N

N

On the number of clusters and the fuzziness index for
unsupervised FCA application to BOLD fMRI time
series
Jalal M. Fadili, Su Ruan, Daniel Bloyet, Bernard Mazoyer

» To cite this version:

Jalal M. Fadili, Su Ruan, Daniel Bloyet, Bernard Mazoyer. On the number of clusters and the fuzziness
index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis, 2001, 5
(1), pp.55-67. 10.1016/S1361-8415(00)00035-9 . hal-01121190

HAL Id: hal-01121190
https://hal.science/hal-01121190
Submitted on 27 Feb 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01121190
https://hal.archives-ouvertes.fr

On the number of clusters and the fuzziness index for unsupervised
FCA application to BOLD fMRI time series

M.J. Fadili®™**, S. Ruan®, D. Bloyet®, B. Mazoyer”*

“*GREYC-ISMRA UPRESA 6072, 6 Bd Maréchal Juin, 14050 Caen, France
"GIN UPRES EA 2127 & LRC CEA n° 13V, Cyceron, Bd Bécquerel, 14074 Caen, France
“Unité d’IRM, CHU Cote de Nacre, Caen, France
‘Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK

Abstract

The aim of this paper is to present an exploratory data-driven strategy based on Unsupervised Fuzzy Clustering Analysis (UFCA) and
its potential for fMRI data analysis in the temporal domain. The a priori definition of the number of clusters is addressed and solved using
heuristics. An original validity criterion is proposed taking into account data geometry and the partition Membership Functions (MFs).
From our simulations, this criterion is shown to outperform other indices used in the literature. The influence of the fuzziness index was
studied using simulated activation combined with real life noise data acquired from subjects under a resting state. Receiver Operating
Characteristics (ROC) methodology is implemented to assess the performance of the proposed UFCA with respect to the fuzziness index.
An interval of choice around 2, a value widely used in FCA, is shown to yield the best performance. © 2001 Elsevier Science BV. All

rights reserved.
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1. Introduction

Functional MRI is a recent technique for determining
the neural correlates of cognitive processes. It can be
sensitised to changes of physiological parameters (CBF,
CBY, blood oxygenation) during cognitive tasks (Ogawa et
al,, 1991; Kwong et al., 1992). The most convenient
method uses blood as an endogenous contrast agent
allowing non-invasive examination of focal signal intensity
changes resulting from hemodynamics. The activation-
induced increase in blood oxygenation decreases in-
travascular deoxyhemoglobin and, therefore, decreases
susceptibility-induced intravoxel dephasing. Therefore,
spin coherence increases, resulting in a relative signal
enhancement (Thurlborn, 1982; Ogawa et al., 1991; Ban-
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dettini et al., 1992), an effect known as the BOLD
contrast. Brain activation is therefore observed as a weak
localized signal enhancement in time series images ob-
tained using sequences sensitive to small changes in 75
and 7,. Many difficulties must be addressed when process-
ing fMRI data such as the weakness of the signal enhance-
ment and the multiple sources of artifacts. These limita-
tions are all the more strict for post-processing strategies
since the size of population of the analysed voxels is large.

In order to extract functional information and detect
activated regions using fMRI, the most widely adopted
procedures are generally based on signal detection theory
and are strongly paradigm dependent (Bandettini et al.,
1993; Friston et al., 1994; Bullmore and Brammer, 1996;
Lange, 1996; Ruan et al., 1996; Kuppussumy et al., 1997).
In contrast with these approaches, other authors have
applied different methods such as rotated principal com-
ponent analysis (PCA) and fuzzy clustering analysis (FCA)
which have the benefit of being exploratory and model-free



(Scarth and MclIntyre, 1995; Backfrieder, 1996). These
techniques have the capability of separating different types
of responses (e.g. BOLD from inflow effects), without any
knowledge and hypothesis about the paradigm or the
hemodynamic response function. FCA is a potent way to
investigate fMRI data that has been used successfully, but
it also presents several drawbacks. Indeed, the a priori
definition of the number of clusters has not been discussed
in previous works (Scarth and MclIntyre, 1995; Baugmar-
tner et al., 1998; Coutte et al., 1999) and remains an open
problem called the ‘cluster validity’ problem. In addition,
the data size remains an important issue since the activated
regions represent a small proportion of the brain and can
be embedded in the large amount of voxels that are not
activated. This is the so-called ill-balanced data problem in
the classification literature (Bezdek, 1981, Coutte et al.,
1999).

