ (f f f )| 2 dH 2 ≤ Cε ε/2 -ε/2 Σ |∇ ∇ ∇f f f ε | 2 dx + C Σ |γ γ γ Σ (f f f ε ) -γ γ γ Σ (f f f )| 2 dH 2 + C Σ\Σε |γ γ γ Σ (f f f )| 2 dH 2 . ( 52 
) Since (f f f ε ) weakly converges to f f f in H 1 (Ω; R k ), the sequence (γ γ γ Σ (f f f ε )) strongly converges to γ γ γ Σ (f f f ) in L 2 (Σ; R k ). Since the sequence Ä |γ γ γ Σ (f f f )| 2 1 Σ\Σ ε ä is dominated by |γ γ γ Σ (f f f )| 2 ∈ L 1 (Σ) and H 2 -a.e. converges
to 0 on Σ, by the Dominated Convergence Theorem, there holds:

lim ε→0 Σ\Σ ε |γ γ γ Σ (f f f )| 2 dH 2 = 0. It then follows from (52) that the sequence (γ γ γ Σ (v v v ε (f f f ε ))) strongly converges in L 2 (Σ; R k ) to γ γ γ Σ (f f f ). Given ψ ψ ψ ∈ C(Ω × S; R k ), we consider the fields ψ ψ ψ Σ ε ∈ L ∞ (Σ; R k ) and ψ ψ ψ Σ ∈ C(Σ; R k ) defined by ψ ψ ψ Σ ε (x 2 , x 3 ) := i∈Iε Ç - S i ε ψ ψ ψ Å s 1 , s 2 , x 3 , y ε (s) ε ã ds 1 ds 2 å 1 (εi-ε 2 ,εi+ ε 2 ) (x 2 ), ψ ψ ψ Σ (x 2 , x 3 ) := - S ψ ψ ψ(0, x 2 , x 3 , y)dy. (53) 
By the change of variables formula, there holds (see [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF])

ψ ψ ψ Σ (x 2 , x 3 ) = - S i ε ψ ψ ψ Å 0, x 2 , x 3 , y ε (s) ε ã ds ∀i ∈ I ε .
Therefore, for all (x 2 , x 3 ) ∈ εi -ε 2 , εi + ε 2 × (-L, L) we have

ψ ψ ψ Σ (x 2 , x 3 ) -ψ ψ ψ Σ ε (x 2 , x 3 ) ≤ sup (s,y)∈S i ε ×S
|ψ ψ ψ(0, x 2 , x 3 , y) -ψ ψ ψ(s, x 3 , y)|.

By (53) we have

ψ ψ ψ Σ ε L ∞ (Σ;R k ) ≤ ||ψ ψ ψ|| L ∞ (Ω×S;R k ) , hence the sequence (ψ ψ ψ Σ ε ) is bounded in L ∞ (Σ; R k ).
On the other hand, one can check by using the uniform continuity of ψ ψ ψ on Ω × S, that the sequence (ψ ψ ψ Σ ε ) uniformly converges to ψ ψ ψ Σ on each compact subset of Σ. We deduce that

ψ ψ ψ Σ ε → ψ ψ ψ Σ strongly in L q (Σ; R k ) ∀q ∈ [1, +∞). ( 54 
)
By ( 25) and (53) there holds

v v v ε (f f f ε ).ψ ψ ψ Å x, y ε (x ) ε ã dm ε = 1 ε|S| i∈Iε L -L dx 3 S i ε Ç - S i ε f f f ε (s 1 , s 2 , x 3 )ds å .ψ ψ ψ Å x, y ε (x ) ε ã dx 1 dx 2 = 1 ε|S| i∈Iε L -L dx 3 Ç - S i ε f f f ε (s 1 , s 2 , x 3 )ds å . S i ε ψ ψ ψ Å s 1 , s 2 , x 3 , y ε (s) ε ã ds = i∈Iε (εi-ε 2 ,εi+ ε 2 )×(-L,L) γ γ γ Σ (v v v ε (f f f ε )).ψ ψ ψ Σ ε dH 2 = Σ γ γ γ Σ (v v v ε (f f f ε )).ψ ψ ψ Σ ε dH 2 .
(55)

By passing to the limit as ε → 0, thanks to the strong convergences of (γ

γ γ Σ (v v v ε (f f f ε ))) to γ Σ (f f f ) in L 2 (Σ; R k ) and of (ψ ψ ψ Σ ε ) to ψ ψ ψ Σ in L 2 (Σ; R k ) (see (54)), we get lim ε→0 v v v ε (f f f ε ).ψ ψ ψ Å x, y ε (x ) ε ã dm ε = Σ γ γ γ Σ (f f f ).ψ ψ ψ Σ dH 2 . ( 56 
)
On the other hand, by (53) there holds

Σ γ γ γ Σ (f f f ).ψ ψ ψ Σ dH 2 = 1 |S| Σ×S γ γ γ Σ (f f f )(x).ψ ψ ψ(x, y)dH 2 (x)dy. ( 57 
)
By the arbitrary choice of ψ ψ ψ, we infer from ( 56) and (57) that the sequence (v v v ε (f f f ε )) two-scale converges with respect to (m ε ) to the field f f f 0 ∈ L 2 (Σ; R k ) defined by (51).

The proof of the first statement is achieved provided we show that (f f f ε ) two-scale converges to f f f 0 with respect to (m ε ). To that aim, let us fix ψ ψ ψ ∈ C(Ω × S; R k ). By ( 25), Hölder's inequality and Jensen's inequality, we have

(f f f ε -v v v ε (f f f ε )).ψ ψ ψ Å x, y ε (x ) ε ã dm ε 2 ≤ C |f f f ε -v v v ε (f f f ε )| 2 dm ε ≤ C 1 ε|S| i∈Iε L -L dx 3 S i ε f f f ε -- S i ε f f f ε (s 1 , s 2 , x 3 )ds 2 dx 1 dx 2 .
(58) By making suitable changes of variables in the following Poincaré-Wirtinger inequality

S ϕ ϕ ϕ -- S ϕ ϕ ϕds 2 dx ≤ C S |∇ ∇ ∇ϕ ϕ ϕ| 2 dx ∀ϕ ϕ ϕ ∈ H 1 (S; R k ),
we deduce that for a. e. x 3 ∈ (-L, L), there holds

S i ε f f f ε -- S i ε f f f ε (s 1 , s 2 , x 3 )ds 2 dx 1 dx 2 ≤ Cε 2 S i ε |∇ ∇ ∇f f f ε (x 1 , x 2 , x 3 )| 2 dx 1 dx 2 . (59) 
Joining ( 58) and (59), we infer

(f f f ε -v v v ε (f f f ε )).ψ ψ ψ Å x, y ε (x ) ε ã dm ε 2 ≤ Cε Tε |∇ ∇ ∇f f f ε | 2 dx. (60) 
We deduce from (56), ( 57) and (60) that

lim ε→0 f f f ε .ψ ψ ψ Å x, y ε (x ) ε ã dm ε = 1 |S| Σ×S γ γ γ Σ (f f f )(x).ψ ψ ψ(x, y)dH 2 (x)dy.
Therefore, by the arbitrary choice of ψ ψ ψ, the sequence (f f f ε ) two-scale converges with respect to (m ε ) to f f f 0 .

