
HAL Id: hal-01121228
https://hal.science/hal-01121228v1

Submitted on 27 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novelty Search Approach for Automatic Test Data
Generation

Mohamed Boussaa, Olivier Barais, Gerson Sunyé, Benoit Baudry

To cite this version:
Mohamed Boussaa, Olivier Barais, Gerson Sunyé, Benoit Baudry. A Novelty Search Approach for
Automatic Test Data Generation. 8th International Workshop on Search-Based Software Testing
SBST@ICSE 2015, May 2015, Firenze, Italy. pp.4. �hal-01121228�

https://hal.science/hal-01121228v1
https://hal.archives-ouvertes.fr

A Novelty Search Approach for Automatic Test
Data Generation

Mohamed Boussaa, Olivier Barais, Gerson Sunyé and Benoı̂t Baudry
Inria/IRISA Rennes, France

Email: {mohamed.boussaa, olivier.barais, gerson.sunye, benoit.baudry}@inria.fr

Abstract—In search-based structural testing, metaheuristic
search techniques have been frequently used to automate the
test data generation. In Genetic Algorithms (GAs) for example,
test data are rewarded on the basis of an objective function
that represents generally the number of statements or branches
covered. However, owing to the wide diversity of possible test
data values, it is hard to find the set of test data that can satisfy
a specific coverage criterion. In this paper, we introduce the use
of Novelty Search (NS) algorithm to the test data generation
problem based on statement-covered criteria. We believe that
such approach to test data generation is attractive because it
allows the exploration of the huge space of test data within the
input domain. In this approach, we seek to explore the search
space without regard to any objectives. In fact, instead of having
a fitness-based selection, we select test cases based on a novelty
score showing how different they are compared to all other
solutions evaluated so far.

I. INTRODUCTION

In general, manually creating test cases for testing software
systems is time consuming and error-prone, making necessary
the automation of this process. In fact, metaheuristic search
techniques such as Genetic Algorithms (GAs) are frequently
used in order to automate the test data generation process and
gather relevant test cases through the wide search space [1],
[2]. These techniques are especially applied for structural
white-box testing. For coverage-oriented approaches, applying
Evolutionary Algorithms (EAs) to test data generation has
been focused on finding input data for a specific path of
the program in accordance with a coverage criterion (e.g.,
longest path executed). The problem with coverage-oriented
approaches is that search-based techniques cannot exploit the
huge space of possible test data. In fact, some structures of the
system cannot be reached since they are executed only by a
small portion of the input domain. Applying GAs for test data
generation consists in searching for relevant test data according
to an objective function that tries for example to maximize the
number of statements or branches covered. The use of a fitness
function as a coverage criterion to guide the search to detect
relevant test data usually create many local optima to which
search may converge. Thus, if the relevant test data, that could
coverage the longest path of the program, lie far from the
search space defined by the gradient of the fitness function,
then some promising search areas may not be reached. The
issue of premature convergence to local optima has been a
common problem in GAs. Many methods are proposed to
avoid this problem [3], [4]. However, all these alternatives use
a fitness-based selection to guide the search.

In this paper, we introduce the use of Novelty Search (NS)
algorithm to the test data generation problem. In this approach,
we seek to explore the search space of possible test input
values without regarding to any objectives (there is no fitness
function). In fact, instead of having a fitness-based selection,
we rather select test cases based on a novelty score showing
how different they are compared to all other test data evaluated
so far. So during the evolutionary process, we use to select test
data that remain in sparse regions of the search space in order
to guide the search through novelty. We choose the statement
coverage metric as a coverage criterion to our NS-based test
data generation.

The primary contribution of this paper can be summarized
as follows: the paper introduces a novel formulation of the
test data generation problem using NS and, to the best of our
knowledge, this is the first paper in the literature to use NS
algorithm to generate test data.

The paper is organized as follows: section II describes the
related work. The approach overview and the NS adaptation
are presented in Section III. Finally, concluding remarks and
future work are provided in Section IV.

II. RELATED WORK

A. Generating Test Data

Most forms of automatic test data generation have been
focused on finding specific input values that meet a specific
testing criteria. In search-based test data generation, Harman
and McMinn [5] conducted a large empirical study that
compares the behavior of both global and local search-based
optimization on real-world problems. The results show that
the use of EAs is suitable in many cases. However, it can be
outperformed by simpler search techniques. They presented as
well, a Memetic Algorithm (Hybrid Algorithm) that combines
the global and local search.

Furthermore, a lot of research work have been conducted in
the field of structural code coverage. In the work of Roper for
example [1], GAs are used to generate test data based on the
number of structures executed in accordance with a coverage
criterion. Whereas, Watkins [2] attempts to obtain full path
coverage for programs.