In this paper, the fuzzy c-means (FCM) algorithm is
briefly presented and adapted to the fMRI case. The
clustering is applied to the data in the temporal domain.
The cluster validity problem is then addressed and solved
using heuristics (Fadili et al.,, 1998). An original cluster
validity measure is introduced and validated using simula-
tions. The effect of the fuzziness index choice on the
detection power is studied using simulations with real
fMRI noise (data acquired from subjects under rest con-
dition). These effects are quantified using the area under
the ROC as a single index of merit.

The format of the paper is as follows. In Section 2.1, the
algorithm is presented in detail. Then, the influence of the
Fuzzy Clustering Analysis parameters (e.g. number of a
priori clusters, fuzziness index) is studied and discussed in
order to optimise the proposed strategy. The emphasis is
put on the potential of the method for use in fMRI time
series analysis.

2. Algorithms

2.1. The UFCA strategy

2.1.1. Overview of the fuzzy c-means (FCM) algorithm
Fuzzy cluster analysis (Zadeh, 1977) presents an alter-
native to hard clustering. It attempts to find a partition of a
data set X of n feature vectors (x,, x,, X;,... X,), by
producing, for a pre-selected number of clusters ¢, ¢
vectors in a feature space R”, called cluster centroids or
prototypes. They represent points around which the data
are concentrated. The FCA also produces, for each datum,
a membership vector u, whose components are real
numbers between 0 and 1, which measures the similarity of
the point to each cluster centroid and indicates how well
the point is classified. The FCM (Bezdek, 1981) attempts
to find a fuzzy partition of the data set by minimising the
following within group least-squares error objective func-

tion with respect to fuzzy memberships u, and centroids
v;:

=1

LU =2 E uipd (x5 v,). (1)
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Where m > 1 is the fuzziness index used to ‘tune out’ the
noise in the data, n is the number of feature vectors
x, ER” (e.g. number of brain voxels in the context of
fMRI), ¢ =2 is the number of clusters in the set and d(x,;
v,) is the similarity measure between a datum (voxel time
course) and a centroid. The measure d is any metric
induced by an inner product on R”, where p is the
dimension of the replication space (e.g. number of time
series volumes in a fMRI experiment). Minimisation of J,
under the following constraints:

(1) O<u, <1 Vik

) o<k21 u,<n Vi, 2)

3) 2 u,;, =1 Vk(i.e. no empty cluster),

i=1
yields an iterative minimisation pseudo-algorithm well
known as the FCM algorithm (Bezdek, 1981). The com-
ponents v, of each centroid v, and the membership degrees
u,;, are updated according to the expressions
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As suggested by (Bezdek, 1981), the membership matrix
Ulc, n) is initialised randomly or by defining U'”(c, n) as
follows:

U‘°’=<1 _\/T§> U, +J75Ur. 4

Where U,=[1/c] and U, is a random hard partition of
data.

In our context and in order to optimise speed of
convergence, the hyperbolic correlation measure was used
(Golay et al., 1998). The convergence of the FCM
algorithm has been proved in a previous work (Fadili,
1999). Its expression is the following:
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Where 8 is a decreasing speed exponent weight and cc;, is
the correlation coefficient between the voxel time course &
and the prototype 7. It should be noted that the action of the
index B is reflected in the fuzziness degree. As this is
controlled using the fuzziness index m, 8 will be held to 1.

The a priori number of clusters is an important issue for
designing a partitional classifier. It is difficult to determine

3)

(5)



the optimal number of clusters. Proposed solutions to this

open problem usually rely on validity measures. The

cluster validity criterion is a function which assigns to the
output of any clustering algorithm a value which is
intended to measure the quality of the clustering. By

evaluation of this function for various choices of ¢ and m,

one hopes to be able to determine the ¢ —m values for

which the corresponding clustering best identifies the
substructures in the data. The valid optimal partition is
usually identified as the first local optimum of the validity
measure (Bezdek, 1981; Windham, 1982). This is the
so-called Unsupervised Fuzzy Clustering algorithm

(UFCA). The implementation strategy of the UFCA

strategy is summarised in the following pseudo-algorithm

A,

1. Initialise ¢ =c* =2, let U*(c, n) and V*(c, p) be the
membership and centroids matrices, choose m and a
validity measure VF.