A priori estimates, identification relations

The following section is mainly devoted to the study of the asymptotic behaviour of the solution (u u u ε ) of ( 7) and of the sequences (v v v ε (u u u ε )m ε ) and (u u u ε m ε ). The main results of this section are stated in Proposition 4. Their proofs rely on some basic inequalities established in the previous section in Lemma 1 and also on those established in the next lemma.

Lemma 2

The following estimates hold for all i ∈ I ε :

T i ε |εϕ 1 | 2 + |εϕ 2 | 2 + |ϕ 3 | 2 dx ≤ C T i ε |e e e(ϕ ϕ ϕ)| 2 dx ∀ ϕ ϕ ϕ ∈ H 1 0 (Ω; R 3 ), T i ε |εv ε1 (ϕ ϕ ϕ)| 2 + |εv ε2 (ϕ ϕ ϕ)| 2 + |v ε3 (ϕ ϕ ϕ)| 2 dx ≤ C T i ε |e e e(ϕ ϕ ϕ)| 2 dx ∀ ϕ ϕ ϕ ∈ H 1 0 (Ω; R 3 ). (61) 
Proof. We consider the set

V := {ψ ψ ψ ∈ H 1 (T, R 3 ), ψ ψ ψ = 0 on S × {-L}}.
The space V is a closed linear subset of H 1 (T, R 3 ) satisfying V ∩ R = {0}, where R denotes the space of rigid displacements, therefore by Korn inequality there holds

T |ψ ψ ψ| 2 dz ≤ C T |e e e(ψ ψ ψ)| 2 dz ∀ ψ ψ ψ ∈ V. (62) 
Let us fix ϕ ϕ ϕ ∈ H 1 0 (Ω; R 3 ). By applying (62) to the field ψ ψ ψ defined by

ψ α (z 1 , z 2 , z 3 ) := ϕ α (ε(z 1 - (y y y i ε (z)) 1 ), ε(z 2 -(y y y i ε (z)) 2 ), z 3 ) for α ∈ {1, 2} and 3 (z) := 1 ε ϕ 3 (ε(z 1 -(y y y i ε (z)) 1 ), ε(z 2 -(y y y i ε (z))
2 ), z 3 ), and then by making a suitable change of variable, we get

T i ε |εϕ 1 | 2 + |εϕ 2 | 2 + |ϕ 3 | 2 dx ≤ C T i ε |e e e(ϕ ϕ ϕ)| 2 dx. (63) 
On the other hand, it easily follows from ( 25), Fubini Theorem and Jensen's inequality that

T i ε |εv ε1 (ϕ ϕ ϕ)| 2 + |εv ε2 (ϕ ϕ ϕ)| 2 + |v ε3 (ϕ ϕ ϕ)| 2 dx ≤ C T i ε |εϕ 1 | 2 + |εϕ 2 | 2 + |ϕ 3 | 2 dx. (64) 
The estimates (61) result from ( 63) and (64).

The next proposition specifies the asymptotic behavior of the solution u u u ε of (7) and of some associated auxiliary sequences. The strong relative compactness of (u u u ε ) in H 1 0 (Ω; R 3 ) is established at the end of the paper in Section 5.2.

Proposition 4 Let u u u ε be the solution of [START_REF] Bellieud | Bouchitté: Homogenization of a soft elastic material reinforced by fibres[END_REF] and let v v v ε (u u u ε ) be defined by [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF]. Then: (i) the next estimates hold true

|u u u ε | 2 H 1 0 (Ω;R 3 ) ≤ C, |e e e(u u u ε )| 2 dm ε ≤ Cε m-1 , {|u u u ε | 2 + |v v v ε (u u u ε )| 2 }dm ε ≤ C, {|u ε1 | 2 + |u ε2 | 2 + u ε3 ε 2 + |v ε1 (u u u ε )| 2 + |v ε2 (u u u ε )| 2 + v ε3 (u u u ε ) ε 2 }dm ε ≤ Cε m-3 , |u u u ε -v v v ε (u u u ε )| 2 dm ε ≤ Cε, Σ |γ γ γ Σ (v v v ε (u u u ε ))| 2 dH 2 ≤ C. (65) 
(ii) If m ≥ 1, the next convergences take place, up to a subsequence, for some

u u u ∈ H 1 0 (Ω; R 3 ), u u u 0 , v v v 0 ∈ L 2 (Σ × S; R 3 ), Ξ Ξ Ξ 0 ∈ L 2 (Σ × S; S 3 ): u u u ε u u u weakly in H 1 0 (Ω; R 3 ), γ γ γ Σ (u u u ε ) → γ γ γ Σ (u u u), γ γ γ Σ (v v v ε (u u u ε )) → γ γ γ Σ (u u u) strongly in L 2 (Σ; R 3 ), u u u ε mε u u u 0 , v v v ε (u u u ε ) mε v v v 0 , e e e(u u u ε ) mε Ξ Ξ Ξ 0 two-scale with respect to (m ε ), (66) 
where the symbol mε is defined by [START_REF] Neukamm | Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from 3d elasticity[END_REF] and the following identification relations hold true:

v v v 0 (x, y) = u u u 0 (x, y) = γ γ γ Σ (u u u)(x) for H 2 ⊗ L 2 -a.e. (x, y) ∈ Σ × S, (67) 
∂γ Σ (u 3 ) ∂x 3 ∈ L 2 (Σ), γ Σ (u 3 ) = 0 on {x ∈ Σ, x 3 ∈ {-L, L}}, ∂γ Σ (u 3 ) ∂x 3 (x) = (Ξ Ξ Ξ 0 ) 33 (x, y) for H 2 ⊗ L 2 -a.e. (x, y) ∈ Σ × S, (68) 
γ Σ (u 3 ) = 0 if m > 1. ( 69 
)
(iii) If m ≥ 3, then besides (66), the next convergences take place up to a subsequence, for some

w 0 ∈ L 2 (Σ × S), Υ Υ Υ 0 ∈ L 2 (Σ × S; S 3 ), w ∈ L 2 (Σ): u ε3 ε mε w 0 , 1 ε
e e e(u u u ε ) mε Υ Υ Υ 0 two-scale with respect to (m ε ),

