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Abstract

The effect of slice orientation on reproducibility and sensitivity of 3T fMRI activation using a motor task has been investigated in six normal
volunteers. Four slice orientations were used; axial, oblique axial, coronal and sagittal. We applied analysis of variance (ANOVA) to supra-
threshold voxel statistics to quantify variability in activation between orientations and between subjects. We also assessed signal detection accuracy
in voxels across the whole brain by using a finite mixture model to fit receiver operating characteristic (ROC) curves to the data. Preliminary
findings suggest that suprathreshold cluster characteristics demonstrate high motor reproducibility across subjects and orientations, although a
significant difference between slice orientations in number of activated voxels was demonstrated in left motor cortex but not cerebellum. Subtle
inter-orientation differences are highlighted in the ROC analyses, which are not obvious by ANOVA; the oblique axial slice orientation offers the
highest signal detection accuracy, whereas coronal slices give the lowest. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

FMRI activation pattern reproducibility has been re-
ported at clinical [1-6] and high [7,8] magnetic field
strengths, using well characterised visual, motor and cog-
nitive paradigms. All studies report high within-subject and
variable between-subject reproducibility, depending on the
method of analysis. A multi-site study has also been re-
ported [9] demonstrating highly consistent activation pat-
terns in response to a working memory paradigm. Selection
of the slice orientation depends on the brain area being
studied, but axial or oblique axial slices are most commonly
used in fMRI studies for comparison with PET images [10],
and ease of acquisition because older gradient sets only
acquire EPI data in the X-Y plane. Oblique axial slices are
popular because they enable the frontal sinuses to be
avoided, and lower numbers of oblique slices are needed for
whole brain coverage, which allows the TR and therefore
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acquisition time to be reduced. The effect of slice order
[11], slice thickness [11,12], and voxel size [13] on fMRI
activation have been investigated but, to our knowledge, the
effect of slice orientation has not yet been reported.

We present a whole brain study to assess reproducibility
in 4 different slice orientations, using a standard motor
paradigm. The data were analysed using two different meth-
ods; 1) statistical parametric maps [14] were used to identify
suprathreshold “activated” voxels, and the characteristics of
resulting activation clusters was assessed by two-way
ANOVA (with orientation as a within-subject factor and
subject as a between-subject factor), and 2) receiver oper-
ating characteristic (ROC) curves [2,15] were fitted (Meth-
ods section) to compare signal-detection accuracy in all
voxels across the brain, for each of the 4 slice orientations.

2. Materials and methods
2.1. Subjects and task

All studies were performed with permission from Ad-
denbrooke’s Hospital Local Research Ethics Committee.



Informed consent was obtained from six right-handed,
healthy volunteers (3 male, 3 female, aged 21-35 years,
mean age 26.7 = 5 years) who were studied using a blocked
periodic AB design (A = motor task, B = rest) repeated for
4 cycles. The duration of each epoch was 40 seconds.
Subjects performed a self-paced (approximately 2 Hz) se-
quential finger opposition task with their right hand during
the motor task epochs, and were informed of the beginning
and end of each epoch by means of a tactile cue on their
right ankle. During the rest periods subjects were asked to
rest the hand used for tapping on their leg.

2.2. Data acquisition

Imaging was performed with a 3 Tesla Bruker Medspec
Avance S300 system (Bruker Medical, Ettlingen, Germa-
ny), using a head gradient set insert and quadrature (diam-
eter 28 cm) birdcage head coil for receive and transmit.
Comparable eddy currents in all 3 gradient axes were en-
sured by adjustment of the preemphasis by the manufacturer
upon installation of the magnet to give comparable values in
each axis. Subjects were given earplugs and positioned on
isocentre. Shimming was firstly performed manually in X,
Y and Z and then adjusted to the second order using the
automatic shimming software FASTMAP [16]. Whole
brain, single shot 7% weighted EPI images were acquired in
“true” axial, oblique axial, coronal and sagittal slice orien-
tations (TR = 5000 ms, TE = 30 ms, a = 90°, isotropic
FOV = 256 mm, 40 contiguous slices, 4 mm slice thick-
ness, 64 repetitions after removal of 8§ dummy scans). The
axial, coronal and sagittal slices were orthogonal with re-
spect to each other and aligned to the gradient axes, and the
oblique axial slices were positioned parallel to the base of
the brain. The order of acquisition of the 4 orientations was
randomised for each subject. To control the influence of
partial volume effects across the orientations an isotropic
resolution of 4 mm® was desired. This EPI sequence sam-
ples data during the gradient ramps as well as the gradient
plateaus, and the interpolation of the ramp-sampled data
points back to a rectilinear grid during reconstruction would
result in a reduced effective resolution. To avoid this, data
were acquired with a matrix of 128 X 64, and the ramp-
sampled data removed prior to reconstruction, leaving a
matrix of 64 X 64 and a verified reconstructed resolution of
4 mm’.