For test case selection strategies, Chen et al. [6] presented
a synthesis of the most important results in Adaptive Random
Testing (ART) (an extension of Random Testing). They out-
lined the importance of diversity in test case selection. In fact,
they argue that diversity among test cases should be rewarded

because failing test cases tend to be clustered in contiguous
regions of the input domain. The success of ART motivated us
to introduce a new technique that maximizes input diversity.

B. Novelty Search

In the literature, EAs are often applied to the test data
generation problem [7]. These techniques use basically a
fitness function to guide the search e.g., gather fittest solutions
over generations. These techniques are good since they reward
individuals with high score but they do not favor diversity
and the search may converge to many local optima [3], [4].
The idea of NS, introduced by Lehman and Stanley in 2008
[8], represents an alternative solution for this issue. In fact,
individuals in an evolving population are selected based on
how different they are compared to other solutions evaluated
so far. They also argue that objective fitness functions can be
deceptive, leading the evolutionary search to local maxima
rather than towards the goal. In contrast, NS ignores the
objective and simply searches for novel behavior, and therefore
cannot be deceived. So mainly, NS acts like GAs. However,
NS needs extra changes. First, a measure of individuals
behavior. This depends on the context of the search and the
way we represent individuals. Then, a new novelty metric,
which rewards individuals with different behavior from past-
discovered solutions. Finally, an archive must be added to
the algorithm which is a kind of a data base that remembers
individuals that were highly novel when they were discovered
in past generations. NS has been often evaluated in deceptive
tasks and applied to evolutionary robotics (in the context of
neuroevolution) [9], [10].

III. NOVELTY SEARCH FOR TEST DATA GENERATION

A. Approach Overview

Our test data generation framework aims to fully automate
the test data generation process and avoid any tester’s implica-
tion. We aim to use a new optimization evolutionary technique,
namely Novelty Search, to the test data generation problem.

To automate the test data generation process, we have
considered that our System Under Test (SUT) is like a
gray/semi-transparent box in where the internal structure is
partially known. Thus, we can design test cases through the
exposed interfaces and conduct a code coverage analysis from
the general structure of our target SUT. For example, within
apache.commons.math library, Methods Under Test (MUTs)
are accessed through some specific Java interfaces. Each
interface belongs to a sub-package of the whole library and
exhibits a set of methods. Our test data generation framework
will rely on this concept to generate automatically test cases.
In fact, as shown in Figure 1, starting from an input interface
and a source code package, the testing framework is able to:
(1) automatically generate sequences of method invocation,
(2) generate relative test data, (3) execute test cases on target
Classes Under Test (CUTs), and then (4) analyze the code
coverage. The process is iterated until a termination criterion
is met (e.g., number of iterations).

Fig. 1. APPROACH OVERVIEW

The main task of our proposal is to use an alternative
approach for test data generation based on the NS algorithm.
To do so, we adapt the general idea of NS, presented earlier
in the related work, to the test data generation problem. In
fact, instead of using a fitness function to evaluate generated
test cases, we define a new measure of novelty to maximize.
We replace, as well, the fitness-based selection (for fittest test
cases) with a novelty-based one. This may favor the diversity
of generated test data. In addition, although we are exploring
the search space without regarding to any objective, we keep
a measure of statements coverage for each set of test cases so
that, by the end of the evolutionary process, we can gather only
test cases with high coverage value. Finally, we add an archive
that acts as a memory of previously generated test cases. This
archive is used to calculate the novelty metric. Otherwise,
we keep the same logic as GAs, namely the crossover and
mutations operators. In the following, we detail the main tasks
of our automatic test data generation framework:

1) Method Sequence Generator: The method sequence
generator is used to automatically generate the test scenario. It
takes as an input a Java interface and a source code package.
The generated sequence represents the methods names and
their parameters types as declared in the Java interface. Indeed,
we keep the same number and order of methods signatures as
defined in the interface. In this way, we test each method of
the target classes in isolation without considering dependencies
among methods.

2) Novelty-based Test Data Generation: To generate test
cases, we produce input data that will be passed as arguments
to the MUTs. Depending on parameters types, we generate
randomly input values for Java primitive types and strings. In
fact, we did not define any constraint on test data values and
we have considered all possible input values for each data
type. This process applies the NS approach to generate test
data.

3) Test Case Executor: Initially, the test case executor
explores the source code package and catches all classes
(CUTs) implementing the input interface. Once this is done,
we execute automatically our set of test cases on top of these
classes except for abstract classes.

4) Code Coverage Analyzer: Our testing framework defines
an analyzer able to instrument and analyze all Java classes
within a source code package. Thereby, after the execution of a
set of test cases, instrumented code is analyzed and a coverage
value is assigned to each set of test cases. For instance, we
check the number of executed statements. We use Jacoco1 as
a tool to instrument classes and compute the coverage value.