2. Apply the FCM algorithm to solve U and V and
compute VF value.

3. If optimality of VF is reached, then c*<«c, U*<«U,
V*«V then stop.

4. Else ¢ « ¢+ 1, if ¢ =c,,,, then stop; else go to 2.

Where c,,, =+n or n/3 as proposed by many authors

(Zahid et al., 1999b).

2.1.2. Cluster validity and the UFCA

A good clustering results in well-separated and compact
clusters (Dunn, 1974). Several validity criteria have been
introduced to assess FCA, however it remains difficult to
devise a unique measure that takes into account the
variability in cluster shape, density and size. Bezdek
(1981) designed the partition coefficient function (PC),
associated with the FCM algorithm. In the same vein,
similar criteria may be found in the literature such as
classification entropy, the proportion exponent, the non-
fuzziness index or the modified PC (Bezdek, 1981; Baker
and Jain, 1981; Windham, 1982). In spite of their simple
implementation, they suffer from lack of connection to any
geometrical property of the data since they operate only on
the membership degrees. Fukuyama and Sugeno (1989)
and Xuanlie and Beni (1991) respectively proposed the
so-called CS and § criteria as cluster validity indices. They
attempt to minimise the fuzzy intraclass variance of
clusters (compactness) and maximise their fuzzy interclass
variance (separation). The main advantage of these criteria
is that they take into account the geometrical properties of
the original set. Nevertheless, S has the disadvantage of
presenting a monotonic decreasing behaviour when ¢ gets
larger and closer to n. Several other criteria have been
defined using bootstrap resampling (Jain and Moreau,
1987) or cluster hypervolume and density concepts (Gath
and Geva, 1989; Gustafson and Kessel, 1979) to solve the
cluster validity problem. They do not necessarily produce
the same partition of data. More recently, other measures
have been described in the literature such as the fuzzy

compactness and separation criterion (Pal and Bezdek,
1995) or its modified version proposed in (Zahid et al.,
1999a). These last indices are very similar to the CS and S
criteria.

We propose a criterion that takes advantage of all
previous validity indices. The main idea is based on fuzzy
compactness and separation notions. This criterion, de-
noted SCF can be expressed as follows:

SCF = SCF, + SCF,. (6)

Where SCF, and SCF, are measures taking into account
fuzzy compactness, separation, union and intersection of
the clusters provided by the partition.

SCF, is defined as the ratio of the compactness and
average separation between clusters,

2 E uj','(d (xk,v)

i=1 k=1

T, “
SCF, =——— D om=2 u, (7)
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i=1 —
C

Where ; is the cluster i cardinality. Hence, the minimum
of SCF, is reached for the most compact clusters in R”
with highest average separation. This first term takes into
account the shape and size of data and is similar to the CS
criterion.

The SCF, criterion expresses the fuzzy relationships
between clusters in terms of fuzzy union and intersection.
An optimal partition is obtained when the union is
maximal and intersection (separation) is minimal. Thus, the
SCF, expression is

S ZFL,

_ﬂ_l 1j=i+1
SCF, = FU FU
[mln (uA)]
FI, = ; (8)
Z min (u;;)

k=1 1J

FI, is the fuzzy intersection between clusters / and j and
FU is the fuzzy union of all clusters of the partition, both
bounded to [0,1]. To understand Eq. (8), we shall consider
the simple case of ¢ =2 without any loss of generality. The
behavior of FU and FI is illustrated in Fig. 1, for the
simple case of two populations drawn from a normal
distribution. The FI, FU and their ratio (the Fuzzy
Overlap) are plotted as a function of the difference
between the two populations’ means normalized to their
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Fig. 1. The behavior of FU and FI for the simple case of two populations drawn from a normal distribution. The FI, FU and their ratio (the Fuzzy
Overlap) are plotted as a function of the difference between the two populations’ means normalized to their standard deviations.

standard deviations. When the two compared clusters are
well separated, the numerator F7/ tends towards zero while
the denominator FU tends to 1. When the two clusters are
likely to overlap, comparable membership degree values
are found at the same voxel for the two clusters (the
membership function is uniform and tends to 1/c¢ for
highly overlapping clusters). Hence, the numerator and the
denominator tend to be equal and SCF, approaches 1.