2.2.1. Phantom experiment

To identify the contribution of hardware variations in
different slice orientations, the experiment was repeated on
a spherical phantom (100 mm diameter, containing copper
sulphate solution) which was positioned exactly on isocen-
tre. Only 25 slices were needed for complete coverage, but
all other parameters were identical.

2.3. Data analysis

2.3.1. Statistical parametric mapping

Individual EPI timecourses were processed using Statis-
tical Parametric Mapping (SPM99) (www fil.ion.ucl.ac.uk/
spm/) software. The processing steps involved slice timing
correction, realignment, normalisation to the EPI template,
smoothing to a FWHM of 8 X 8 X 8 mm, and fitting to a
user-specified model on a voxel-by-voxel basis. The effect
of the normalisation process on images acquired in different
slice orientations was assessed by omitting the normalisa-
tion step and fitting the same model to realigned, smoothed
data. Uncorrected statistical data (p = 0.001) were used in
order to be comparable with ROC methods. Activation
clusters in the left motor cortex (LMC) and right cerebellum
(RC) were assessed by visual inspection and in terms of
peak and regional mean t-statistic, and number of voxels,
using two-way ANOVAS calculated with respect to orien-
tation and subject. Regional mean t-statistics were obtained
using matlab code which calculated the mean of the t-
statistics across all voxels comprising LMC and RC clus-
ters; LMC and RC clusters were defined as groups of voxels
in those brain regions above an uncorrected threshold of
P < 0.001. Fixed-effect analyses were performed using
SPM99 [17] (www.mrc-cbu.cam.ac.uk/Imaging/) on the
spatially normalised data, creating mean activation maps for
each subject across orientations and each orientation across
subjects. Statistical maps were assessed in the same way as
for the individual data sets.

2.3.2. ROC methods

The receiver operating characteristic (ROC) curve is
commonly used to quantify signal detection accuracy. It is
a plot of the sensitivity 1 — B versus « for different thresh-
olds of the rating scale, where a and 3 respectively corre-
spond to the probability of type I error (false positives
fraction, FPF) and the probability of type II error (false
negatives fraction, FNF). Several useful measures of detec-
tion accuracy can be derived, such as area under the ROC
curve [15,18], where a greater area corresponds to better
detection accuracy.

ROC curves can be fitted to data using parametric and
non-parametric approaches. Non-parametric methods [2,19]
specify a number of assumptions, which include repeating
the experiment a minimum of 3 times, and that the obser-
vations (voxels) and individual trials are independent. Para-
metric methods [20,21] also assume voxel independence
and that the true positives and true negatives form a binor-
mal distribution.

We propose a mixture-based model to fit ROC curves to
the observed data [22-26]. This model does not make the
assumption of binormally distributed data or of a minimum
number of replications, but it does specify independent
voxels. The model was therefore fitted to the t-statistic maps
which were processed without the smoothing step.

The model can be formulated in the following way:



S(x) = My, (x) + (1 = A) fr,(x) (1)

where A is the mixing proportion (the true proportion of
activated voxels), f(x) is the probability of observing an
activated voxel, f}; (x) and f}; (x) are the probability den-
sity functions (pdf) under the null and the alternative hy-
potheses [27]. The model is fitted to the observed data using
a maximum likelihood estimator (MLE) (see Appendix).
Reliability criteria can be determined from ROC curves.
While classical approaches for statistical map thresholding
focus on the FPF, we propose another approach which
involves maximising a criterion to determine the best trade-
off between the FPF and True Positive Fraction (TPF). The
reliability criterion (RC) maximises the TPF and the true
negatives fraction (TNF) in the thresholded map, using,

RC(a, B) =A(1 = B) + (1 =N — a) 2)

where A is the MLE estimate of A and (1 — «) is the TNF.
Differentiating RC gives the threshold corresponding to the
point on the ROC whose slope is 17; . Another approach
could consist of choosing the point on the ROC curve with
a gradient of 1. If any prior knowledge is available on the
expected true positive or false positive fractions, other
weighting coefficients can be used instead of A and 1 — A.

