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CONSTRAINTS IN CONSTITUTIVE RELATIONS OF MECHANICS

Introduction

Constraints in mechanics are usually understood as the known restrictions imposed on the class of motions of a certain material system; they are due either to internal pro perties of a system (internal constrains) or to the influence of certain exterior objects or external fields (external constraints). Moreover, constraint imposed on motions is main tained by what are called reaction forces which can be internal (for internal constraints) or external (in the case of external constraints). As a rule, kinematic constraints together with the suitable reaction forces are analysed within the theory of constitutive relations of mechanics, i.e., within relations which characterize either internal (material) properties of the body under consideration or interactions between the body and its exterior.

So far, different special cases of constraints have been analysed independently in diffe rent problems of mechanics; the complete list of pertinent references is rather extensive and will not be given here. For the discussion of constraints in Hamiltonian and Lagran gian mechanics the reader is referred to [START_REF] Slawianowski | Geometry of the Phase Space [Geometria przestrzeni fazowych[END_REF] where the further references can be found. Internal constraints have been studied within the theory of constitutive relations of con tinuum mechanics; for the basic assumptions of the theory cf. [START_REF] Truesdell | A First Course in Rational Continuum Mechanics[END_REF]. The concept of constraints has been also applied in order to simplify the analytical form of problems in the elasticity theory, [START_REF] Volterra | Equations of motion for curved elastic bars by the use of the "method of internal constraints[END_REF], and to obtain relations of structural mechanics (cf. [START_REF] Cz | Nonlinear Structural Mechanics [Nieliniowa mechanika konstrukcji[END_REF], where the list of suitable references is given).

The main aim of the paper is to develop a general approach to the concept of constrains in discrete and continuum mechanics and to obtain and analyse the general form of con stitutive relations in which the constraints are involved. It must be stressed that constitu tive relations we are to deal with, describe not only material properties of bodies but also interactions between a body and external fields. The main attention in the paper will be given to these aspects of constitutive relations which are due to the constraints.

The concepts of constraint and that of the constitutive relations subject to constraints will be introduced and analysed in their abstract form, i.e., independently of any special class of problems in mechanics. Such approach, after suitable interpretations of the obta ined relations, enables to formulate problems in which constraints are imposed not only on the kinematical fields but also on the internal and external forces as well as on any other field encountered in mechanics. Moreover, putting aside certain non physical situations, no regularity of any kind will be imposed on the sets of fields which are admissible by constraints. Hence different problems with involved form of constraints can be formulated on the basis of the general results obtained in the paper. The method of constraints which is developed here, constitutes the useful tool for the formation of new constitutive relations by imposing constraints on the known constitutive relation. The proposed approach is applied in order to obtain certain new classes of ideal materials within continuum mecha nics; for further applications the reader is referred to [START_REF] Cz | Materials with generalized constraints[END_REF] where some examples of unilateral internal constraints for strains and stress are discussed. Applications to structural mechanics will be given in papers [START_REF] Konieczny | Generalized constraints in the plate theory[END_REF][START_REF] Gałka | Composite materials with unilateral constraints for deformations and stresses[END_REF]. .

Constraints and reactions

We start from a class of mappings which are assumed to describe within mechanics all time evolutions of a quantity related to a certain material system. Throughout the paper we shall confine ourselves to mappings which can be represented by finite systems of realvalued functions defined on the time axis R and which are continuous and have continuous time derivatives for a.e. t e R n . To introduce the class of mappings under consideration we shall assume that there is known the л th dimensional manifold M of the class 'C 1 . The tagent bundie to M will be denoted by TM, the cotangent bundle by T*M; for every me M the suitable tangent and cotangent spaces will be denoted by T m M, T^M, respectively. Moreover, r M and г % will stand for the natural projections of TM, T*M, respectively, onto M. The dual pairing between T m M and T*M (for an ar bitrary meM) will be denoted by (T m M, <• , • >, T*M). Let all mappings describing a time evolution of a certain quantity related to the material system under consideration be represented by elements of the known (topological) space <P(R, M) of functions defined a.e. on R and with values in M. Hence the mappings we are to deal with are

y.Rst > v (t)eM (1.1)
for some cp e 0(R, M). We shall also assume that the R.H.S. derivatives <p'(t) exist for every t e R.

The intuitive concept of constraints is closely related to the fact that in many problems under consideration not every ę e 0(R, M) describes certain physical situation and that in different situations we have to deal with different subsets of 0(R, M). Thus, from a formal point of view, we are tempted to define constraints as certain proper subsets of 0{R, M). However, such treatment of constraints is not based on the physical meaning of this concept. Firstly, not every restriction of 0{R, M) has the physical sense of const raints 2) . Secondly, the choice of the space 0(R, M) itself can be interpreted as introdu cing constraints in their intuitive meaning. To avoid any ambiguity, we shall introduce the following definition of contraints. I' Thus within continuum mechanics we confine ourselves to the situations in which there is involved only sufficiently small neighborhood of an arbitrary but fixed material particle. (1.4)

The multifunction

A:MxR 3 (m, t) > A(m, t) с TM, (1.5) such that (V(m,t)eMxR)[A(m,t) с T,"M] (1.6)
and satisfying Eqs. (1.4), will be called JMconstraint multifunction.