γ Σ (v ε3 (u u u ε )) ε w weakly in L 2 (Σ). ( 70 
)
Moreover there holds

γ Σ (u 3 ) = 0, ∂ 2 γ γ γ Σ (u u u) ∂x 2 3 ∈ L 2 (Σ; R 3 ), γ γ γ Σ (u u u) = ∂γ γ γ Σ (u u u) ∂x 3 = 0 on ∂Σ ∩ {x ∈ R 3 , x 3 ∈ {-L, L}}, w 0 (x, y) = w(x) - 2 α=1 ∂γ Σ (u α ) ∂x 3 (x)y α , in Σ × S, ∂w ∂x 3 ∈ L 2 (Σ), Υ 033 = ∂w ∂x 3 - ∂ 2 γ Σ (u 1 ) ∂x 2 3 y 1 - ∂ 2 γ Σ (u 2 ) ∂x 2 3 y 2 .
(71)

Furthermore,

γ γ γ Σ (u u u) = 0 if m > 3. ( 72 
)
(iv) We have u u u ∈ D m , where D m is given by ( 9), ( 11), [START_REF] Cioranescu | An introduction to homogenization[END_REF], or [START_REF] Bessoud | Asymptotic analysis of shell-like inclusions with high rigidity[END_REF], in accordance with the choice of m.

Proof. (i) We multiply [START_REF] Bellieud | Bouchitté: Homogenization of a soft elastic material reinforced by fibres[END_REF] by u u u ε , integrate by parts over Ω, and use Cauchy Schwarz inequality to find

Ω σ σ σ ε : e e e(u u u ε )dx = Ω f f f .u u u ε ≤ Å Ω |f f f | 2 dx ã 1 2 Å Ω |u u u ε | 2 dx ã 1 2 . ( 73 
)
By applying Poincaré and Korn inequalities in H 1 0 (Ω; R 3 ), we get

Ω |u u u ε | 2 dx ≤ C Ω |e e e(u u u ε )| 2 dx ≤ C Ω\Tε |e e e(u u u ε )| 2 dx + C ε m Tε |e e e(u u u ε )| 2 dx ≤ C Ω σ σ σ ε : e e e(u u u ε )dx. ( 74 
)
We infer from ( 73) and (74) that

|u u u ε | 2 H 1 0 (Ω;R 3 ) ≤ C, |e e e(u u u ε )| 2 dm ε ≤ Cε m-1 . ( 75 
)
By the third line of (42), the first line of (43), (74), and the continuity of the trace application from H 1 (Ω; R 3 ) to L 2 (Ω; R 3 ), there holds

|u u u ε | 2 dm ε ≤ C |u u u ε -Û u u u ε | 2 dm ε + C |Û u u u ε | 2 dm ε ≤ Cε Σε |∇ ∇ ∇u u u ε | 2 dx + C Σ |γ γ γ Σ (u u u ε )| 2 dH 2 ≤ C|u u u ε | 2 H 1 (Ω;R 3 ) ≤ C. ( 76 
)
We deduce from ( 61) and (75) that

{|u ε1 | 2 + |u ε2 | 2 + u ε3 ε 2 }dm ε ≤ C ε 2 |e e e(u u u ε )| 2 dm ε = Cε m-3 (77)
and that

{|v ε1 (u u u ε )| 2 + |v ε2 (u u u ε )| 2 + v ε3 (u u u ε ) ε 2 }dm ε ≤ C ε 2 |e e e(u u u ε )| 2 dm ε = Cε m-3 . ( 78 
)
By ( 42) and (75), we have

|u u u ε -v v v ε (u u u ε )| 2 dm ε ≤ Cε ε/2 -ε/2 Σ |∇ ∇ ∇u u u ε | 2 dx ≤ Cε|u u u ε | 2 H 1 0 (Ω;R 3 ) ≤ Cε. ( 79 
)
By the first line of ( 42), ( 74), ( 75), (79), and by the continuity of the trace application from H 1 (Ω; R 3 ) to L 2 (Ω; R 3 ), there holds

Σ |γ γ γ Σ (v v v ε (u u u ε ))| 2 dH 2 = Σ ε |γ γ γ Σ (v v v ε (u u u ε ))| 2 dH 2 ≤ C Σ ε |γ γ γ Σ (u u u ε ) -γ γ γ Σ (v v v ε (u u u ε ))| 2 dH 2 + C Σ |γ γ γ Σ (u u u ε )| 2 dH 2 ≤ Cε + C|u u u ε | 2 H 1 (Ω;R 3 ) ≤ C. (80) 
Collecting ( 75)-( 80), the estimates (65) are proved.

(ii) By ( 65), the sequence (u u u ε ) is bounded in H 1 0 (Ω; R 3 ) hence weakly converges, up to a subsequence, to some u u u ∈ H 1 0 (Ω; R 3 ). From the compactness of the trace operator from H 1 0 (Ω; R 3 ) to L 2 (Σ; R 3 ), we deduce that the sequence (γ γ γ Σ (u u u ε )) strongly converges to γ γ γ Σ (u u u) in L 2 (Σ; R 3 ), and from Proposition 3 that the sequence (γ γ γ Σ (v v v ε (u u u ε ))) strongly converges to γ γ γ Σ (u u u) in L 2 (Σ; R 3 ). The convergences stated up to a subsequence in the last line of (66) result from Proposition 1 (ii) and from the fact that by (65), the estimate sup

ε>0 |f f f ε | 2 dm ε < +∞ takes place for f f f ε ∈ {u u u ε , v v v ε (u u u ε )
, e e e(u u u ε )}. Assertion (67) is a consequence of (66) and Proposition 3. Let us fix ψ ∈ C ∞ (Ω; D(S)). Since u ε ∈ H 1 0 (Ω; R 3 ), we have

∂u ε3 ∂x 3 ψ Å x, y ε (x ) ε ã dm ε = -u ε3 ∂ψ ∂x 3 Å x, y ε (x ) ε ã dm ε .
By passing to the limit as ε → 0, thanks to the two-scale convergences with respect to (m ε ) of (e e e(u u u ε )) to Ξ Ξ Ξ 0 and of (u u u ε ) to γ γ γ Σ (u u u) (see (66), ( 67)), we infer