2.3.3. Phantom analysis

EPI images were reconstructed and analysed using in-
house software. Six slices evenly spaced through the phan-
tom were cut out from a total of 25 slices (slices 2, 6, 10, 14,
18, and 22) in each orientation, to observe signal-to-noise
across the whole phantom. A 200 pixel circular region of
interest, on isocentre (to minimise effects of B, drift) and in
the centre of all slices and orientations, was used to deter-
mine the mean and standard deviation of the signal in that
region for all 64 time points. The mean and standard devi-
ation of each timecourse was calculated in all 6 slice num-
bers and all 4 orientations, and used to plot line graphs. The
timecourse means and standard deviations were used to
estimate a global mean and standard deviation for all 4 slice
orientations. One-way ANOVAs were performed on the
individual slice data with respect to slice orientation.

3. Results

3.1. SPM analysis

Fig. 1 shows group activation maps for a) each orienta-
tion averaged over subjects and b) each subject averaged
over orientations, both maps being thresholded at a P
value of 0.001. Characteristic left motor cortex (LMC), right
cerebellum (RC) and supplementary motor area (SMA) ac-
tivations are observed in all subjects and orientations, and
RMC activation is present in axial, coronal and sagittal
orientations and subjects 2, 4, 5 and 6. There is a difference

in extent of LMC activation pattern between slice orienta-
tions. By visual inspection, the order of decreasing size of
activation pattern was axial, sagittal, coronal and oblique
axial. In the cerebellum the corresponding order was
oblique axial, coronal, sagittal and axial. Fig. 2 shows his-
tograms of the peak and regional mean t-statistic, and num-
ber of activated voxels in the LMC and RC. Table 1 shows
results of a two-way analysis of variance (slice orientation
and subject being the within- and between-subject factors
respectively) with each of these three parameters treated
separately as the dependant variable. Figs. 2a and 2b sug-
gest that regional mean t-statistic is a more robust measure
than peak t-statistic. Both inter-subject variability and inter-
orientation variability in the LMC are reduced using mean t
values compared to peak t values (Table 1). Fig. 2b suggests
that signal change in cerebellar activation is as reproducible
as primary cortical activation, although there are large vari-
ations in extent (Fig. 2¢). Fig. 2 and Table 1 show that there
are no significant differences between slice orientations
except in the number of activated voxels in the LMC. It
should also be noted (Figs. 1b and 2, Table 1) that inter-
subject variability is of a similar order of magnitude to
inter-orientation differences.

3.2. Phantom experiment

Fig. 3 shows the mean and standard deviation of signal
intensity over time (64 repetitions) in a 200 pixel ROL
Results for six slices through a spherical phantom in 4 slice
orientations are shown. All 4 orientations gave results of the
same order of magnitude and there are no significant dif-
ferences between the orientations (Table 1).

3.3. ROC analysis

Estimated ROC curves averaged over 6 subjects for the
4 slice orientations are shown in Fig. 4. These curves are
calculated over a relatively conservative range of false pos-
itive thresholds (0—0.025) in terms of fMRI analyses. The
curves do not cross each other and visual inspection of the
area under each one suggests a decreasing relative order of
signal detection accuracy to be oblique axial, axial, sagittal
and coronal. The ellipses, indicative of the range of suitable
thresholds over which signal detection accuracy is maxi-
mised, show that the axial orientation provides the widest
TPF range and smallest FPF range. The oblique axial ori-
entation has a similar TPF range to axials but the FPF range
is twice as large. The largest FPF range is seen in the
sagittals, and while coronals offer the smallest TPF range,
they also have the second smallest FPF range. The solid
black dots (Fig. 4) mark the point at which the TPF/TNF
trade-off is maximised, and suggest that different false pos-
itive thresholds might be appropriate for different slice
orientations. The lowest false positive threshold would be
achieved using an oblique axial slice orientation. The area



a) Slice Orientation b) Subject

Fig. 1. Group activation maps for a) each orientation averaged over subjects and b) each subject averaged over orientations, thresholded at an uncorrected
p value of 0.001.