Corollary 1. Every jTMconstraint multifunction defines Г М contraint and conversely. Г М constraint determined by TMconstraint multifunction A will be denoted by ^A.

Corollary 2. Every TMconstraint multifunction (1.5) determines the subset 0 A (R, M) of 0(R, M) defined by

0 A (R,M) := {<pe<Z>(R, M)| <p(t)eDA(t), <p'(t) e A{<p(t), t), teR}, (1.7) 
where, by virtue of Eq. (1.4), the subset <& A {R, M) is not empty. Remark 1. If M is a differentiable submanifold of a certain C'manifold My, then TAfconstraint can also be interpreted as TAiVconstraint. Analogously, if M 0 is a differen tiable submanifold of M, then TAZconstraint can be interpreted as TIMoconstraint pro vided that ^(t) с TMQ for every teR. Thus the concept of constraint is strictly related to the choice of the differentiable manifold M. This manifold in problems of mechanics, as a rule, is introduced by the known class 0(R, M) of mappings 3) . The TMconstraint ^ we deal with will be called generalized since no regularity of any kind (apart from conditions given by Eq. (1.4)) is imposed on the nonempty subsets #(?) of TM.

Remark 2. In many problems of mechanics we deal with situations in which TMcon straint # (or 7Wconstraint multifunction A) is not known a priori but depends on cer tain element of a non empty set E, i.e., 'e = Cf f , f eS. If E > 1 then 4> е , f eS, will be referred to as the implicit Г М constraints and if E is one element set then we return to Definition 1 of (explicit) Г М constraint. For implicit constraints instead of Т Ж constraint multifunction (1.5) we shall introduce implicit 7!Afconstraint multifunction such that A( , • , f) is, for every |e5, the known constraint multifunction.

The concept of constraints in mechanics is related not only to the restrictions imposed on the class of mappings (leading from 0(Л , M) to 0 A (R, M)), but also to the existence

AiMxRxEa (m, t, C) A(m, t, Ј) <= TM, (1.8) 3)
That is why Г Л т constraints V will be identified neither with TM X constraint nor with TM 0 con straint.

of certain fields which are treated as ,,maintaining" the constraint and are said to be ,,reactions" to constraint. In order to introduce such "reactions" we shall firstly define the sets where, as usual, A(m, t) -<ś {t)r\T m M, m e M, t e R. Remark 3. Elements of every nonempty reaction cone for Г М constraint will be called reactions to constraint. It can be seen that every reaction cone K% imiU (v) 

is closed in T*M and conjugate to the cone K A(m , t) (v) of directions tangent to A(m, t) at v e A{m, t). For an arbitrary time instant t e R these cones are not empty if and only if m e DA(t), v G A{m, t).

Example of interpretation. Let M be a configuration space and <p.Rs t *• q>(t) e M stands for a motion of a certain material system. For an arbitrary Г М constraint 4> A we interpret DA(t) as a set of all configurations which are "admissible" by constraint ( Ś A at a time instant / e R. At the same time A(m, t) is a set of all velocities which are "admi ssible" by constraint A at a configuration m e DA{t). Every motion <p is "admissible" by constrains if and only if <pe0 A (R,M);

we can here assume that 0(R, M) = = D l (R, M). Elements of K Mm _ n (v) now play the role of what can be called "virtual displacements". The cones of "virtual displacements" have been introduced only in order to define conjugate cones AT} (m , () (w) in T*M, me M, which are called the reaction cones.

Elements of K* lm , n (v), for a certain motion^ e 0 A (R, M) and for m = c?(0. v ~ 9>(0> can be interpreted as reactions due to the constraints, which can act on the moving material system under consideration at the time instant t (at the configuration cp(t) and the gene ralized velocity v = ф (0) Hence we see that now elements of T*M can be interpreted as certain generalized forces which can act on the moving system in its configuration m q>(t).

To complete the Section we discuss different cases of TAfconstraints from the point of view of reactions. Г М constraint # = <6 A will be called taut or stretched at t e R, m e DA(t) and for г ; e A(m, t), if and only if {0} is a proper subset of the reaction cone A3 (m> ,)(*>); otherwise the relation K^m, t) (v) = {0} holds and <g A will be called untaut or unstretched at t Ј R, m e DA(t) and for v e A{m, t). Define and refer Q to as the constitutive relation. To be more exact, to every material system we shall assign certain set 0t of constitutive relations of the form (2.2) 4) such that:

1° Every Q e 01 is either the internal constitutive relation, i.e., it describes the "materiał" properties of the system (i.e., all these properties which are independent of any external field), or the external constitutive relation, describing the interaction between the system and its exterior.

2° Every Q e в /ł, satisfies the principle of determinism, i.e., for every Q e Si there exist relations

tjf <= 0(R + ,M)x l F(R + ,T*M), teR,
such that (cp, г р ) e Q if and only if (9? (() , y (<) ) 6 for almost every teR, where (p''^s) = = cp(ts), y> in (s) s ip(t -s), s > 0. If Q is an internal relation then, as a rule, r\ t is assumed to be constant for every teR. Remark 1. Constitutive relation, apart from <p e0(R, M) and г р eW(R,T*M), can also involve elements д of a certain set A which is not specified here. To take this fact into account we shall tacitly assume that Q = Q t for some д e A. Thus the constitutive relation involving ё will be represented not by a single relation Q but rather by a family QS, S e A, of such relations.

