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Brain Tissue Classification of Magnetic Resonance
Images Using Partial Volume Modeling

Su Ruan*, Cyril Jaggi, Jinghao Xue, Jalal Fadili, and Daniel Bloyet, Member, IEEE

Abstract—This paper presents a fully automatic three-di-
mensional classification of brain tissues for Magnetic Resonance
(MR) images. An MR image volume may be composed of a
mixture of several tissue types due to partial volume effects.
Therefore, we consider that in a brain dataset there are not
only the three main types of brain tissue: gray matter, white
matter, and cerebro spinal fluid, called pure classes, but also
mixtures, called mixclasses. A statistical model of the mixtures
is proposed and studied by means of simulations. It is shown
that it can be approximated by a Gaussian function under some
conditions. The D’Agostino—Pearson normality test is used to
assess the risk o of the approximation. In order to classify a
brain into three types of brain tissue and deal with the problem
of partial volume effects, the proposed algorithm uses two steps:
1) segmentation of the brain into pure and mixclasses using the
mixture model; 2) reclassification of the mixclasses into the pure
classes using knowledge about the obtained pure classes. Both
steps use Markov random field (MRF) models. The multifractal
dimension, describing the topology of the brain, is added to the
MREFs to improve discrimination of the mixclasses. The algorithm
is evaluated using both simulated images and real MR images
with different T1-weighted acquisition sequences.

Index Terms—Brain tissue, classification, Markov random
fields, mixture, multifractal dimension, partial volume effects,
validation.

1. INTRODUCTION

HE ADVANTAGES of magnetic resonance imaging

(MRI) over other diagnostic imaging modalities are
its higher spatial resolution and its better discrimination of
soft tissue. Advanced applications that use the morphological
contents of MRI frequently require segmentation of the imaged
volume into tissue types, i.e., gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF). There are several major
reasons for doing MRI brain tissue segmentation: multimodality
image correlation, visualization, and quantification, and their
clinical uses such as in tumor and lesion detection. Many au-
tomated or semiautomated approaches for tissue segmentation
in brain images, using T1-weighted [1] or multispectral MR
data [2], [3], have already been proposed. The main techniques
are based on: histogram threshold determination [4], cluster
analysis [5], a priori information about anatomy [6], and
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Bayesian classification [7]. An overview of segmentation
methods for MRI can be found in [8]. Most of the proposed
methods assume that each voxel belongs to a signal specific
tissue type. However, in MR images the complexity of tissue
boundaries causes many voxels to contain mixtures of tissues
[9]. This is the partial volume effect problem. In this paper, we
present a brain tissue segmentation which takes this problem
into account.

Some researchers have worked on the issue of partial volume
effects: for example, correction of the partial volume effect [10]
in order to segment tumors or lesions [11], [12] in clinical ap-
plications, and modeling of the mixture distribution to segment
brain tissues [13]. In [14], the authors propose a method based
on unsupervised fuzzy clustering. However, the fuzzy results
pose the problem of fuzzy diagnosis. Laidlaw ef al.[15] and
Santiago and Gage [16] derive a distribution of partial volume
mixtures of two materials by fitting the histogram of an entire
dataset or a local region. We share the idea of the histogram fit
for finding the distribution. However, our mixture model is dif-
ferent. The details will be presented in Section III.

In this paper, we propose a new strategy for modeling the
mixture probability density functions in the classification of the
brain tissue. MR images are previously processed to extract
the encephalon (edited brain). Based on the proposed mixture
model, a partition of the encephalon is carried out in two steps
by means of the Markov random fields (MRF) classification,
which is widely used in medical image processing [13], [17],
[18]. The first step consists of classifying the brain into three
types of tissue (GM, WM, and CSF) and mixtures of these brain
tissues. As the contrast between pure tissues in each mixture is
very low, multifractal analysis [19], [20], which provides infor-
mation about local intensity variation, is carried out to enhance
the mixclasses. An additional energy component based on the
shape of the local intensity pattern is incorporated into the MRF
model in the second step to reclassify the mixclasses into the
pure classes.