B. Novelty Search Adaptation

In this section, the main contribution is presented, namely,
a method for generating automatically test data using NS. In
order to ease the understanding of this new approach, we first
describe the pseudo code of our adaptation. Then, we present
the solution structure and the novelty function used to evaluate
solutions.

Algorithm 1: Novelty search for test data generation
Require: Java interface I
Require: Source code package Pack
Require: Number of iterations N
Require: Population size PopSize
Require: Coverage threshold minCoverage
Require: Novelty threshold T
Require: Limit L
Require: Nearest neighbors k
Ensure: Set of relevant test cases bestSolutions

1: targetClasses← loadAllMethods(I, Pack)
2: testCases← generateTestCases(I)
3: repeat
4: testSuite← generateTestData(testCases)
5: P ← setOf(testSuite)
6: for testSuite ∈ P do
7: for testCase ∈ testSuite do
8: coverage← execute(testCase, targetClasses)
9: end for

10: noveltyMetric←
distFromkNearest(testSuite, archive, P, k)

11: if noveltyMetric > T then
12: archive← archive+ testSuite
13: selectedTS ← selectedTS + testSuite
14: end if
15: if coverage ≥ minCoverage then
16: bestSolutions← bestSolutions+ testSuite
17: end if
18: end for
19: P ← generateNewPopulation(selectedTS)
20: generation← generation+ 1
21: until generation = N
22: return bestSolutions

Algorithm 1 describes the overall idea of our NS adaptation
for test data generation: The algorithm takes as input a Java
interface and a source code package. We initiate the number
of iterations N, the population size and the minimum coverage

1http://www.eclemma.org/jacoco/index.html

value. This latter defines the threshold of covered statements
that should be reached. Test cases that exceed this threshold
are automatically added to the set of relevant test cases. Since
we want to compare our NS approach to the fitness-based and
random approaches, we are going to set the minimum coverage
value based on the maximum coverage value reached by these
two approaches. So that, we can record only test cases that
may overcome those generated by fitness-based and random
approaches. Same thing for the novelty threshold T that defines
the threshold for how novel a test suite has to be before it is
added to the archive. In addition, we define a maximum size
limit for the archive L and a k number that will be used in
calculating the distance from k-nearest neighbors. k is a fixed
parameter that is determined experimentally.

First, we load the set of classes (CUTs) that implement
the given interface I (Line 1). Before starting the test data
generation process, we define our set of test cases that will be
used to generate test data (Line 2). Line 3-21 encode the main
NS loop, which searches for the best set of test cases. During
each iteration, we generate a new population that stands for
a set of test suites. Then, we generate random test data (Line
4) and we execute our set of test cases on target classes (Line
7-9). The coverage value is computed and assigned to each
solution (the executed test cases). This value corresponds to
the total number of executed statements by the total number
of statement being in the source package.

In the same way, for each set of test cases in the population,
we calculate the average distance from its k-nearest neighbors
(Line 10). If the novelty is sufficiently high (higher than the
given threshold T), then the set of test cases is selected (Line
13) and entered into the permanent archive (Line 12). Genetic
operators (mutation and crossover) are applied later to these
selected test cases in order to produce offspring individuals and
fulfill the next population (Line 19). Finally, we save relevant
test cases that reach a coverage value higher than the minimum
coverage threshold defined initially (Line 15-17).

1) Solution Representation: For our case study, a candidate
solution represents the set of methods declared in the input
interface (see Figure 2). Thereby, we represent this solution
as a vector where each dimension has a method name, a list
of parameters types and a list of test data. The test scenario
remains the same for all individuals. In fact, we always run
the same number of test cases with the same order as defined
in the Java interface. This is important since the order in
which test cases are executed may affect the rate of code
coverage [11]. Therefore, we may focus only on the test
data generation problem instead of focusing on the test case
prioritization issue. Additional information should be added
to each candidate solution such as the CUTs where the test
cases should be executed and also required constructors needed
to create objects from the CUT. In fact, we save for each
set of test cases the list of CUTs where the test cases have
to be executed and the list of constructors required for each
CUT. The constructor representation is the same as test cases.
The test case executor presented earlier in the sub-section A.3
chooses arbitrary a constructor from the list of constructors

Fig. 2. SOLUTION REPRESENTATION

relative to the target CUT in order to instantiate objects and
run test cases.