1 |S| Σ×S (Ξ Ξ Ξ 0 ) 33 (x, y)ψ(x, y)dH 2 (x)dy = - 1 |S| Σ×S γ Σ (u 3 )(x) ∂ψ ∂x 3 (x, y)dH 2 (x)dy. ( 81 
)
Since this equality is satisfied in particular for all ψ ∈ D(Ω × S), we deduce

∂γ Σ (u 3 ) ∂x 3 (x) = (Ξ Ξ Ξ 0 ) 33 (x, y) for H 2 ⊗ L 2 -a.e. (x, y) ∈ Σ × S. ( 82 
) As Ξ Ξ Ξ 0 ∈ L 2 (Σ × S; S 3 ), we infer that ∂γ Σ (u3) ∂x3 ∈ L 2 (Σ). Choosing then ψ ∈ C ∞ (Ω; D(S)
) and integrating (81) by parts with respect to x 3 , taking (82) into account, we obtain {x∈Σ, x3∈{-L,L}}×S γ Σ (u 3 )(x)ψ(x, y)dH 1 (x)dy = 0, yielding, by the arbitrary choice of ψ,

γ Σ (u 3 ) = 0 on {x ∈ Σ, x 3 ∈ {-L, L}}.
Assertion (68) is proved. Assertion (69) follows from the second line of (65) and the second line of (66).

(iii) If m ≥ 3, then by (65) we have

sup ε>0 v ε3 (u u u ε ) ε 2 dm ε < +∞, sup ε>0 u ε3 ε 2 dm ε < +∞, sup ε>0 1 ε e e e(u u u ε ) 2 dm ε < +∞.
The convergences stated, up to a subsequence, in the first line of (70), then follow from Proposition 1 (ii). As regards those stated in the second line of (70), they result from the fact that by (44) and by the second line of (65), there holds

Σ γ Σ (v ε3 (u u u ε )) ε 2 dH 2 ≤ C Ç v ε3 (u u u ε ) ε 2 dm ε å ≤ C.
We deduce from the two-scale convergence of uε3 ε to w 0 with respect to (m ε ) that (u ε3 ) two-scale converges to 0 with respect to (m ε ). It follows then from Proposition 3 that

γ Σ (u 3 ) = 0. ( 83 
)
To prove (71), we fix a test field Ψ Ψ Ψ ∈ C ∞ (Ω, D(S; S 3 )) such that Ψ αβ = 0 for all (α, β) ∈ {1, 2} 2 . By integration by parts, we have:

ε Tε 1 ε e e e(u u u ε )(x) : Ψ Ψ Ψ Å x, y ε (x ) ε ã dm ε = 3 i=1 -ε Tε u ε3 (x) ε ∂Ψ 3i ∂x i Å x, y ε (x ) ε ã dm ε - 2 α=1 Tε u εα (x) ∂Ψ α3 ∂x 3 Å x, y ε (x ) ε ã dm ε - 2 α=1 Tε u ε3 (x) ε ∂Ψ 3α ∂y α Å x, y ε (x ) ε ã dm ε . (84) 
By passing to the limit as ε → 0, thanks to the two-scale convergences stated in (70), we obtain

2 α=1 - Σ×S γ γ γ Σ (u α )(x) ∂Ψ α3 ∂x 3 (x, y)dH 2 (x)dy - Σ×S w 0 (x, y) ∂Ψ 3α ∂y α (x, y)dH 2 (x)dy = 0. ( 85 
)
Fixing α ∈ {1, 2} and choosing Ψ Ψ Ψ such that Ψ ij = 0 if {i, j} = {α, 3}, we get

- Σ×S γ γ γ Σ (u α )(x) ∂Ψ α3 ∂x 3 (x, y)dH 2 (x)dy - Σ×S w 0 (x, y) ∂Ψ 3α ∂y α (x, y)dH 2 (x)dy = 0. ( 86 
)
Choosing at first arbitrary fields Ψ α3 in D(Ω; D(S)), we deduce that

∂w 0 ∂y α (x, y) = - ∂γ γ γ Σ (u α ) ∂x 3 (x) in D (Σ × S), (87) 
hence w 0 , as a distribution on Σ × S, can be written for a suitable c ∈ D (Σ) under the following form:

w 0 (x, y) = -y 1 ∂γ Σ (u 1 ) ∂x 3 (x) -y 2 ∂γ Σ (u 2 ) ∂x 3 (x) + c(x). (88) 
As w 0 belongs to L 2 (Σ × S), we infer

c ∈ L 2 (Σ), ∂γ Σ (u α ) ∂x 3 ∈ L 2 (Σ) (α ∈ {1, 2}),
and (87) holds a.e. on Σ × S. We then deduce from Proposition 1 (iii) b), ( 70) and (88) that

w(x) = - S w 0 (x, y)dy = c(x). (89) 
Next, we multiply (84) by 1 ε and choose a field Ψ Ψ Ψ such that Ψ ij = 0 if (i, j) = (3, 3). Passing to the limit as ε → 0, taking into account the two-scale convergences with respect to (m ε ) of 1 ε e e e(u u u ε ) to Υ Υ Υ 0 and of uε3 ε to w 0 given by ( 88) and (89), we obtain

Σ×S Υ 033 (x, y)Ψ 33 (x, y)dH 2 (x)dy = - Σ×S Å -y 1 ∂γ Σ (u 1 ) ∂x 3 (x) -y 2 ∂γ Σ (u 2 ) ∂x 3 (x) + w(x) ã ∂Ψ 33 ∂x 3 (x, y)dH 2 (x)dy. (90) 
Choosing at first an arbitrary Ψ 33 ∈ D(Ω; D(S)), we conclude that

∂w ∂x 3 ∈ L 2 (Σ), ∂ 2 γ γ γ Σ (u u u) ∂x 2 3 ∈ L 2 (Σ; R 3 ), (Υ Υ Υ 0 ) 33 = ∂w ∂x 3 (x) - 2 α=1 ∂ 2 γ Σ (u α ) ∂x 2 3 (x)y α , in Σ × S, (91) 
then, choosing an arbitrary Ψ 33 ∈ C ∞ (Ω; D(S)) in (90) and integrating by parts, we obtain

0 = ∂Σ∩{x∈R 3 , x3∈{-L,L}}×S Å -y 1 ∂γ Σ (u 1 ) ∂x 3 (x) -y 2 ∂γ Σ (u 2 ) ∂x 3 (x) + w(x) ã Ψ 33 (x, y)dH 1 (x)dy, (92) 
yielding

w = 0 on ∂Σ ∩ {x ∈ R 3 , x 3 ∈ {-L, L}}, ∂γ γ γ Σ (u u u) ∂x 3 = 0 on ∂Σ ∩ {x ∈ R 3 , x 3 ∈ {-L, L}}. (93) 
Assertion ( 71) is proved. Finally, if m > 3, then by the second line of (65) the sequence |u u u ε | 2 dm ε converges to 0. We deduce from Proposition 2 (applied to j(.) := |.| 2 ) that u u u 0 = 0. The assertion (72) then results from (67). (iv) Assertion (iv) follows from (66), (71), and (72).