The paper is organized as follows: Section II presents the
related works in mixture modeling and MRF classification in
MRI. Section IIT describes the proposed mixture model. Sec-
tion IV is devoted to the classification algorithm. The validation
of the method and experimental results are presented in Sec-
tion V. Finally some concluding remarks are given.

II. RELATED WORK

A. Partial Volume Effects

The partial volume effect appears when more than one type of
class or material occupies one voxel or pixel of an image. These



voxels and pixels are usually called mixels. Several models have
been proposed to describe these phenomena in MRI and to find
the mixture density function. The most widely used represents
the intensity %,,, of a mixel as follows [13], [15], [16]:
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where ¢ is white Gaussian noise with standard deviation o.. /Vy
represents the number of tissues. Ij, is related to the intensity
value of the class k, and ay, its proportion, which is assumed to
be a uniform random variable in the interval [0,1].

In the case of mixels of just two pure classes (k = 1, 2), the
probability density function of ¥,, is given by
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There are four major voxel intensity modifiers in MR images:
random field (RF) nonuniformity, partial volume effects, addi-
tive noise, and the intrinsic heterogeneity of the tissue types.
Many manuscripts and publications have attempted to model
one or two of these four modifiers, assuming that the others play
a minor role. In [15] and [16], I; and I are taken as constant
values (mean values); in this case, the model ignores not only
RF nonuniformity, but also the heterogeneity within each type
of pure class. Work carried out in [21] shows the level of vari-
ance of within the brain tissue classes is almost the same as that
of the noise in T1-weighted MRI and, therefore, cannot be ig-
nored. In [22], the authors first find normal distributions of the
pure classes using regions of interest (ROIs) enclosing pure tis-
sues; each mixture is then considered as the weighted sum of
the pure classes with varying proportions of the corresponding
pure component. In order to simplify the mixture model, ten dif-
ferent values of @ are proposed in the paper, instead of using «
as a continuous and random variable as in (2). We propose a
more complete model for p(y,,) which takes into account not
only instrument noise but also the heterogeneity of each type of
pure matter. This model is described in Section III.
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B. MRF Classification

One obvious way of incorporating spatial correlation into
a segmentation process is to use MRFs as a priori models
[23]-[25]. The MRF has already been used in medical images.
Choi et al. [13] used the MRF model for the classification of
multichannel MRI of the brain. The MR image is considered
as the mixel image, which is a MRF with respect to a given
neighborhood system. In each voxel, the segmentation finds
percentages of each pure tissue. In [26], the authors proposed
an extension of the MRF two-dimensional model [23] to a
three-dimensional model in order to segment volumic objects.
Segmentation is improved by using 3-D information. Held e?
al. [17] have also proposed a 3-D MRF segmentation algorithm
based on the adaptive segmentation algorithm described by
Wells et al. [18]. The emphasis of this algorithm is on the
modeling of signal inhomogeneities by a priori MRF.

III. THE MIXEL MODEL
A. Theory

Let 3,,, denote the intensity of a mixel and V; the number of
pure tissue classes present in an image. The intensity value of a
mixel can be represented by the weighted sum of /V; pure tissues

Ny Ny
Ym = Z aryy, Wwith Z ar =1, Yke[l,N] ()
k=1 k=1

where ay, is the contribution of pure class & to the mixel inten-
Sity ¥, . The random variable ¢/}, refers to the pure class k& whose
probability density results from the distributions of acquisition
parameters 77 , T3 , and p,, and from instrumental noise. The
probability density function p(y;) may then be assumed to be
asymptotically normal by application of the central limit the-
orem. In the case of mixels including just two pure tissue classes,
the mixel intensity takes the following expression:

Ym = ayZILJ + (1 - a)ygv

where a is the relative quantity of the first class. If the prob-
ability density functions of a, ¥} and y5 are known, then that
of ¥,, can be obtained. For two pure classes, which are nor-
mally distributed (N (ur, o7), (k = 1, 2)) and statistically in-
dependent from each other, the probability density function of
the mixture can be written as follows for a given a:

0<a<l 4)
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P(Ym, a) is then a Gaussian density function. However, in a
volume dataset, all ¢ values can occur with equal probability
since mixels may consist of any fraction of pure tissue class on
boundaries. Thus, assuming that ¢ is a uniform random variable
in the interval [0, 1] as already proposed in other publications
(e.g. [13] and [16]), the marginal probability density function of
the mixture is then

1

P = [ oo o ©
The calculation of this expression is nontrivial because of
the undefined analytic formulation of the integral. Intuitively,
P(ym) could not be a Gaussian function. Thus, numerical
simulations described in the Section ITI-B have been performed
in order to predict the behavior of such a probability density
function.

B. Approximation of the Probability Distribution of a Mixel

Based on (4), the simulator generates mixels using two sets
of Gaussian random variables representing two pure classes
and one uniform random variable, yielding the histogram of the
mixels. It is obvious that the intensity distribution of the mixels
depends on the parameters (uy, o7); the effect of changing
the means and the standard deviations of the pure classes can
be intuitively understood as illustrated in Fig. 1. The mixture
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Examples of mixture density function p(y,.) obtained by simulations (dashed lines). The two pure classes are considered to be normally distributed

(continuous lines). p(y.,, ) depends on the difference between the means and on the standard deviation ratio of the two pure classes. In some cases, p( Y., ) is clearly

(b) Gaussian, while in other cases it is (a) asymmetric or (c) flattened.

[ pothesis (validity), K2 has a x? distribution with two degrees of
4 SR TR 7o freedom. In fact, as illustrated in Fig. 1, the p(¥,) depend.s on
\ \,.xh_v;ﬂ, the ratio (|p1 — pe|)/ ({1 + 02)/2), noted I, and on the ratio of
35 4 \ Ohu‘c'; vl K the two standard deviations o1 /o2, noted ». Curves of « (Fig. 2),
' k\ 7~ a=007 can then be drawn as a function of different values of / and r. The
370 . d_/“'/ ] curve for o« = 1% is also reported on the map. This map shows
! T =006~ that a Gaussian approximation can be used in a wide range of

25k \ ___,/—""" pp 2
\ "\\_ L 0=005. variation of [/, even where the risk « is small (e.g., &« = 1%).
5 o “‘*\_.—_v,_.-r:"f"f . - g 04 Thgs, i.f the pargmeters of the two pure classes are.known, .the
\_\: T ‘—0“:65; validation of fitting the mixture density by a Gaussian function
15 T R, can be performed. Let us now carry out the normality measure
[ T T ey 6=0.02 to the three mixel densities shown in Fig. 1. p(y,,,) in Fig. 1(b)
1 1 ) 2 . 5 6 1 canbe accepted as a Gaussian function since o < 1% (I = 3.75,
7 = 1), while the other two mixel density functions [Fig. 1(a):
Fig. 2. Level of significance « using the D’Agostino omnibus test for (l =4,r= 2), o > 5%; Fig. 1(0)3 (l =6.25,r= 1), a > 2%]

normality assessment, as a function of I = (|1 — p2|)/((01 + 02)/2) and
r = o1 /02. For conditions of noise and acquisition parameters similar to real
data, the level of significance «v obtained on the simulated Brainweb phantom
is less than 1%. This value is used as a threshold to validate the normality
assumption for real MRI applications.

probability density function mainly depends on the difference
between the two means and the two variances. The degree of
asymmetry of p(y,, )increases when the ratio between the two
standard deviations of pure classes increases. Moreover, the
greater the difference between the means, the flatter p(y,,,)
becomes. Despite the undefined analytic expression of p(¥,,),
the simulations show that in some cases [Fig. 1(b)], the mixed
class intensity distribution can be well approximated by a
Gaussian function. The quality of the fit by a Gaussian function
can be evaluated through a normality test. We have chosen the
D’ Agostino—Pearson K2 omnibus test of normality [27] owing
to its robustness

K2 =27? (\/E) + Z2(by)

where Z(y/b1) and Z(b,) are the normal approximations to the
sample estimates of skewness and kurtosis. Under the null hy-

™)

are far away from a Gaussian function. In practical situations,
we will show that a Gaussian approximation is almost verified
for a T1-weighted acquisition sequence.