Finally, minimising the SCF validity measure as de-
scribed in the algorithm A, provides a valid optimal
partition.

2.1.3. The fuzziness index

The fuzziness index, also called the fuzziness exponent
weight in the fuzzy logic literature, is another important
factor in the FCM algorithm. Usually, this parameter is
selected according to the problem under consideration.
When m — 1, the fuzzy c-means partition tends towards
the classical k-means hard partition, ie. u, 0 or 1.
Conversely, when m — o all clusters tend to the data
centroid, i.e. all u,.’s tend to 1/c. That is, the higher m is,
the fuzzier the partition, and the smaller m is, the crisper
the partition. Currently, there is no theoretical basis for an
optimal choice for the value of m. Furthermore, the CS and
S indices become unpredictable for very low and high
values of the fuzzy exponent weight m. Indeed, these
validity measures could be strongly influenced by m since
they utilise the provided centroids and membership degrees
to calculate the compactness and separation of the fuzzy
partition. We carried out a study to propose an acceptable
range for the fuzziness index. It is shown that this range
includes the most accepted value m=2 when using the
FCA.

3. Experiments
3.1. Imaging

The data were acquired using a single shot EPI sequence

on a 1.5T Signa scanner (72 blocks of 26 axial interleaved
slices, T, =5s, T, =60 ms, & =90°, 64 X 64 matrix, voxels
of 3.75X3.75 mm” in the plane and 5 mm thickness with
no gap). For the motor activation study, four healthy
right-handed young subjects were scanned. The paradigm
began with four task volumes and then consisted of eight
task-rest cycles, each cycle containing eight volumes (four
under each condition). The task was a self-paced right
index finger tapping movement. The instructions to switch
from one condition to the other were delivered through a
microphone. Task execution (extensions and flexions) was
visually controlled. Four resting condition sessions (no
task), were also acquired for simulation purposes with the
same acquisition parameters as above.

Each session was preceded by four dummy volumes to
reach the magnetisation equilibrium. These four volumes
were discarded from the analysis resulting in p=68
temporal samples.

A T,-weighted high-resolution scan was also required
for anatomical reference: 26 axial slices, 256 X256 matrix
with 0.93752X0.93752 mm” in-plane resolution and 5 mm
slice thickness covering the same field of view as the EPI
scans.

3.2. Preprocessing

Each series was corrected for the ‘slice-dependent-
phase-shift’ effect that is caused by the interleaved scan
mode (first even, then odd slices acquired) before any
realignment, using cubic-spline interpolation (Fadili,
1999). This step can be crucial for detection sensitivity
(Van de Moortele et al., 1996) since the time shift between
two extreme slices is approximately equal to the repetition
time 7, (5s in our blocked design experiments) which is of
the same order as the hemodynamics (Friston et al., 1994).
After correction for time shift effects, all the data were
corrected for rigid body motion artifacts with a locally
written algorithm using a least-squares objective function
and a 6 degrees-of-freedom model (3 translations and 3
rotations). All volumes were realigned to the same refer-



ence volume. The detected movements were less then 0.6
mm and 0.6°. The greatest motion was observed in the z
direction. Due to realignment effects, the first and last
slices of each volume were also discarded.

Each voxel time course was corrected from low fre-
quency components (drift) using a least-squares detrending
procedure (Bandettini et al., 1993). Another approach
would be to apply a high pass filtering on the time course.
However, the former technique was preferred because the
latter requires a paradigm-dependent cut-off frequency
choice, which remains empirical.