5 Proof of Theorem 1

Weak convergence

Let us briefly outline the proof of Theorem 1. In the spirit of Tartar's method [START_REF] Tartar | Cours Peccot[END_REF], we will multiply (7) by an appropriate sequence of oscillating test fields (φ φ φ ε ) and, by passing to the limit as ε → 0 in accordance with the convergences established in proposition 4, obtain a variational formulation of the limit problem satisfied by u u u. The test field φ φ φ ε is constructed in terms of some fixed φ φ φ ∈ D(Ω; R 3 ) such that φ φ φ ∈ D m (see [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF], ( 11), ( 16), ( 18)). We fix a smooth domain S of R 2 such that

S ⊂ S ⊂ S ⊂ Y, (94) 
and

a function ∈ D(Y ) such that = 0 in Y \ S , = 1 in S, 0 ≤ ≤ 1.
The function ε defined on Ω by (see [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF])

ε (x) := i∈Iε Å y ε (x ) ε ã 1 Y i ε (x ), satisfies ε ∈ C ∞ (Ω), ε = 0 in Ω \ T ε , ε = 1 in T ε , |∇ ε | ≤ C ε , (95) 
where T ε is defined by substituting S for S in (2). The test field will then be defined by

φ φ φ ε := (1 -ε )φ φ φ + ε χ χ χ ε , (96) 
in terms of χ χ χ ε given by ( 102), (110) (assuming φ 3 = 0 if 1 < m < 3), or (120), depending on the choice of m.

We multiply equation ( 7) by φ φ φ ε and integrate it by parts over Ω. We get (see [START_REF] Grisvard | Singularities in Boundary Values Problems[END_REF]):

a ε,m (u u u ε , φ φ φ ε ) = Ω f f f .φ φ φ ε dx. (97) 
It is easy to check that lim

ε→0 Ω f f f .φ φ φ ε dx = Ω f f f .φ φ φdx. (98) 
In order to compute the limit of the left hand side of (97), we split it into a sum of three terms:

a ε,m (u u u ε , φ φ φ ε ) = I 1ε + I 2ε + I 3ε ; I 1ε = Ω\T ε E 1 + ν Å ν 1 -2ν
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã : e e e(φ φ φ)dx,

I 2ε = T ε \Tε E 1 + ν Å ν 1 -2ν
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã : e e e(φ φ φ ε )dx,

I 3ε = |S| ε m-1 E T 1 + ν Å ν 1 -2ν
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã : e e e(χ χ χ ε )dm ε .

(99)

After possibly extracting a subsequence, we can assume that the convergences stated in Proposition 4 take place. In particular, the sequence E 

The χ χ χ ε will be chosen such that 

|φ φ φ -χ χ χ ε | L ∞ (T ε ) ≤ Cε,
≤ lim sup ε→0 C|T ε \ T ε | 1 2 Ç T ε \Tε | E 1 + ν Å ν 1 -2ν
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã | 2 dx å 1 2 ≤ C lim sup ε→0 C|T ε \ T ε | 1 2 = 0. ( 101 
)
We distinguish then different cases.

Case m = 1. We set (see [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF] and Remark 2 below)

χ χ χ ε := v v v ε (φ φ φ) -ε Ñ 0 0 ∂vε1(φ φ φ) ∂x3 yε1(x ) ε + ∂vε2(φ φ φ) ∂x3 yε2(x ) ε é + εq q q Å x, y ε (x ) ε ã , (102) 
where y y y ε (x) is given by ( 26) and q q q(x, y) :=

Ö -ν 1 ∂vε3(φ φ φ) ∂x3 y 1 -ν 1 ∂vε3(φ φ φ) ∂x3 y 2 0 è . (103) 
By ( 25) and (103) there holds in T ε :

e e e(χ χ χ

ε ) = ∂v ε3 (φ φ φ) ∂x 3 Ñ -ν 1 0 0 0 -ν 1 0 0 0 1 é + εe e e x (q q q) Å x, y ε (x ) ε ã , (104) 
hence, by ( 7) and ( 99)

I 3ε = |S|E T ∂u ε3 ∂x 3 ∂v ε3 (φ φ φ) ∂x 3 dm ε +|S|ε E T 1 + ν 1 Å ν 1 1 -2ν 1
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã :e e e x (q q q) Å x, y ε (x ) ε ã dm ε .

(105) By Proposition 4, we have

ε E T 1 + ν 1 Å ν 1 1 -2ν 1
tr(e e e(u u u ε ))I I I + e e e(u u u ε )

ã :e e e x (q q q) Å x, 

y ε (x ) ε ã dm ε ≤ Cε | E T 1 + ν 1 Å ν 1
where a 1 (., .) is the bilinear form on D 1 × D 1 defined by [START_REF] Lukkassen | Wall: Two-scale convergence[END_REF]. Joining (98) and (108), we obtain

a 1 (u u u, φ φ φ) = Ω f f f .φ φ φdx ∀φ φ φ ∈ D(Ω; R 3 ). ( 109 
)
This variational formulation is equivalent to [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF].