IV. CLASSIFICATION
A. Brain Tissue Models

We assume that a normal human brain consists of three types
of tissue: WM, GM, and CSF. However, due to the spatial res-
olution of the acquisition system, a voxel in a MR image can
be made up of a single type of tissue or of a mixture of dif-
ferent types. As the probability of mixing more than two types
of tissue in a voxel is very low and the mixture of WM and CSF
is very rare in a brain dataset, we can consider that the brain
image volume will consist of the three pure classes CSF, GM,
and WM, and two mixclasses: CG (a mixture of CSF and GM)
and GW (a mixture of GM and WM). As pure classes exhibit
heterogeneity, each pure class presents its own specific statis-
tical distribution while additive instrument noise is spatially in-
variant. The three pure classes in T1-weighted MR images can
be well modeled by Gaussian functions [21], as can the two mix-
classes. Given an edited encephalon, the problem is then to iden-



tify the parameters of the five Gaussian functions. We used the
Davidon—Fletcher—Powell method described in [28] to fit the
histogram of the entire data set using the sum of five Gaussian
functions as a model. Validation of the Gaussian modeling can
be accomplished by the test of normality described above. Fig. 3
shows the fit of an experimental histogram using the sum of
three or five Gaussian functions. The difference between the
model and the histogram is only significant when three Gaussian
functions are used. This means that mixels cannot be ignored.

B. MRF Classification

The MRF model has been widely used for image modeling
due to its flexibility in defining the neighborhood system.
Theory about MRF segmentation can be found in [23]. Using
Gibbs representation for a MRF, we need only to specify the
potential, expressed by a global energy function U, which can
be decomposed as the sum of several functions according to
the context.

The resolution of MR images (about 1 mm?) is significantly
smaller than the size of most of the brain structures we wish
to study. Therefore, adjacent voxels are likely to have similar
components and thus similar MRI intensities. This idea can be
expressed using an MRF. As the brain is a 3-D object, a 3-D
geometrical model is needed. In the first step, the global energy
function U is taken as the sum of only two functions. The con-
ditional distribution of the observation ¥,, at the voxel » under a
given class label A is a Gaussian distribution, as shown in Sec-
tion ITI-A. Therefore, the first energy function U; which takes
into account the gray levels of the voxel is described as

Y
U (y /X)) = log (\/%0)\) + % (8)

The second energy function uses the Ising model which favors
local intensity homogeneity:

>

(i.4,k,m,n 1) €C

Us(\) = InGi, g, 1) 2N (mon,0) )

where C is a 3-D system of second-order neighborhood con-
sisting of the 18 nearest neighbors, and /3, is a weight coeffi-
cient. Us is minimum for homogeneous regions. Classification
of the brain is equivalent to finding the optimal labeling using
the maximum a posteriori (MAP) estimator: A = arg min(U; +
Us), where ) takes five possible labels: GM, WM, CSF, CG, and
GW.

In the second step of classification, the two functions U/; and
U, are not sufficient to reclassify the mixclasses, because there
is almost no contrast in these regions due to their positions
close to the boundaries between pure tissue types. It is, there-
fore, necessary to introduce other information to deal with this
problem. In fact, three types of gray level variations are typ-
ical in a brain volume: uniform regions where there is at most
very little gray level variations, and convex or concave regions
that correspond to hill- or valley- shaped gray level variations
as shown in Fig. 4. The multifractal dimension, usually used in
texture analysis [19], [20], can provide local information about

00" T2 50 40 50 e e %o
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Fig. 3. Results of histogram modeling using (a) three Gaussian functions and
(b) five Gaussian functions . The fit using five Gaussian functions gives a more
accurate representation of the histogram [mean square error (MSE) = 10 ° for
(a) and 10* for (b)].