under the ROC curves over a more stringent range of false 4. Discussion

positive thresholds typical of fMRI analyses (0—0.005)

(Fig. 5) illustrates an incrementally decreasing signal detec- The effect of slice orientation on motor task activation
tion accuracy of order oblique axial, axial, sagittal and has been investigated using parametric methods to look at

coronal. specific regions of activation, and ROC methods which
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Fig. 2. Uncorrected (p < 0.001) a) peak t-statistic, b) mean t-statistic, and
¢) number of voxels in left motor cortex (LMC) and right cerebellum (RC)
for axial (A), oblique axial (OA), coronal (C) and sagittal (S) slice orien-
tations. Subjects 1 to 6 are displayed from left to right in each of the 4

orientations.

evaluate signal detection accuracy across the whole

brain.

Parametric analyses which reflect cluster-level character-
istics (regional mean t-statistic) demonstrate improved re-

producibility across orientations and subjects compared to
voxel-level characteristics (peak t-statistic) (Table 1 and
Fig. 2). Cluster-level cerebellar activation appears as robust
as cortical activation [10,28,29], rendering it equally suit-
able for reproducibility studies. Inter-subject variability was
generally observed to be of the same order of magnitude as
inter-orientation differences for both cluster- and voxel-
level characteristics, suggesting that a larger number of
subjects may need to be studied. This is frequently a limit-
ing factor in quantitative fMRI studies. A variety of statis-
tical measures were used as dependent variables in the
study, and analysis of variance results show that certain
suprathreshold cluster characteristics reveal differences be-
tween orientations, whereas others do not. Peak t-statistic
and number of suprathreshold voxels are conventional sta-
tistical measures, however the former is derived from a
single voxel and the latter reported in the literature to be
susceptible to high inter-subject variability [4,30,31]. The
regional mean t-statistic provided an estimate of the average
t-statistic across all voxels in the cluster, which although
unconventional, proved to be highly reliable across subjects
and orientations. Therefore careful selection of the measure-
ment parameters is important in methodological fMRI stud-
ies. The only significant difference between orientations
was in terms of the number of voxels in the LMC, for which
there are a number of possible causes.

One possible source of the observed differences may lie
in the instrumentation. Phantom experiments were per-
formed to assess the contribution of hardware, specifically
gradient performance, to these differences. Methods of
monitoring scanner stability have already been reported [32]
and their implementation could provide a quantitative mea-
sure of the contribution of hardware variations to the overall
inter-subject variability which is observed in fMRI. Our
results suggest that there are no significant differences (p =
0.279) in performance of the different gradients.

It was also hypothesised that images acquired in different
orientations may suffer from different amounts of geometric
distortion, exacerbated at 3 Tesla [33], resulting in varia-
tions in the quality of normalisation to a relatively undis-
torted 2 Tesla template. However, the normalisation param-
eters (not shown) and suprathreshold voxel analyses
indicate comparable quality across slice orientations. The

Table 1

Slice Orientation Subject
Dependent Variable SS df MS F P SS df MS F P
LMC - Peak t-statistic 20.140 3 6.714 1.548 0.243 42.750 5 8.551 1.971 0.142
LMC - Mean t-statistic 0.439 3 0.146 0.890 0.496 0.463 5 0.093 0.563 0.727
LMC - No. Voxels 5.48¢ + 0.6 3 1.83¢e + 06 5.157 0.012 7.48¢ + 06 5 1.50e + 06 4.223 0.014
RC - Peak t-statistic 14.500 3 4.835 0.698 0.568 36.130 5 7.277 1.043 0.429
RC - Mean t-statistic 0.690 3 0.233 0.756 0.536 2.121 5 0.424 1.376 0.288
RC - No. Voxels 1.81e + 05 3 6.04e + 04 0.140 0.935 2.46¢e + 06 5 491e + 05 1.136 0.384
Phantom 7.09¢ + 15 3 2.36e + 15 1.375 0.279
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use of self-paced rather than paced finger opposition may
have introduced spurious differences between the 4 orien-
tations. This is unlikely to fully explain the inter-orientation
differences observed since the order of acquisitions was