Remark 2. The term ,.constitutive relation" is usually restricted to the description of material properties only of the system under consideration. Throughout the paper the constitutive relations are not restricted to relations describing internal properties of bo dies (as internal constitutive relations) but also describe interactions between the body and external fields or objects (external constitutive relations).

In Example of Interpretation. To illustrate the foregoing analysis we can assume that M is a space of all 3x3 symmetric matrices and that DA is a subset of all positive definite matrices representing the values <p(t) of the CauchyGreen deformation tensor at an ar bitrary time instant. Moreover, let every f(t) be treated as the value of the second Piola Kirchhoff stress tensor. Then Eqs. (2.10) represent constraints for deformations and Eq. (2.10)x stands for a suitable stressstrain relations. At the end of the Section we shall formulate some alternative forms of TAfconstrained constitutive relations for the case in which

>(t)eE t {<pV\e P '{t)), cp(t)eDA(t), cp'(t) e A(<p(t), t),

[E, (У < \ c/(0) *Ф 1=> [E, С У ' >, 'P'it)) = {F t (c><«>, tp'(t))}], [E(fp v \ <р Щ Ф ф ) => [Ј(?<", 9/(0) = {F( 9

v\ <p'(t))}],

for every teR i.e., in which Е ,((р ю , <p'(t)), E(<p a \ <p'(t)) are singletons or empty sets only. Combining together external and internal relations, we obtain from Eqs. (2.9), 2.10) 

V(0 = F t (

The method of constraints

The principle of constraints postulated in Sec. The general idea of this approach is based, rougly speaking, on the imposing TMconstraint ^B on the relation Q. The approach outlined below will be referred to as the method of constraints and can be treated as a cer tain generalization of the method of internal constraints, [START_REF] Volterra | Equations of motion for curved elastic bars by the use of the "method of internal constraints[END_REF].

We start from the known /"Afconstrained constitutive relation Q which will be given by г р е М г о (?р ), Let us also assume that the conditions

VA(t)nV B (t) is closed in <У A (t), (j ' 2)

hold for every teR, and %' A (t)c\ ( Now taking into account Eqs. (2.9) and applying to Eq. (3.5) the procedure analogous to that leading from Eq. (2.7) to Eqs. (2.9), we obtain

w (t)eE,(^'\ f(t))\ B +KSw, t) (?'('))+(?'(')), cp(t)eDA(t)nDB(t), cp'(t)eA(<p(t),t)nB(cfĄ t),t), U ( °

for / e R. Eqs. Summing up, we conclude that the method of constraints leads from constitutive re lations (2.9) and (2.10) to constitutive relations (3.6) and (3.7), respectively, Let us also observe, that to Г М constrained relation Q B are assigned Г М constraints ^л ^в , given by WA^BQ) = <e A (t)r><ie> B (t), t e R, where Ar\B stands here for Г М constraint multi function defined by

(AnB)(m, t) = Aim, t)nB(m, t), (m, t)eMxR.
The foregoing multifunction also enables to rewrite Eqs. (3.6),, (3.7), to more compact form corresponding to that of Eqs. (2.9),, (2.10),, respectively.

Special cases of constraints

So far we have analysed Г М constraints c 6 in which the subsets ( € (t) of TM were res tricted exclusively by condition (1.4). In this Section we are to define and to discuss more special cases of constraints which are often encountered in different problems of mechanics.

To begin with we shall introduce the important concept of what are called holonomic constraints. Roughly speaking, by holonomic 77V/constraint we shall mean the constraint in which for every t e R all subsets A(m, t) = ( 6{t)c\T", M are uniquely defined by means of a certain nonempty subset H(t) of M, t e R. To be more exact, let us assume that there is known the multifunction

H:Rat * H{t) с M (4.1)
and define for every teR, me M, the subsets F u (m, t) of C y (R, M), given by

F B (m, t) := tfe C\R, M)\f(t) = m, f(t+X) e H(t + 1)
for X e [0, e) and some e > 0}.

For every m e M\H there is F H (m, t) Ф ф , t e R. Definition 4. TMconstraint <ś = V A will be called holonomic if and only if constraint multifunction A() is defined by

A{m, t) := {v e T m M\v = f'(t)

for some feF l{ (m, t)}, (

where H:RB t » H{t) <= M is a multifunction satisfying the condition

(V/ e R) (V/» 6 H(t))[F H (m, t) Ф ф ]. (4.3)
TMconstraint % will be called scleronomic if and only if ( Ј(t) is constant for every teR; otherwise they will be called rheonomic. Г М constraint will be called holonomic -sclero nomic if it is both holonomic and scleronomic.

Conclusion. Holonomic -scleronomic TMconstraint is uniquely determined by an arbitrary nonempty subset H of M. Proposition 1. The holonomicscleronomic TMconstraint multifunction is given by

Aim, t) = A(m) = T u (m), teR, meM, ' (4.4) 
where H is an arbitrary nonempty subset of M and T u (m) is a cone of all directions tangent to H at m (empty if m e M\H):

T H (m) : = {ve T m M\v = g'( 0), m = g(0), g(X) e H for every А e [0, e), s > 0, and some getf 1 ((-e, e), M)}.