Fig. 4. Tllustration of Holder exponent o for different spatial variations of
intensity. Knowing the value o for an homogeneous region, we have aff >
afl for a concave region and o < off for a convex region.

gray level variations. Therefore, we have added a third term
Us; into the energy function, which is obtained by multifractal
analysis. The multifractal dimension is locally measured by the
Holder exponent aff | which can be estimated by the slope of
log(Ir,) at the voxel v versus log(r), where Ir, is the sum of
gray levels in a cube of size 72 centered at the voxel v. 7 linearly
changes from one to a given maximum value with a unit step.
Let us note ! the Holder exponent within a uniform region.
If o > o}, the current voxel is in a concave region (valley),
while if o < o, the current voxel is in a convex region (hill).
It is known that, for a T1-weighted MRI brain volume, the in-
tensities of sulci and gyri are dark and light, respectively. They
can be considered as concave and convex regions, respectively
(Fig. 5). Therefore, a CG mixel with o > «ff probably be-
longs to the CSF, and a GW mixel with o < of probably



belongs to the WM. Elsewhere, aff = o is mostly observed
in WM. In summary, the function Us can be defined as follows:

—vF,(af!), if Xis the WM label
Us(A\) =<0, if A is the GM label
yF, (o), if Xis the CSF label

1, ifafl <aff
with Fo(a)y=<{ 0, ifa =af

e H H
-1, ifa” > aj

(10)

7

where 1 is a positive weighted coefficient.

Optimal labeling of the mixtures is obtained through the con-
dition A = arg min(U; + Uz 4 Us), where A corresponds to the
three possible labels: GM, WM, and CSF.

The deterministic relaxation iterated conditional modes
(ICMs) [29] is used for the two steps of the classification.
Although the ICM usually converges to a local minimum of the
energy function, this loss of optimality may be compensated
for by an appropriated initial guess. In our experiments, we use
U, for initializing labels with the parameters of distributions
obtained by the histogram fit.

V. VALIDATION AND RESULTS

It is impossible to obtain MR images of the human brain
with known proportions of mixel components within each voxel.
Therefore, a quantitative assessment of the performance of the
classification method requires the use of simulated data. While
testing with simulated data is necessary, it is not sufficient to
validate the model. Additional testing with real data must also
be completed to demonstrate the ability of the algorithm to work
under real-world conditions. For this reason, we also used sev-
eral real MRI datasets acquired on the same subject to test the
reliability of the algorithm.

A. Simulated Data

The digital brain phantom, available on the site BrainWeb
[30], [31], is used. This 3-D phantom is made up of ten volu-
metric data sets that define the spatial distribution for different
tissues (e.g., GM, WM, CSF, etc.), where voxel intensity is pro-
portional to the fraction of tissue within the voxel. Based on
this phantom, different types of simulated image can be created.
T1-weighted MRI simulated volumes with different noise levels
are also available on this site, which are also used in our valida-
tion.

Each simulated volume consists of 181 x 217 x 181 voxels
and each voxel is 1 x 1 x 1 mm3. The noiseless volume was
first segmented by the software (ATOMIA) developed in our
laboratory [32] to obtain the encephalon mask where the three
brain tissues are localized. The layer of glial tissue in the mask is
considered as GM, since its intensity is similar to T1-weighted
images. The gold standard is created using the encephalon mask
in which each voxel is labeled according to the tissue type whose
proportion is the highest.

(b)

Fig. 5. Example of a (a) Tl-weighted SPGR MR image and (b) the
corresponding a¥ image.

B. Performance Evaluation Criteria

Three criteria were used to assess the performance of the seg-
mentation strategy.