4. Results and discussion
4.1. Cluster validity

4.1.1. Simulation description

All the presented measures may not lead to the same
partition, e.g. the criteria using only membership degrees
are usually too restrictive in the case of overlapping non-
spherical clusters. The CS and S criteria are more efficient
because of their dependence on data structure and shape.
However, CS and S can become unpredictable and sensi-
tive to the fuzziness index. Thus, we carried out simula-
tions in order to study the joint influence of ¢ and m on
each of the three validity measures SCF, CS and S. Hence,
for each number of simulated clusters ¢, ,,, each criterion is
calculated as a function of the number of clusters of the
partition and the fuzziness index m, where m was varied in
the range deduced from Section 4.2.

In this study, we used a synthetic fMRI phantom, with
brain-shaped axial slices. This way, the number of simu-
lated clusters was controlled and known a priori (Fig. 2).
Different configurations of time course, region size and
CNR were simulated. Hence, five areas of different sizes
were simulated with time courses similar to real life data.
As correlation distance was used, the clusters will be
distinguished with respect to their prototype shapes. The
activated voxels will be simulated as a boxcar reference

C
26 voxels

B
48 voxels

F
1000 voxels

function convolved with a Poisson function to simulate
hemodynamic delay. The relative signal change will range
from 2% to 3% with Gaussian noise added to the baseline,
which is in agreement with the fMRI signal variations
expected in the BOLD contrast at 1.5T (Bandettini et al.,
1992). The cluster F is the background-only noise cluster
(white Gaussian of 3%, which is in the range of noise
standard deviation expected in the grey matter observed in
the Echo-Planar Imaging sequence at 1.5T). The non-
activation simulated time courses included typical fMRI
structural components (i.e. low frequency sinusoidal and
linear trend). The other simulation parameters were as
follows: series consisting of 68 blocks each of 64X 64
pixels, simulated 7, =35 s (activation paradigm frequency
0.025 Hz: 4 rest-4 active-4 rest...etc.), 8=1, conver-
gence threshold £=0.001 and hyperbolic correlation dis-
tance.

For each number c, ; of simulated clusters (background
noise only cluster+‘c, 70 activation clusters’+‘c, , —
1—c,. other clusters’), the UFCA algorithm is applied
with ¢ €[2,~/n] and m € ]1, 2.2]. The SCF, CS and S
criteria are calculated for each situation. For clarity, curves
are shown for ¢ in the interval [2,10].

4.1.2. Simulation results

Simulation results are depicted in Fig. 3. Each line
corresponds to the number ¢, of distinct clusters simu-
lated. Each column corresponds to a validity criterion (CS,
S and SCF). For each value of initial clusters c;,;,, the
most powerful validity criterion is the one providing a
clear minimum for ¢ =c, ,, whatever the value of the
fuzziness index. Indeed, this behaviour is true for the
proposed SCF criterion where the index m has almost no
influence on the value and position of the minimum of the
criterion SCF for all simulated numbers of clusters. As
predicted, the CS and § criteria are sensitive to m. CS has a
monotonic decreasing tendency for m greater than 1.7
when c¢;,;, becomes large. However, this criterion is still
effective and provides a valid partition when m is judi-
ciously chosen. The § criterion is unpredictable for low

E
26 voxels

A
61 voxels

D
15 voxels

Fig. 2. Synthetic fMRI phantom used for the validation of the UFCA. The clusters are of different shapes, sizes and time profiles. The number of clusters

is known and controlled a priori.
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values of c, . This criterion tends to over-partition the
data set. The criterion is satisfactory for c¢; ;=4 and m
around 1.5 (compatible with real life fMRI data). Never-
theless, it remains very unstable and several minima could
appear (e.g. for ¢;,;,,=4 to 6). Thus, the provided partition
will be only locally optimal.

These results show the superiority of the proposed
criterion SCF and its effectiveness and validity for real-life
activation data.

4.2. Effect of the fuzziness index

In the context of fMRI, the fuzziness index is very likely
to influence detection power. Indeed, choosing an in-
adequate value for m could lead to the loss of some truly
activated voxels (true positives) or, conversely, recover too
many truly inactivated voxels (false positives). It is thus
necessary to propose a choice ensuring a compromise
between specificity and the sensitivity of the method.