Eq. (4.4) can be obtained from Eq. (4.2) and from a definition of a set F,,(m, t), taking into account that H(t) = Hfor every teR. It must be emphasized that in general no regu larity of any kind has to be imposed on the nonempty subset H of M, which uniquely determines holonomicscleronomic constraint.

Corollary 1. If if is a differentiable submanifold of M determining holonomicsclero nomic constraint <<f then <ё = TH and Tl ł <T H <if) = ( 6.

From now on we are to deal exclusively with holonomicscleronomic Г М constraints. In order to prove the foregoing proposition let us observe that for every v e A(m) = = T H (m), where A(m) is convex in T m M, we obtain (cf. Eq. (1.9)):

K A l")(v) = con[T"(m)v],
where we have used the known denotation IMconstrained internal constitutive relations (4.9) will be the basis in Sec. 5 for analysis of different special cases of internal constraints in different ideal materials.

Materials with constraints

Formulas (4.9) represent the abstract form of jTAfconstrained internal constitutive relations (with holonomicscleronomic implicit constraints in which H ( is convex in M = R" for every | eS), i.e., the form which is independent of any special class of ideal materials. Interpretations of Eqs. (4.9) in mechanics (as well as interpretations of any other relation of Sees. 14) will be realized by assigning the physical meaning to elements of manifolds M and T*M and to elements of sets A and S (provided that they are not singletons). At the same time we shall specify the families of mappings F a and sets H ( . Let M = R 9 be interpreted as a space of all (symmetric) second PiolaKirchhoff stress tensors and let every T*M = R s be a space of all (symmetric) strainrate tensors. Mo reover, assume that A, S are singletons (i.e. 

o(t)eH.

Under the forementioned interpretation it can be observed that Eqs. (5.2) may represents constitutive relations of an arbitrary elasticideal plastic material provided that 8H is the loading surface (yield surface) and L(o) = д 2 у (о )/д о 2 , а e R 6 , where y( •) is a potential characterizing a hyperelastic material. In this case Eq. (5.2) l are the PrandtlReuss equ ations with e(t) as a plastic and L(o(t))a(t) as an elastic parts of the strain rate tensor, respectively. At the same time formula (5.2) 4 includes the yield condition and formula (5.2) 2 represents Hill's principle of maximum plastic work 8) . Let us also observe that Eqs.

(5.2) can be obtained from the constitutive functional relation e(0 = L(o(t))e(t), (5.3) by the method of constraints. It can be seen that Eq. (5.3) is the constitutive relation of a certain ratetype material. Thus we shall arrive at the conclusion that the convex explicit constraints imposed on the constitutive relations of ratetype materials lead to the con stitutive relations of ideal plastic materials. The character of yielding is uniquely determi ned by the subset H, i.e., it is due entirely to the effect of constraints. Now let M = R* as above, but M be interpreted as a space of all (symmetric) strain tensors of the linear elasticity. Let every T m M -R 6 be a space of all (symmetric)stress tensors. Let us also assume that This principle implies also Eq. ( 5.2) 3 provided that / » ait) is differentiable, cf. Footnote [START_REF] Gałka | Composite materials with unilateral constraints for deformations and stresses[END_REF].

If int# Ф ф and 0 e intH, then Eqs. (5.4) can be interpreted as the constitutive relations of Prager's locking materials. Eqs. (5.4) can be also obtained from the linear stressstrain relation <*0) = Lett) (5.5) by the method of constraints. Hence it follows that the constitutive relations of ideal loc king materials can be obtained by imposing suitable constraints on stressstrain relations (5.5) of the linear elasticity theory.

Let M = R* be interpreted now as the space of all (symmetric) strain rate tensors and T* M = R e be a space of all (symmetric) stress tensors. Let us also assume that 3 is a non empty subset in a space Л of all right CauchyGreen deformation tensors (strain tensors) Introducing the denotation which can be postulated as stress relations of the nonlinear elasticity; here Л is the set of all symmetric strain tensors in the space R 6 . A set S in Eqs. (5.7) can be not convex but has to be closed in Л (but not in R s )( 10 ). We shall also assume that H e(t} = T E (e(t)), e(t)eS, (5.9)

where T s (e) is a convex cone of all directions tangent to S at e, e e 3 (cf. Sec. 1). Hence we see that Eqs. (5.7), (5.9) represent the constitutive relations of elastic materials with an arbitrary holonomic (scleronomic) internal constraints for the strain measures e(t).

Mind, that the form of these implicit constraints (cf. Remark 2 of Sec. 1) is rather general since no regularity conditions are imposed on the set 3 apart from those that T s (e) are convex for every e eS and that 3 is closed in the set A of all strain tensors. If Я is a differentiable manifold embedded in R 6 then, by virtue of Eq. (5.8), every H eU) is a linear subspace of R". In this case we obtain We have assumed here that E( • ) is independent of the history <JP (,) and the velocity <p'(t).

10)

cf. the basic assumptions of the method of constraints in Sec. 3.