Case m = 3. We choose φ 3 = 0 and set (see Remark 2)

χ χ χ ε (x) = Ñ v ε1 (φ φ φ)(x) v ε2 (φ φ φ)(x) 0 é + ε Ñ 0 0 -∂vε1(φ φ φ) ∂x3 yε(x )1 ε -∂vε2(φ φ φ) ∂x3 yε(x )2 ε é + ε 2 q q q Å x, y ε (x ) ε ã , (110) 
where

q q q (x, y) = ν 1 à ∂ 2 v ε1 (φ φ φ) ∂x 2 3 y 2 1 -y 2 2 2 + ∂ 2 v ε2 (φ φ φ) ∂x 2 3 y 1 y 2 ∂ 2 v ε2 (φ φ φ) ∂x 2 3 y 2 2 -y 2 1 2 + ∂ 2 v ε1 (φ φ φ) ∂x 2 3 y 1 y 2 0 í .
We have in T ε e e e(χ χ χ

ε ) = ε Å ∂ 2 v ε1 (φ φ φ) ∂x 2 3 y ε (x ) 1 ε + ∂ 2 v ε2 (φ φ φ) ∂x 2 3 y ε (x ) 2 ε ã Ñ ν 1 0 0 0 ν 1 0 0 0 -1 é + ε 2 e e e x (q q q) Å x, y ε (x ) ε ã , (111) 
hence,

E T 1 + ν 1 Å ν 1 1 -2ν 1
tr(e e e(χ χ χ ε ))I I I + e e e(χ χ χ ε )

ã = -ε Å ∂ 2 v ε1 (φ φ φ) ∂x 2 3 y ε (x ) 1 ε + ∂ 2 v ε2 (φ φ φ) ∂x 2 3 y ε (x ) 2 ε ã E T (e e e 3
⊗ e e e 3 )

+ ε 2 E T 1 + ν 1 Å ν 1 1 -2ν 1 tr
Å e e e x (q q q) Å x, y ε (x ) ε ãã I I I + e e e x (q q q) Å x, y ε (x ) ε ãã .

Taking (20) into account, we infer

1 ε m a T (u u u ε , χ χ χ ε ) = 1 ε 3 a T (χ χ χ ε , u u u ε ) = 1 ε 3 Tε ß E T 1 + ν 1 Å ν 1 1 -2ν 1
tr(e e e(χ χ χ ε ))I I I + e e e(χ χ ε )

ã :e e e(u u u ε )

™ dx = 1 ε 3 ε|S| ß E T 1 + ν 1 Å ν 1 1 -2ν 1
tr(e e e(χ χ χ ε ))I I I + e e e(χ χ χ ε )

ã :e e e(u u u ε )

™ dm ε = -|S|E T Å ∂ 2 v ε1 (φ φ φ) ∂x 2 3 y ε (x ) 1 ε + ∂ 2 v ε2 (φ φ φ) ∂x 2 3 y ε (x ) 2 ε ã Å 1 ε ∂u ε3 ∂x 3 ã dm ε
+ |S|e e e(u u u ε ) :

E T 1 + ν 1 Å ν 1 1 -2ν 1 tr
Å e e e x (q q q) Å x, y ε (x ) ε ãã I I I + e e e x (q q q) Å x, y ε (x ) ε

ãã dm ε . (112) 
Let us remark that e e e x (q q q) Ä x, yε(x ) ε ä is uniformly bounded on T ε and so we have, by the estimate (65) established in Proposition 4, e e e(u u u ε ) :

E T 1 + ν 1 Å ν 1 1 -2ν 1 tr
Å e e e x (q q q) Å x, y ε (x ) ε ãã I I I + e e e x (q q q) Å x,

y ε (x ) ε ãã dm ε ≤ C |e e e(u u u ε )|dm ε ≤ C |e e e(u u u ε )| 2 dm ε ≤ C √ ε m-1 ≤ Cε → 0. (113) 
By [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF] and by the uniform continuity of φ φ φ on Ω, the next estimate takes place:

∂ 2 v εα (φ φ φ) ∂x 2 3 - ∂ 2 φ α ∂x 2 3 L ∞ (Tε) ≤ Cε ∀ α ∈ {1, 2}.
Since, on the other hand, by Proposition 4 there holds

1 ε ∂uε3 ∂x3 2 dm ε ≤ C, taking (24) into account, we deduce that Å Å ∂ 2 v ε1 (φ φ φ) ∂x 2 3 y ε1 (x ) ε + ∂ 2 v ε2 (φ φ φ) ∂x 2 3 y ε2 (x ) ε ã - Å ∂ 2 φ 1 ∂x 2 3 y ε1 (x ) ε + ∂ 2 φ 2 ∂x 2 3 y ε2 (x ) ε ããÅ 1 ε ∂u ε3 ∂x 3 ã dm ε ≤ Cε 1 ε ∂u ε3 ∂x 3 dm ε ≤ Cε Ç 1 ε ∂u ε3 ∂x 3 2 dm ε å 1 2 (m ε (Ω)) 1 2 ≤ Cε. (114) 
By Proposition 4 (see the first line of (70) and the last line of (71)), the sequence

Ä 1 ε ∂uε3 ∂x3 ä two-scale converges with respect to (m ε ) to ∂w ∂x3 (x)-∂ 2 γ Σ (u1) ∂x 2 3 (x)y 1 -∂ 2 γ Σ (u2) ∂x 2 3
(x)y 2 . Therefore, by ( 1), [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF], and ( 27), we have

lim ε→0 Å ∂ 2 φ 1 ∂x 2 3 y ε1 (x ) ε + ∂ 2 φ 2 ∂x 2 3 y ε2 (x ) ε ãÅ 1 ε ∂u ε3 ∂x 3 ã dm ε = 1 |S| Σ×S -|S| E T 2 Å ∂ 2 φ 1 ∂x 2 3 y 1 + ∂ 2 φ 2 ∂x 2 3 y 2 ã Å ∂w ∂x 3 (x)- ∂ 2 γ Σ (u 1 ) ∂x 2 3 (x)y 1 - ∂ 2 γ Σ (u 2 ) ∂x 2 3 (x)y 2 ã dH 2 (x)dy = |S|E T 2 α,β=1 Σ J αβ ∂ 2 φ α ∂x 2 3 ∂ 2 γ Σ (u β ) ∂x 2 3 dH 2 (x). (115) 
We deduce from (112), ( 113), (114), and (115) that

lim ε→0 I 3ε = |S|E T 2 α,β=1 Σ J αβ ∂ 2 φ α ∂x 2 3 ∂ 2 γ Σ (u β ) ∂x 2 3 dH 2 (x). ( 116 
)
By passing to the limit as ε → 0 in (97), taking (98), (100), (101), and (116) into account, we obtain the variational formulation

a 0 (u u u, φ φ φ) + |S||E T 2 α,β=1 Σ J αβ ∂ 2 φ α ∂x 2 3 ∂ 2 γ Σ (u β ) ∂x 2 3 dH 2 (x) = Ω f f f .φ φ φdx, (117) 
equivalent to [START_REF] Cherednichenko | Two-scale Γ -convergence of integral functionals and its application to homogenisation of nonlinear high-contrast periodic composites[END_REF].

Other cases.

If 0 < m < 1, we simply set χ χ χ ε = φ φ φ (thus φ φ φ ε = φ φ φ). Noticing that by and (65), we have The variational formulation obtained by passing to the limit in (97) as ε → 0 is given by substituting 0 for u 3 and 0 for φ 3 in (109).