4.2.1. Simulation description

To assess the effect of the fuzziness index on the FCA
algorithm, the simulations were carried-out on the four
resting-state data sets. This takes into account realistic
properties of the noise without making any assumptions
about its distribution or power. Activation patterns with
realistic spatial distribution were simulated. Indeed, the
spatial extent of the simulated cluster was obtained through
real life activated regions corresponding to the motor task
(primary motor cortex (PMC), supplementary motor area
(SMA) and cerebellum), using a simple correlation coeffi-
cient test on the activation series. These regions were then
examined visually and manually modified to remove
undesirable artifacts. The retained spatial distribution
(within the mask of the grey matter) was put in memory.
At each memorised voxel, a simulated activation time-
course was injected using an additive model. The response
amplitude was adjusted by means of the contrast to noise
ratio (CNR) and expressed in terms of relative signal
change in percent. For the results presented below, the
relative signal change ranged from 0.5% to 2.5%, which is
in the range of functional variations observed in the BOLD
contrast at 1.5T (Kwong et al., 1992; Bandettini et al.,
1992). Gaussian white noise was also added to the
reference boxcar function before convolution, to simulate
physiological fluctuations of the subject response. The
standard deviation of the added noise ranged from 0 to 2%
of the baseline. The simulated fMRI responses consisted of
a boxcar-shaped paradigm convolved with a Poisson
function of parameter N\, which is consistent with previous
work (Friston et al., 1994). For the FCA, we used a
hyperbolic correlation distance [Eq. (4)].

4.2.2. Results
The results are shown in Fig. 4. The MFs are repre-
sented for the cluster including activated voxels, as a

function of the maximum of the Cross-Correlation Func-
tion (CCF) calculated between each voxel profile and the
reference activation profile. The simulated activation vox-
els are depicted with ‘+’ and non activated voxels with
-’ Two extreme situations have been simulated: high
activation amplitude with low physiological fluctuations
(panel (a) where the CNR was set to 2% and o, ;,=0),
and low activation amplitude with high physiological
fluctuations (panel (b) where the CNR was 1% and the
simulated physiological noise was equal to 1%). In the two
cases, the total number of clusters was fixed to 10.

As a data-driven analysis, it is clear that the UFCA can
not stand for a detection step, and additional treatments
could be necessary to detect the activation cluster. Indeed,
beside the activation-induced cluster, additional clusters
could be retained by the method. Many alternatives are
then possible to detect the corresponding activation
prototype. One could test for significant periodicity via
Fourier methods (for periodic paradigms) or for significant
correlation to the reference paradigm. .. etc. In our exam-
ple, a test of periodicity was used.

We can recognise the general behaviour and the in-
fluence of the fuzziness index on the partition result (hard
to fuzzy for m low to high). Moreover, when m tends to be
low and closer to 1, many false positives are identified as
activated and similarly, several true positive voxels are
lost. Thresholding the membership degree map (MDM) of
this cluster in these conditions will result in high loss of
true positives and a high false positive fraction in our map.
When m is high (typically m>3), the non-activated and
activated voxels are mixed and the defuzzification step
becomes harder. In addition, we note that the dispersion of
the CCF maximum is larger in the case of non-activated
voxels than in the case of the activated voxels. Visual
inspection of the m values around 2 suggests that a
compromise has been achieved between the two extreme
behaviours, which we have just described.