2 )

 2 Such restriction can be introduced, for example, by imposing extra smoothness conditions on the space Ф (Я , M) of mappings (1.1). Definition 1. By TMconstraint we shall mean the multifunction V.Rst > <g(t) <= TM, (1.2) such that, under the denotations A(m, t) = <<?(t)nT m M, (m,t)e MxR, DA(t) = {me M\A(m,t) Ф ф } = r M ^(t), teR, (1.3) the following conditions hold (Vf 6R)(Vm eDA(t))(У © e A(m, t))(3/e C x (e, e), e > Q)[m = = f(0),v=f'(C>),f'(X)eA{f{X),t+X) for every Я e [0, e)), QiteR)[DA(t) Ф ф ].

T

  Aim , u (v) := {w e T v (T m M)\w = g'(0), v = g(0), g(A) e A(m, t) for every А e [0, e), e > 0, and some g e C 1 ((-e, s), T m M)}, and then, taking into account the canonical isomorphisms X v :T v {T m M) > T m M, we obtain the cones К М т ,,М = ?."T Mm , 0 (v) (1.9) of directions tangent to A(m, t) in T m M at the points v e A{m, t). Mind, that cones К Л {т .п (р ) are empty if v e T m M\A(m, t) or m e M\DA(t). Now we shall formulate the following Definition 2. By a reaction cone of 7!Mconstraints <Ј:К э t » <Ј(t) с : TM at a time instant r e Д , at a point /и e and for an element v e A(m, t), we shall mean a cone in T*M given by *3<».,>(«0 := {*;* б Г *М | <w, o*"> ^ 0 for every w e K Mm , t) (v)}, (1.10)

  the sequel we shall deal only with what will be called TMconstrained constitutive relations. Definition 3. Constitutive relation j? c: 0(R, M)xW(R, T*M) will be termed TM constrained if and only if there exists TMconstraint ( € = <€ A (here A is a constraint multifunction), such that dom Q = 0 A (R, M), where 0 A (R, M) is a nonempty subset of 0(R, M) given by Eq. (1.7). The foregoing definition yields an interrelation between the concept of a constraint and that of a constitutive relation (internal or external). From now on by a constitutive relation we shall mean TMconstrained constitutive relation, including also the trivial case in which 0 A (R, M) = 0(R, M), i.e., in which A(m, t) = T M M for every m e M, teR. . Now the question arises what restrictions have to be imposed on the form of consti tutive relations due to the existence of constrains. To answer this question we shall formu late the following: Principle of Constraints. Every TMconstrained constitutive relation Q С 0(R, M)X xҐ(R, T*M), domp = Ф Л (Д , M), has to satisfy the condition (Vcpe0 A (R,M))(VreR A (cp))[[(cp, w )eQ]=> [(<p,y±r) e e ]], (2.3) where we have denoted R A (cp) := {re V(R, T*M)\r{t) e K* lę U) _ 0 (cp'(t)) for a.e. t e R}, (2.4) For different constitutive relations sets M, <P(R, M), 4'{R, T*M) can be different. and where the sign ,, + " (the sign ,, -") has to be used if Q js an external (an internal) constitutive relation. The principle of constraints emphasizes the formal difference between external and internal constitutive relations; rougly speaking, the external constitutive relation is ,,unsus ceptible" on the reaction r e R A (<p) to constraints < & A , while the internal constitutive relation is ,.unsusceptible" on any ,,action" on constraints -r(t), t e R, where /• e R A {y). Hence, from a purely formal point of view, to every external constitutive relation (99, y>) e Q we can uniquely assign the internal constitutive relation Q, putting (73, у >) e о iff (<p, -y>) eg, i.e., replacing function xp by a function y>. To discuss the consequences of the principle of constraints let us introduce the multi perator Mr e :0(R, M)~+2^R T * M \ putting Mro(<p) := { V e X F{R, T*M)\ (<p,y>)eo}. It follows that for every /• 6 R A {cp) we obtain ip±r e Mrg(<p) provided that y> e Mro(q>), where the sign ,, + " (the sign " -") is related to the external (the internal) constitutive relation. Introducing now an arbitrary multifunction E:0(R,M)y2^R T ' M \ (2.5) such that dom if := {<p e <P(R, М )\Ё (с р ) ф ф } = <P A (R, M), (2.6) we obtain MrQ{<p) = E((p)±R A (cp) and arrive at the following form of Г М constrained constitutive relation V eE(<p)±R A (cp), <pe4> A (R,M), (2.7) where the sign ,, + " and ,, -" are related to the case in which we deal with an external or internal constitutive relation, respectively. Mind, that relation (2.7), in which E( •) is an arbitrary multifunction (2.5) satisfying Eq. (2.6), fulfils identically the principle of constraints. Using the principle of determinism, mentioned above, we assume that there exist the multifunctions (У >, 9 /(0) E, 9>' (0) с T*M, meM, teR, (2.8) such that <p(t) = m and xp(t) e E t (<p w , <p'(t))±r{t) for some reR A (cp), teR. Taking into account Eqs. (2.4), (1.7) we obtain finally the following general form of TM constrained external constitutive relation 5) <p(t)eDA(t), <p'(t)eA(<p(t),t)', teR. Moreover, for internal constitutive relations, the subsets E,((p a \ c»'(0) of T* (t) M, for an arbitrary but fixed history are time independent. For such relations we also assume that 5> Mind, that Е № \cp'(t)) is a subset of T* a) M. the time does not enter the constraint: A(m, t) = A(m), teR. Thus the general form of TMconstrained internal constitutive relation is given by v(0 s E(^'\ № ))Kb 9lt »(<p'(t)), <p(t)eDA, cp'i^eA^it)o>'(0) Е (<р «>, <p'(t)) <^T*M, m= cp(t), constitutes a special case of a multioperator (2.8). Summing up, we formulate the following Proposition. Every TMconstrained external constitutive relation (<p,if>) e Q С 0(R, M) xW^R, T*M) has a form (2.9) in which A:MXRB {m,t)+ A(m, t) <= TM is 7Wcons traint multifunction and E,( ) are multioperators such that E t (<p w , <p'(t)) Ф ф if <jp (() e е Ф (к + ,М ) and c>(fj) e DA(ts), cp'(t s) e A(cp{t -s), t s) for every teR and s ^ 0. Every TMconstrained internal constitutive relation (q>, yi) e Q CZ 0(R, M) xW(R, T*M) has a form (2.10), in which А :М э m A(m) c'TM is Г М constraint (time independent) multifunction and E{ •) is a multioperator such that E(q> w , <p'(t)) ф ф if <p ln e 0(R + , M) and <p(ts)eDA, <p'(ts) e A((p(ts)) for every teR and s ^ 0. Conclusion 1. If for a certain TMconstrained constitutive relation the suitable TM constraints are nonreactive, then the principle of constraints is satisfied identically. In this case 7Wconstrained external constitutive relation is given by