If m > 3, then by Proposition 4 we have u u u = 0 on Σ, and we set simply

χ χ χ ε = 0. ( 120 
)
Remark 2 The field χ χ χ ε is constructed in such a way that the behavior of the couple (χ χ χ ε , e e e(χ χ χ ε )) should mimic that of (u u u ε , e e e(u u u ε )) in the fibres, studied in Proposition 4.

In the case m = 1, the convergences (66) indicate that e e e(u u u ε ) Ξ Ξ Ξ 0 Ä x, yε(x) ε ä in T ε . This, joined with the relations (67) and (68), and by virtue of a minimization principle, suggests that the following approximation is likely to hold in T ε e e e(u u u ε ) ∂u 3 ∂x 3 (x)e e e 3 ⊗ e e e 3 + M M M Å ∂u 3

∂x 3 (x) ã in T ε , (121) 
where M M M (a) is the solution of min

M M M ∈S 3 , M33=0
g (M M M + ae e e 3 ⊗ e e e 3 ) , g(A A A)

:= E T 2(1 + ν 1 ) Å ν 1 1 -2ν 1 (tr A A A) 2 + A A A : A A A ã ,
given by

M M M (a) = Ñ -ν 1 a -ν 1 a 0 é .
Accordingly, the field χ χ χ ε we are looking for should satisfy χ χ χ ε φ φ φ and e e e(χ χ χ ε ) ∂φ 3 ∂x 3 (x)e e e 3 ⊗ e e e 3 + M M M Å ∂φ 3

∂x 3 (x) ã in T ε .
These estimates are verified by χ χ χ ε defined by ( 102), (103).

In the case m = 3, the convergences (70) indicate that 1 ε e e e(u u u

ε ) Υ Υ Υ 0 Ä x, yε(x) ε ä in T ε .
The identification relations (71) can be improved, and further investigations show that in the linear isotropic case considered in this paper, there holds

Υ Υ Υ 0 (x, y) Å - ∂ 2 γ Σ (u 1 ) ∂x 2 3 y 1 - ∂ 2 γ Σ (u 2 ) ∂x 2 3 y 2 
ã e e e 3 ⊗ e e e 3 + e e e y Å q q q Å ∂ 2 γ Σ (u 1 )

∂x 2 3 , ∂ 2 γ Σ (u 2 ) ∂x 2 3 , y ãã , (122) 
where q q q(a 1 , a 2 , .) is the solution of min q q q∈H 1 (S;R 3 ) -S g (e e e y q q q + (-a 1 y 1 -a 2 y 2 )e e e 3 ⊗ e e e 3 ) dy, g(A A A)

:= E T 2(1 + ν 1 ) Å ν 1 1 -2ν 1 (tr A A A) 2 + A A A : A A A ã ,
given by

q q q(a 1 , a 2 , y) = ν 1 Ö a 1 y 2 1 -y 2 2 2 + a 2 y 1 y 2 a 2 y 2 2 -y 2 1 2 + a 1 y 1 y 2 0 è .
Accordingly, the field χ χ χ ε we are looking for should satisfy χ ε3 0 and 1 ε e e e(χ χ χ ε ) These estimates are verified by χ χ χ ε defined by (110).

Å - ∂ 2 γ Σ (u 1 ) ∂x 2 3 y ε1 ε - ∂ 2 γ Σ (u 2 ) ∂x 2 

Strong convergence

To fix the ideas, we assume m = 1 (the other cases are similar). The space D 1 defined by [START_REF] Bessoud | Multi-materials with strong interface: variational modelings[END_REF], equipped with the inner product a 1 (., .) defined by [START_REF] Lukkassen | Wall: Two-scale convergence[END_REF], is a Hilbert space in which D(Ω; R 3 ) is dense. Hence, fixing η > 0, we can choose φ φ φ ∈ D(Ω; R 3 ) such that a 1 (u u u -φ φ φ, u u u -φ φ φ) < η,

and consider φ φ φ ε defined by (96). There holds (see [START_REF] Grisvard | Singularities in Boundary Values Problems[END_REF])

|u u u ε -φ φ φ ε | 2 H 1 0 (Ω;R 3 ) ≤ Ca ε,m (u u u ε -φ φ φ ε , u u u ε -φ φ φ ε ) = C a ε,m (u u u ε , u u u ε ) J1ε -2 a ε,m (u u u ε , φ φ φ ε ) J2ε + a ε,m (φ φ φ ε , φ φ φ ε ) J3ε . ( 124 
)
Since u u u ε is the solution of ( 7), we have J 1ε = Ω f f f .u u u ε dx. We then deduce from the weak convergence of u u u ε to u u u in H 

By the arbitrary choice of η, the strong convergence of (u u u ε ) to u u u in H 1 0 (Ω; R 3 ) is proved. Due to the discontinuity of σ σ σ 0 e e e 1 across Σ (see [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], ( 12)), we can not expect the derivative with respect to x 1 of the solution u u u of the limit problem to be continuous on Ω. However, for a sufficiently regular datum f f f , we can expect that u u u satisfies (132) and ( 133). The comparison of the results of Theorem 1 with some of the results obtained in [START_REF] Bessoud | Multi-materials with strong interface: variational modelings[END_REF], [START_REF] Bessoud | Serpilli: Plate-like and shell-like inclusions with high rigidity[END_REF] and [START_REF] Bessoud | Asymptotic analysis of shell-like inclusions with high rigidity[END_REF] for the case of an homogeneous layer is interesting: indeed in theses cases Σ behaves as a "material surface" of plate-like type with membrane Kirchhoff-Love energy for m = 1 and with bending energy for m = 3.