We can assess these results statistically using ROC
methods (Sorenson and Wang, 1996) as a partition quality
index and the effect on the FCA detection accuracy when
varying the index m. The area A, under the ROC curves
was used as a single index of merit to quantify the
detection power (Sorenson and Wang, 1996; Skudlarski et
al., 1999). The closer this surface is to unity, the better the
detection algorithm. Fig. 5 summarises the previous results
by plotting the area under the ROC curves (averaged over
the 4 runs) as a function of the fuzziness index for the two
sets of simulation parameters. It should be noted that when
m becomes larger than 3, the ROC area decreases dramati-
cally for the two sets of simulation parameters. Thus, the
range 1.5<m<2.5 seems to be a good compromise for
optimising the performance of the FCA with respect to the
exponent weight. A maximum is reached for both parame-
ter sets around m=~2. In the context of fMRI, this gives a
rigorous justification for the popular use of the value 2 for
the fuzziness index m.
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Fig. 4. Influence of the fuzziness index on the fuzzy partition quality for two sets of simulation parameters: CNR=2% (panel a) and CNR=1%-
physiological noise of 1% (panel b). A similar tendency of the effect of the fuzziness index is observed for the two cases. Low values of m tend to create
hard partition between the non-activated (points) and activated voxels (+). In contrast, the high values are clearly useless because they induce a confusion
between activated and non activated voxels. Thus, intermediate values (typically 1.5<m<2.5) seem to be a good compromise for optimizing the
performance of the FCA with respect to the exponent weight.
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Fig. 5. Statistical assessment, using ROC methods, of the effect of the fuzziness index on the performance of the FCA with real life noise data and
simulated activation as in Fig. 4. The performance criterion is the area under the ROC curve. A maximum is reached each time around m =2 which is the
most common choice for the fuzziness index. Furthermore, the ROC curves for a FPF interval ranging from 0 to 0.01 (which is in the working regime of

fMRI) are better for m=~1.8 to 2.

4.3. Application to real-life fMRI activation data

Our UFCA algorithm was applied to the 4 motor task
series described in Section 3.1. The SCF criterion was
used as a validity measure for the UFCA and setting m =2,
£=0.001. The SCF index indicated a valid optimal
partition for ¢*=8, 10, 10 and 9 clusters for the 4 data
sets. As before, the activation cluster was identified using a
periodicity test.

4.3.1. The activation cluster
The MDMs corresponding to the activation clusters
were very reproducible and their mean is depicted in Fig.

6(a). The expected motor areas (PMC, SMA and cere-
bellum) can be recognised. The fuzzy overlap coefficient
FO (Fadili et al., 2000) between pairs of activation MDMs
ranged from 76% to 92%. The retained prototypes are also
very similar in shape and signal enhancement (Fig. 6(b)).
Indeed, the relative signal change was about 2% for all
cases. The inter-correlation coefficient between the 4
prototypes was also very high (ranging from cc=0.74 to
0.9). This range of signal variation and the shape of the
prototypes are in very good agreement with the realistic
simulated activation response used in the simulations.
From Fig. 6(b), the shapes of the prototypes suggest that
modelling the hemodynamic response may be a hard task.
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Fig. 6. (a) Spatial (mean MDM thresholded at 0.7) and (b): temporal (prototypes and mean prototype) characteristics of the activation clusters resulting

from the UFCA applied to 4 real activation data sets.

This is all the more complex since the response could vary
across space, tasks and time (dynamic effect).

FCA has previously been compared to the most widely
used detection algorithms (e.g., linear models, correlation
techniques) using simulated responses, on realistic noise
background (null-hypothesis data), and the ROC methods
to statistically assess their differences (Fadili, 1999; Fadili

et al., 2000). Here, only the main results are reported and
we recommend that the interested reader refer to the
references listed above for more detail. The obtained
performances were satisfying and similar drawbacks were
found for all the approaches with respect to the CNR and
the physiological fluctuations. However, the FCA approach
was much more stable with respect to the paradigm



properties such as the number of time points, paradigm
period and the conditions’ alternation frequency. Similar
results on the model-dependent techniques have been
reported in (Skudlarski et al., 1999).

4.3.2. Comments on the other clusters

The UFCA provides, in addition to the activation
cluster, a number of other classes. Most of these are
dominated by different sources of noise («structuraly or
random components). In the context of fMRI data, it is still
a major concern to interpret the huge amount of in-
formation provided by the exploratory methods in general
(e.g., Principal Components Analysis, Independent Com-
ponents Analysis, Neural networks) and the FCA in
particular. We have introduced a first approach in this
direction (Fadili et al., 2000). In this work, the idea was to
characterize statistically the obtained task series clusters by
using an extra acquisition with no task that uncovers the
‘noise’ clusters. This step produces some pertinent clusters,
in the sense that they are significantly different from those
appearing in the noise data set. The reproducibility of the
clusters was also assessed using appropriate measures such
as the fuzzy overlap coefficient (Fadili, 1999; Fadili et al.,
2000).