4

 4 

  for a.e. teR, and Г М constrained internal constitutive relation has a form y>(t) e E(<p", <p'(t)), cp(t) e DA, «,'(/) e Л (?(/)). for a.e. t e R. Conclusion 2. If Г М constrained constitutive relation Q e 0(R, M)x4 / (R, T*M) is a functional relation (defined on the subset 0 A {R, M) of 0{R, M), i.e., if yj = gcp, q> e 0 A (R, M), then Г М constraints <в A are unreactive.

Remark 3 .Remark 4 .

 34 Conditions (2.9) 2 , (2.10) 2 are implied by conditions (2.9) 3 , (2.10) 3 , res pectively, sinceDA(t) : = {me M\A(m, t) ф ф ), DA : = {meM\A(m)Ф ф }. The requirements formulated in the foregoing proposition represent only necessary conditions imposed on constrained constitutive relations. The sufficient con ditions can be formulated only for some special classes of constitutive relations.

  2 makes it possible to formulate an approach leading from the known constitutive relation Q С 0(R, M)x4 y (R, T*M), to a new relation QB С <P(R, M)x L I J (R, T*M), where B.MxRэ (m, 0 »• B(m, t) <= TM is a certain 7jV/constraint multifunction.

(3. 1 )

 1 with domg = ®A{R, M) and where A:MXRB (m, 0 > A(m, t) <= TM is the known 7Wconstraint multifunction. Putting *x(0 = U A(m, t), teR, meJVf we obtain Г М constraint <ś = <% A . Now assume that there is known the TAfconstraint multifunction B.MxRa (m, t) * ~* B(m, t) c: TM. This multifunction, for every teR, determines the nonempty subset of TM: VB(0 = U B(m,t), teR. m E M

.

  6 B (t) c=cztf A (t) for some teR. Define the relation Q\ B С 0(R, M)X K F{R, T*M),putting (<Р ,У >)е д \в <> [(<р ,у >)е в ]л [<р е Ф в (И ,М )]. (3.3) Relation gj B is not empty and may be not TMconstrained constitutive relation since it may not satisfy the principle of constraints. Taking into account Eq. (3.3) we shall define the new relation g B cz 0(R, M)x x 4 J (R, T*M) by means of (<p, y>) e QB <=> (3r e R B (<p))[(<p, y>±r) e Q\ B ], (3.4 where we use the sign " + " if Q is the internal relation and the sign ,, -" if Q is the external relation. Introducing the multioperator М г д \ в (<р ) := { v e W(R, T*M)\(p, y>) e Q\ B}, we obtain from Eq. (3.4) that y>±r e Mrn\ B ((p) for some r.eR B (q>) with the same meaning of sign as in Eq. (3.4). Thus we conclude that (у , y>) e o B if and only if y>eMrQ\ B (<p)±R B (<p), (3.5) where now the sign ,, + " (the sign ,, -") is valid if Q is the external (the internal) consti tutive relation. By virtue of Eqs. (2.7), (3.2)н (3.5) we can formulate now the following Conclusion. Relation g B , obtained from 7Wconstrained constitutive relation Q by means of Eqs. (3.3), (3.4), is TMconstrained (constitutive) relation with reacting TM constraint ( The procedure leading from TMconstrained constitutive relation Q a 0(R, M)x xW(R,T*M) to Г М constrainted constitutive relation QB <= 0{R, M)x l P(R, T*M) will be called the method of constraints. Roughly speaking, the relation QB has been ob tained by imposing 7"Mconstraints ( в в on the relation Q.