2) Novelty Metric: The Novelty metric measures the dis-
tance of a test suite (solution) to all other test suites in the
current population and to those that were discovered in the
past. The distance between two test suites is computed as
a Manhattan distance between the input parameter values of
all methods tested in the test suite. Formally, we define this
distance as follows:

distance(t1, t2) =

m∑
i=1

p∑
j=1

|t1(Mi, Pj)− t1(Mi, Pj)| (1)

where t1 et t2 are two selected test suites (solutions), m is the
number of methods composing the test suite, p is the number
of parameters composing a method. The couple (Mi, Pj)
returns the jth parameter value of the ith method M relative
to a test suite (t1 or t2). Since we are using Java primitive
types for test data such as floats, integers, doubles, etc, it
is easy to calculate this distance for numerical parameters
values. However, for string data types we use the Levenshtein
Algorithm2 to measure the strings distance. Furthermore, we
have normalized this distance in the range [0-100].

To measure the sparseness of a test suite, we will use the
previously defined distance to compute the average distance
of a test suite to its k-nearest neighbors. In this context, we
define the novelty metric of a particular solution as follows:

NM(S) =
1

k

k∑
i=1

distance(S, µi) (2)

where µi is the ith nearest neighbor of the solution S within
the population and the archive of novel individuals.

In order to test the applicability of our approach
for test data generation, we conduct initial implemen-
tation and experimentation of our NS Algorithm based
on Java Libraries. Thus, we have opted to gener-
ate test cases based on apache.commons.math interfaces.
For instance, we choose the ’UnivariateFunction’ inter-
face from the sub-package apache.commons.math.analysis
to generate test data. This interface is implemented
by 42 classes within apache.commons.math. We are
going to target only classes within the sub-package
apache.commons.math.analysis.function. To compute the nov-
elty, we used k=20 (PopSize/5) and T = 50 (max(NM)/2). The

2http://www.levenshtein.net/

population size is fixed to 100 and the number of generations
to 1000. In this way, the algorithm performs 100000 evalua-
tions. Since we haven’t yet the minimum coverage value (the
max fitness value from GAs), we are trying with this initial
implementation, to record the maximum coverage value that
may be reached by applying the NS. Initial project and results
can be found at the project website3.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new search-based approach for
test data generation. In our NS adaptation, we try to exploit
the large search space of input values and catch relevant
test cases that may cover as much as possible the executed
statements. However, the limitation of this approach lies in
the use of continuous data to compute the novelty score. If we
assume that the input values may have only certain values or
categorical data, the distance score will not be straightforward
and we may use other similarity measures for categorical data.

As future work, we aim to conduct an empirical evaluation
of our NS approach by comparing it to fitness-based and
random approaches. In addition, we can optimize our approach
by adding the diversity as an addition goal to a traditional ob-
jective driven approach to form a multi-objective optimization
problem. Finally, since we are testing gray-box systems, we
can also apply this approach for black-box testing. In this case,
we will be able to measure some non-functional properties
such as memory usage and CPU consumption.

REFERENCES

[1] M. Roper, “Computer aided software testing using genetic algorithms,”
10th International Quality Week, 1997.

[2] A. L. Watkins, “The automatic generation of test data using genetic
algorithms,” in Proceedings of the 4th Software Quality Conference,
vol. 2, 1995, pp. 300–309.

[3] W. Banzhaf, F. D. Francone, and P. Nordin, “The effect of extensive
use of the mutation operator on generalization in genetic programming
using sparse data sets,” in Parallel Problem Solving from NaturePPSN
IV. Springer, 1996, pp. 300–309.

[4] C. Gathercole and P. Ross, “An adverse interaction between crossover
and restricted tree depth in genetic programming,” in Proceedings of the
1st annual conference on genetic programming. MIT Press, 1996, pp.
291–296.

[5] M. Harman and P. McMinn, “A theoretical and empirical study of search-
based testing: Local, global, and hybrid search,” Software Engineering,
IEEE Transactions on, vol. 36, no. 2, pp. 226–247, 2010.

[6] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” Journal of Systems and Software,
vol. 83, no. 1, pp. 60–66, 2010.

[7] M. Harman, L. Hu, R. M. Hierons, A. Baresel, and H. Sthamer,
“Improving evolutionary testing by flag removal.” in GECCO, 2002,
pp. 1359–1366.

[8] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty.” in ALIFE, 2008, pp. 329–336.

[9] S. Risi, C. E. Hughes, and K. O. Stanley, “Evolving plastic neural
networks with novelty search,” Adaptive Behavior, vol. 18, no. 6, pp.
470–491, 2010.

[10] P. Krčah, “Solving deceptive tasks in robot body-brain co-evolution by
searching for behavioral novelty,” in Advances in Robotics and Virtual
Reality. Springer, 2012, pp. 167–186.

[11] P. R. Srivastava, “Test case prioritization,” Journal of Theoretical and
Applied Information Technology, vol. 4, no. 3, pp. 178–181, 2008.

3http://goo.gl/T3U0v2