As the fMRI data are a realization of a complex spatio-
temporal process, the noise properties are hard to char-
acterize. Previous studies have empirically shown the 1/f-
type behavior of the fMRI noise (Aguirre et al., 1997;
Zarahn et al., 1997), whose sources have been demon-
strated to be instrumental and physiological. Therefore, if
the whiteness of the noise is a good approximation at high
frequency range, this assumption becomes unrealistic at
lower frequencies. From some preliminary studies we have
carried out, fractal long-memory processes (e.g., fractional
Brownian motion or the associated fractional stationary
increment process (Beran, 1994)), seem to be a very good
model for the fMRI noise. The fractional Brownian motion
is also attractive in the context of fMRI as it is non-
stationary by definition (at least in the second order sense
which is the point of interest for clustering purposes).
Comparisons between simulated realizations of such pro-
cesses and the «noise» prototypes obtained by the UFCA
present a striking resemblance (Fig. 7). The long-range
dependence of these noise processes naturally exhibits a
slow trend component that is still a major problem when
dealing with fMRI data. A number of earlier papers on
fMRI (e.g., Bandettini et al., 1993) attempted to propose
empirical approaches, such as detrending or high-pass
filtering of the time courses, to get rid of trend com-
ponents, which are badly understood in the literature. This
is still the most widely applied technique in the neuroimag-
ing community. However, our belief is that these com-
ponents are a main feature of the noise itself that could be
accounted for by using an appropriate noise model. Our
research is now directed towards this approach taking
advantage of the orthonormal wavelet transform and its

whitening and stationarising properties (Flandrin, 1992;
Wornell, 1992).

5. Conclusion

This paper has presented a strategy for analysis of fMRI
time series using a partitional fuzzy clustering method
based on the FCM algorithm. We have described the
algorithm, addressed its parameters and limitations. We
have suggested some original solutions to the choice of the
parameters, and validated these solutions.

The influence of the fuzziness index was studied in
detail. Its impact on the partition quality was analysed
using the MFs. It was then quantified by using the ROC
methodology. In particular, it was shown that the interval
in which the performance of the FCA is optimised,
includes the value m=2. This value has been used by
previous authors, but without formal justification or valida-
tion.

A solution to the supervision problem (the number of
clusters a priori) is proposed, using a heuristic approach.
Indeed, the supervision problem constitutes a limitation to
the implementation of the FCA for fMRI data analysis and
has not been discussed previously by other authors. This
led us to develop an algorithm that we have called UFCA.
A validity criterion is introduced whose goal is to assess
the partition quality. This validity measure was then
validated and compared to some well-established criteria
resulting from work in the pattern recognition field. The
proposed criterion offers high flexibility with the type of
distance used (hyperbolic correlation). The simulation
study, using regions and time courses of realistic shape,
size, amplitude and noise, demonstrated the superiority of
our criterion compared to existing criteria. In addition, it
was in reasonably good agreement with the CS criterion.
The stability of SCF with respect to the index m in the
proposed range was also highlighted. In our experience,
and for the functional series we have analysed, the optimal
number of a priori clusters was generally in a relatively
stable interval. If this were generally the case, then this
might question the real contribution of the unsupervised
approach. However, its interest is indisputable when the
data set is different, the distance is different or for a
non-experienced user for whom this choice can be a major
difficulty. Moreover, solving the supervision problem by
choosing a number of clusters that is too high will tend to
over-partition the data and consequently to decrease the
dynamics of the MDM (Fadili, 1999).

6. Notation

fMRI: functional Magnetic Resonance Imaging;
FCM: Fuzzy c-means;
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Fig. 7. (a) Examples of fractional Brownian motion process realizations (with different Hurst exponent (Beran, 1994)). (b) Nine non-activation
non-detrended prototypes obtained on a typical session from one subject. The 10th prototype corresponded to the motor activation and is displayed in Fig.

6(b).

FCA: Fuzzy Clustering Analysis;
UFCA: Unsupervised Fuzzy Clustering Analysis;

VF: Validity Function;

CNR: Contrast-to-Noise Ratio;

MDM: Membership Degree Map;

MF: Membership Function;

ROC: Receiver Operating Characteristics
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