  (3.6) represent an external TAfconstrained constitutive relation QB; here multioperator E,()/ B is obtained from E,{) by restricting its domain only to such 6) We can only assume that Q B is the constitutive relation if Q is such a relation. In fact Q B satisfies only sufficient conditions of being constitutive relation, formulated in Sec. 2. <p e Ф (Я , M) which satisfy Eqs. (3.6) 2i3 . Analogously, taking into account Eqs. (2.10), (3.5) we arrive at f{t) e Ј(У <\ <р '(0)| в ^1м о ."(9''(0)А '1 М о .,)(9''(0), (p(t)eDAnDB, cp'(t)eA(<p(t))nB((p(t)), for teR. Eqs. (3.7) represent an internal 7"Mconstrained constitutive relation Q B .

Proposition 2 .

 2 If for some me H the cone A(m) = T"(m) is convex in T m M, then the reaction cones K^l m) (v), v e A(m) = T H (m), are determined by K2<»)(o) := {*>* 6 Г *А Г |<«, г >*> <г >, for every и e T u (m)}. (4.5)

  coaQ := {x e V\x = ?.x, xeQ, X & 0), for an arbitrary subset Q in a vector space V. Now taking into account Eq. (1.10) we also conclude that v* e K% im) (v) if and only if <и >, v*} ^ 0 for every w e con[T,,(m) -v], i.e., K% (m) {v) = con*[T H (m)v], A(m) = Т И (т ), where con*Q stands for a closed cone conjugate to coni2. The ultimate condition leads directly to Eq. (4.5). Corollary 2. Under the assumptions of Proposition 2 the following equality <y,v*y = 0, v*eK* im) (v) (4.6) holds for every v e A(m). Hence v* e K* im) (v) if <©,©*> = 0 and <w,i*>^0 for every ueA(m), (4.7) holds for every v e A(m) = Т И (т ). Equality (4.6) can be obtained from Eq. (4.5) by substituting и = kv with к > 0. Then (к -1) (v, v*y ^ 0 for every к 0 and hence we arrive at Eq. (4.6). Now assume that M is (finite dimensional) linear space and H is convex in M. Then A(m) = T H (m) = ć oń (H-m) for every me H, where con( • ) stands for a closure of con( • ) in M. Taking into account Eq. (4.7) we arrive'at the following final Conclusion. If a nonempty set H is convex in a finite dimensional linear space M and H determines holonomicscleronomic TMconstraints, then (u,v*y ^ (jn,v*y for every ueH, (H-?ri), m e H, if and only if v* e K% i7n) (v), where A(m) = coh(#m). From now on we shall confine ourselves to holonomicscleronomic !TMconstraints in which M is a finite dimensional linear space, M = R", and Г М constraints are determi ned by a nonempty convex subset H of M. Let us take into account constitutive relations given by Eqs. (2.11) or (2.12). Combining together Eqs. (2.11) and (4.8) we arrive at the following rMconstrained constitutive relations y>(f) = F t {<p«\ <p'(t))±r(t), <н , r(t)} Js <(p(t), r(0> for every и e H, <4>'0),r(t)> = 0, <p(t) e H, for teR. Let us confine ourselves to the internal constitutive relations only, putting ^( = jpfor every teR and taking into account the sign ,, -" in the first from the foregoing relations. Let us also take into account Remark 1 of Sec. 2 and Remark 2 of Sec. 1, assu ming that F = F a , д e A and H = H s , i eS (implicit constraints). Then we finally arrive at the following special form of 7Wconstrained constitutive relations <7) W (t) = F\<pV\cp'(t)y,it), deA, <w, /• (/) > ^ <.<p{t), r(t)} for every и e H ( , <p(t)eH t , Јe3, which has to hold for / 6 R and where A, S are the known sets. If A, S are singletons then the indices d, f, respectively, drop out from Eqs. (4.9).

7 >

 7 If s <p(t+s) is differentiable in ( E, E), then Eqs. (4.9) 2 imply Eq. (4.9) 3 . Mind, that Eqs. (4.9) hold only if H( is convex in M = R" for every f e S.

  F a = F, # f = H) and F(<p«\ <p'(0) = L(<p(t))<p'(t), (5.1) where L(m): R d * R s is the linear continuous operator (known for every m e M). Intro ducing the denotations e(t) = f(t), ff(t) = <p(t), ff(0 • <p'(t), s(t) = r(t), we shall rewrite Eqs. (4.9) to the form e(t) = L(o(t))d(t)+s(t), <т , e(0> < <c(0, e(0> for every г e H, <a(/), e(0> = 0, (

F

  (<P m ,<pV)) = Lq>«), (5.3) where L:R } * R d is the tensor of elastic moduli of the linear elasticity. Introducing the denotations 0(f) s w (t), e(t) = (p(t), rit) = Ą t), we rewrite Eqs. (4.9) (in the sequel we shall neglect Eq. (4.9) 3 , cf. Footnotes 7) and 8) to the form ait) = Leit)+rit), <e, T(0> *S O(0, rit)) for every e e H, (5.4) e(t) e H.

  cf(t) = tp(t),e(/) к <p(t), e(t) s d, r(t) a r{t), and assuming thatF(cp«\ c/(0) = F*(q>«\ cp'(t)) E(d), (5.6)where E:R e * /? л is the known function 9) ,we obtain from Eqs. (4.9)aft) = E(e(t))+r(t),<e, т (0> < <e(0, T(0> for every s e H eU) , (5.7)e{t)eH eM , e{t)eE.The foregoing constitutive relations can be treated as obtained by the method of constraints from the constitutive relations a(t) = E(e(t)), e(t)eA, (5.8)

  a{t) = E{e{t))+x{t), <e, т (/)> = 0 for every e e T eU) S, (5.10) e{t)sS, 9)

v 6 A(m, t)

where

is the space tangent to S at e{t), e(t) eS. Thus we have obtained the case of smooth bi lateral internal constraints well known in the present literature.