In the present case Theorem 1 means that Σ always behaves as a "material surface". For m = 1 the "material surface" is without membrane energy in the direction of the plane Σ orthogonal to the direction of the fibres. For m = 3 the "material surface" Σ is without bending energy in the direction orthogonal to the fibres. In the papers [START_REF] Bessoud | Serpilli: Plate-like and shell-like inclusions with high rigidity[END_REF] and [START_REF] Bessoud | Asymptotic analysis of shell-like inclusions with high rigidity[END_REF] it is also considered the more general situation of a surface Σ and of a shell-like inclusion; the results obtained in this situation suggest to study the case of fibres that
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 11 2ν tr(e e e(u u u ε ))I I I + e e e(u u u ε ) ä converges weakly to E 1+ν Ä 2ν tr(e e e(u u u))I I I + e e e(u u u) ä in L 2 (Ω, S 3 ). On the other hand, since |T ε | → 0, the sequence e e e(φ φ φ)1 Ω\T ε converges strongly in L 2 (Ω, S 3 ) to e e e(φ φ φ). We infer lim ε→0 I 1ε = a 0 (u u u, φ φ φ) = tr(e e e(u u u))I I I + e e e(u u u) ã : e e e(φ φ φ)dx.

  |e e e(φ φ φ -χ χ χ ε )| L ∞ (T ε ) |e e e(φ φ φ ε )| ≤ C, (see (102), (110), (120)) therefore by (95) and (96) we have |e e e(φ φ φ ε )| ≤ C in T ε \ T ε , hence by Cauchy-Schwartz inequality, tr(e e e(u u u ε ))I I I + e e e(u u u ε ) ã : e e e(φ φ φ ε )dx

1 -2ν 1 ≤

 1 tr(e e e(u u u ε ))I I I + e e e(u u u ε ) ã |dm ε Cε |e e e(u u u ε )|dm ε ≤ Cε |e e e(u u u )| 2 dm ε ≤ Cε.

  the limit as ε → 0 in (105), taking into account Proposition 4, (106) and the uniform convergence of deduce from (99), (100), (101), and (107) that lim ε→0 a ε,m (u u u ε , φ φ φ ε ) = a 1 (u u u, φ φ φ),

Tε|I 3ε | = lim sup ε→0 1 ε

 1 |e e e(u u u ε )| 2 dx ≤ Cε m , m |a T (u u u ε , φ φ φ)| ), (101), (119), we obtain the variational formulationa 0 (u u u, φ φ φ) = Ω f f f .φ φ φdx, equivalent to[START_REF] Bouchitté | Fragalà: Homogenization of thin structures by two-scale method with respect to measures[END_REF]. If 1 < m < 3, then by Proposition 4 we have u 3 = 0 on Σ. We define χ χ χ ε by (102), setting φ 3 = 0. Since v ε3 (φ φ φ) = 0, we deduce from (99) and (104) that lim ε→0 I 3ε = 0.
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 1211 (Ω; R 3 ) established in Proposition 4, that lim ε→0J 1ε = Ω f f f .u u udx = a 1 (u u u, u u u).(125)By (108), there holdslim ε→0 J 2ε = a 1 (u u u, φ φ φ). 3ε = a 1 (φ φ φ, φ φ φ).(127)Collecting (123), (124), (125), (126), and (127), we obtain lim supε→0 |u u u ε -φ φ φ ε | (Ω;R 3 ) ≤ Ca 1 (u u u -φ φ φ, u u u -φ φ φ) ≤ Cη. (128)It is easy to check that lim supε→0 |φ φ φ -φ φ φ ε | H 1 0 (Ω;R 3 ) = 0, |u u u -φ φ φ| 2 H (Ω;R 3 ) ≤ Ca 1 (u u u -φ φ φ, u u u -φ φ φ) ≤ Cη.(129)We infer from (131) and (129) that lim supε→0 |u u u -u u u ε | H 1 0 (Ω;R 3 ) ≤ lim sup ε→0 |u u u -φ φ φ| H 1 0 (Ω;R 3 ) + |φ φ φ -φ φ φ ε | H 1 0 (Ω;R 3 ) + |φ φ φ ε -u u u ε | H 1 0 (Ω;R 3 ) ≤ C √ η.

Remark 3 ∂ 2 φ α ∂x 2 3 ∈

 33 In view of (124-127), we established indeed that lim supε→0 a ε,m (u u u ε -φ φ φ ε , u u u ε -φ φ φ ε ) ≤ Ca 1 (u u u -φ φ φ, u u u -φ φ φ),(131)for all field φ φ φ that can be used in the construction of the sequence of oscillating test fields (φ φ φ ε ) (defined by (96)). Looking back at the proof of the weak convergence, we notice that the proof remains unchanged if we only assume, instead of φ φ φ ∈ D(Ω; R 3 ), that φ φ φ satisfiesφ φ φ ∈ C(Ω; R 3 ) ∩ C 1 (Ω + ; R 3 ) ∩ C 1 (Ω -; R 3 ); ∂φ φ φ ∂x 3 ∈ C(Ω; R 3 ); φ φ φ = 0 on ∂Ω,(132)and C(Ω; R 3 ) for α ∈ {1, 2} if m = 3. (133)
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 11 ), we can substitute u u u for φ φ φ in the definition of φ φ φ ε . Let us denote by u u u ε the field obtained in this way (to avoid the confusion with the solution u u u ε of the elasticity problem (7)). We then deduce from (131) that lim supε→0 a ε,m (u u u ε -u u u ε , u u u ε -u u u ε ) = 0.In particular, by the definition[START_REF] Grisvard | Singularities in Boundary Values Problems[END_REF] of a ε,m , we get, since u u u ε = χ χ χ ε on T ε , denoting by χ χ χ ε the field deduced by substituting u u u for φ φ φ in (102), (110): -2ν 1 tr(e e e(u u u ε -χ χ χ ε ))I I I + e e e(u u u ε -χ χ χ ε ) ã :e e e(u u u ε -χ χ χ ε )}dx = 0. This implies, since |T ε | ε, that lim sup ε→0 1 ε m-1 -Tε |e e e(u u u ε -χ χ χ ε )| 2 dx = 0. (135) If m = 1, it follows from (
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are tubular neighbourhoods of a family of lines of principal curvature of the surface Σ.

2.

Here we have considered the case of isotropic materials and of fibres with "constant" section. In this case the study of asymptotic theory of slender beams gives models where torsion and traction are uncoupled . The case of anisotropic materials and/or fibres whose section "varies with ε" deserves special attention. Indeed in this case asymptotic theory of slender beams can present coupling phenomena between torsion and traction ( see, e.g., [START_REF] Geymonat | Stress distribution in anisotropic elastic composite beams[END_REF], [START_REF] Murat | Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces[END_REF], [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF]), or non-local effects (as in homogenization, see, e.g., [START_REF] Geymonat | Stress distribution in anisotropic elastic composite beams[END_REF], [START_REF] Murat | Effets non locaux dans le passage 3d-1d en élasticité linéarisée anisotrope hétérogène[END_REF], [START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF], [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF]). A research in this direction is actually done by the first author (M. B.).

3. The transmission conditions on Σ imply that some "singular behaviour" can appear there and at ∂Σ ∩ ∂Ω; these "singular behaviours" could be analysed for instance with the methods of [START_REF] Grisvard | Singularities in Boundary Values Problems[END_REF].