randomised in each imaging session to minimise effects of
habituation or fatigue. There are a number of other possible
explanations for the observed orientation effect on motor
cortex, which include differential degrees of head motion,
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the point on the curve corresponding to a gradient of (I — A)/A, where the trade-off between Type I and Type II error is maximised.
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local variations in field homogeneity (shimming), and the
effect of vessel orientation with respect to the main field.
We consider the most likely explanation is that partial
volume effects resulting from vessel architecture in the
strip-shaped motor cortex are responsible. Different slice
orientations intersect this architecture at different angles,
and blood vessels involved in the BOLD response occupy
different proportions of a given voxel contributing to the
image and therefore activation map. Partial volume effects
due to resolution [13] and slice thickness can also affect the
magnitude [12] and pattern [11] of fMRI activation. The
fact that a significant effect of orientation was not also
observed in the cerebellum further suggests that the results
are related to the inherent strip shape of the motor cortex.
ROC curves probed the signal detection accuracy offered
by each slice orientation using voxels across the whole
brain. The finite mixture model assumes independence of
voxel statistics and therefore these ROC curves were esti-
mated from maps of t-statistic without the application of
spatial smoothing. A degree of spatial dependence will exist
nonetheless due to factors such as the point spread function
of the scanner, and 7% decay. However, we have assumed
this to be consistent between orientations, permitting the
relativistic comparison presented here. ROC methods are
beneficial because they are relatively insensitive to the dis-
tribution of the underlying data [15] and the concern as to

whether noise distributions (physiologic, motion etc.) have
been correctly modelled is less crucial.

The area under the ROC curves at stringent (p < 0.005)
fMRI thresholds for Type I error control indicate that an
incrementally higher signal detection accuracy is achieved
using oblique axial slices compared to axial, sagittal and
coronal. The lowest relative accuracy is given with coronal
slices. The FPF corresponding to a gradient of (1 — A)/A on
each curve suggests that different orientations may require
different false positive thresholds to achieve the optimal
Type I/Type II error trade-off in detection accuracy. The
lowest possible threshold is desirable to give the highest
statistical significance, and is obtained using the oblique
axial slice orientation. ROC methods could be used in con-
junction with suprathreshold voxel analyses by providing a
means of assigning an appropriate threshold for control of
Type I error. ROC methods are also attractive because they
consider both statistically significant and statistically insig-
nificant voxels across the whole brain. Such analyses have
revealed here incremental differences between orientations
that were not clear from the analysis of suprathreshold
voxels alone, suggesting that these inter-orientation differ-
ences are not restricted to the most statistically significant
voxels.

5. Conclusions

These preliminary findings suggest that suprathreshold
cluster characteristics demonstrate high motor reproducibil-
ity across subjects and orientations. Subtle inter-orientation
differences are highlighted in the ROC analyses, which are
not obvious in the most statistically significant voxels; the
oblique axial slice orientation offers the highest signal de-
tection accuracy, whereas coronal slices give the lowest.
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Appendix
Maximum Likelihood Estimator

The model is fitted to the observed data using a maxi-
mum likelihood estimator. The log-likelihood can be ex-
pressed as follows:

Nvoxels

LL(A, 8) = 2 Log(flx;, A, 9)) 3)

i=1

where A is as before (1) and 6 is the non-centrality param-
eter. The pdfs under the null and alternative hypotheses for
a given number of degrees of freedom can be numerically
expressed in terms of gamma functions. Maximum likeli-
hood estimates are obtained by maximising the log-likeli-
hood (LL), which is achieved by differentiating LL and
setting to zero. However the LL is a complicated function
and a numerical maximisation procedure, the modified
Newton method, is necessary.

The MLE is consistent and efficient (at least asymptoti-
cally), and tends to a normal distribution as the number of
observations tends towards infinity. This is relevant to our
experiment since the number of intra-cranial voxels is high.
The variances of the parameters are therefore well approx-
imated by the diagonal elements of the Fisher information
matrix.



This is calculated using the inverse of the Hessian at the ML
estimate of the parameters:

_ fH,(xi) _fHO(xi))z f'HI(xi)fHO(xi)
_ ; ( f(xi) ; fz(x,')
i= E.le(xi)fHO(xi) E )\fb,(xi)ﬂxf) - Az(.le(xi)z
fA(x) ; SA(x)

i

“

The asymptotic gaussian property of the estimator gives
also a very good test for comparing differences in parame-
ters between datasets.