Returning to the general case of holonomic constraints imposed on the stress relation of nonlinear elasticity (5.8), let us observe that the "maximum" principle (5.7) 2 can be re presented by the formula (cf. Sec. 4) <e, T(0> Ś* 0 for every с econ[T s (e(t))e(t)], (5.11) and hence

E(e(t))<x(t) e con*\T s (e(t))e(t)], e(t)eE, HO e T s (e(,)), (5Л 2)

where con*[ • ] is a cone conjugate to the cone con [ • ]. Eqs. (5.12) constitute an alternative form of Eqs. (5.7). From Eq. ( 5.12) x it follows that the elastic materials by imposing the constraints for deformations, in the general case, have lost their elastic properties; this is due to the fact that the ,,reaction" part r{t) of the stress tensor can depend not only on the strain tensor e(t) but also on the strain rate tensor e{t). Such situation does not take place for the smooth bilateral constraints since the strain rate tensor e{t) does not enter Eqs. (5.10).

Eqs. (5.6), (5.7), (5.10), (5.12) can be easily generalized. To this aid the assumption that Л is a set of all strain tensors has to be replaced by the assumption that Л is a set of all strain histories. In this case instead of Eqs. (5.7), (5.9) we obtain of all (symmetric) stress rate tensors, and T*M = R 6 as the space of all (symetrie) strain rate tensores. Moreover, let S be the closed (but in general not convex) subset of R 6 . Then from Eqs. (4.9), under notation k{f) = y>(t), a(t) = <p(t), sit) a rit),

<т , e(f)> < <<J(0» e(0> for every т e# a ( ( ) , or(0 eS, у(r)etf 0(t) .

Taking into account that every Я о (г ) is a convex cone and putting

we arrive finally at the constitutive relations

<т , e(?)> < <or(0, «(/)> f or every r 6 tĄ ć (f)), (5.15) which can be also written down in a form

E(ait))ait) bit) e con* [T s (?«))ait)], ait)eS, bit)eT s (oit)). (5Л 6)

We deal here with the ratetype materials with the holonomic constraints (S is closed in R" but not convex in general) for stresses. Assuming that E = H, where H is convex, we arrive again at Eqs. (5.2) .Assuming that Я is a differentiable manifold in R 6 , we obtain bit) = L(ffit))óit) + sit),

<т , E(0> = 0 for every т e T aU) E, (5.17)

where

is a space tangent to iS at с т (/) е Я . Thus Eqs. (5.2) and (5.17) constitute two different special cases of the constitutive relations (5.15) of the ratetype materials (of the hyper elastic materials if Lie) = 8 2 yia)/8a 2 ) with holonomic (scleronomic) constraints for stresses.

Conclusions and final remarks. Summing up we conclude that the abstract form (4.9) of Г М constrained internal constitutive relations (with convex implicit constraints) is an appropriate basis for obtaining constitutive internal relations for a large class of ideal materials. In this way we have obtained the known relations (5.13) for simple materials with internal constraints for deformations, the known relations (5.2) for elasticideal plastic materials and relations 121 Here L(a(i)) has the same meaning as in Eq. ( 5.3).

(5.4) for ideal locking materials. Thus we have shown that the elasticideal plastic materials and ideal locking materials can be treated as the rate type materials with constraints for stresses and as the linear elastic materials with constraints for strains, respectively. We have also derived, using the method of constraints, new classes of ideal materials. They are simple materials with convex implicit constraints, defined by Eqs. (5.13), and rate type materials with convex implicit constraints, defined by Eqs. (5.15) or (5.16). The new classes of ideal materials, which have been obtained by the method of constraints, are also given by Eqs. (5.12) and Eqs. (5.17) (they are the subclasses of materials with internal constraints defined by Eqs. (5.13) and Eqs. (5.15), respectively).

Examples of applications of the general approach to the problem of constraints in constitutive relations of mechanics have been restricted here only to problems of ideal materials with internal constraints. However, it can be observed that the method of con traints is a useful tool of the formation of new constitutive relations of mechanics on the basis of the known constitutive relations. This method can be applied not only to the theory of ideal materials, i.e., to internal constitutive relations, but also to the problems of interactions between a body and its exterior, i.e., to the formation of external consti tutive relations. The form of constraints which are described within an approach outlined in the paper is very general; as a matter of fact no restrictions of any kind are imposed on the sets of states 13 ' which are admissible by constraints. Due to this fact certain new classes of constitutive internal relations have been obtained. More special classes of materials with internal constraints, obtained by the method of constraints, are discussed in [START_REF] Cz | Materials with generalized constraints[END_REF]. Some applications of this method to the problems in structural mechanics will be given in forthcoming papers [START_REF] Konieczny | Generalized constraints in the plate theory[END_REF][START_REF] Gałka | Composite materials with unilateral constraints for deformations and stresses[END_REF].