1) False Positive and False Negative Ratios: The false pos-
itive ratio &), is defined as the number of misclassified voxels
divided by the number of true voxels taken from the gold stan-
dard (V). The false negative ratio {,, is defined as the number
of falsely rejected voxels divided by N. Since £y, and £y, in-
versely vary as a function of the weighting parameters (/3, )
of the energy function U, a better quality index is given by the
sum of £y, and ., noted ;1. However, this index is global,
which is why we have also analyzed the errors as a function of
their contents, described below.

2) Histogram of Error: Here, we propose to show the er-
rors in terms of a histogram, which allows us to know where the
errors appear with respect to the pure tissue proportions. The
proportions of each class were first gathered in 10% ranges.
The ratio of the number of classified voxels to the number of
gold standard voxels within each range was calculated. The ideal
curve is a step function (jumping at 50%). The higher the value
of the histogram for proportions >50% and the lower for pro-
portions <50%, the better the results. In this way, histograms
corresponding to the three classes can be drawn for the final re-
sults.

3) Coefficient of Agreement r: Cohen [33] has developed a
coefficient of agreement denoted r, which is a chance-corrected
percent agreement with a statistical base. This coefficient allows
us to measure the similarity index between two results.  is de-
fined as

Fy— P,
= — 11
K=T1_P, (11)

where P, is the proportion of voxels where both data sets are
in agreement. P. is the proportion of agreement due to chance.
(for more detail, see [33]). x = 1 is obtained whenever there is
perfect agreement between the two data sets. x = 0 indicates
that agreement is due to chance alone. x between zero and one
reflects agreement greater than chance, whereas negative values
indicate agreement less than chance.



C. Validation Using the Simulated Data

We first aimed to evaluate the estimation method of the two
parameters 3 and ~ used in our model. In the decomposition
of U, each term expresses a different interaction model, each
of which contributes to the global classification. The two sets
of parameters 5 (A denotes the label) and v weight the inter-
actions between them. Optimal parameters are obtained when
Eiotal 18 minimum. In order to find the minimum &; 4 and cor-
responding parameters, we have tested each combination of pa-
rameters by changing /3, from zero to 0.5 with an incremental
step of 0.1 and -y from zero to five with a step of 0.5. It should
be pointed out that among the optimal parameter set, v is not
zero (v = 3), which shows that Us improves the classification.
However, these values are obtained only by simulated images
(noise level = 3%, RF inhomogenity = 0). For real images, the
parameters should be adapted to each given volume.

We propose a simple method to calculate /3 for each class as
a function of U3, and use the optimal value -y. With the smooth-
ness assumption, the fact that a current voxel is an isolated voxel
within the neighborhood system is not acceptable even if its U;
1s minimum. The minimum U; under the class label A; is ob-
tained when the gray level y,, of the voxel takes the mean value
tia1- The class label of other voxels in the neighborhood system
is supposed Aq. In order to change the class label A; of this iso-
lated voxel to A5, the following condition should be satisfied:

Ur(p1/A2) + BaNs > Ury (01 /A1) (12)
where Ns = 18 (18-adjacency is used). 3 can be calculated
for each class in this way. A comparison between obtained er-
rors using optimal parameters and those calculated from (12) is
shown in Table I. It is clear that classification accuracy with the
calculated parameters is slightly lower than with the optimal pa-
rameters. However, the difference is acceptable. It can be seen
that the errors of the CSF classification are higher than those of
the other tissue types. Two reasons for this are evident: first, the
CSF voxels in encephalon are mostly within the sulci, therefore,
they are prone to partial volume effects; second, there are fewer
CSF voxels in the encephalon than there are of the other tissue
types, implying a high relative error ratio.

In order to take this last issue into account, errors are plotted
in terms of a histogram. Because of the presence of mixels,
the error histogram can provide an assessment the classification
error as a function of the true proportion of tissue constituents.
The obtained histograms for the three pure tissue classes are
portrayed in Fig. 6. Compared to the ideal function (the step
function shown as a dotted line), the voxels in the range of 90%
to 100% are well classified. Errors can be mostly observed close
to 50%. From these histograms, the results of CSF are not the
worst, and are even better than that of GM. Indeed, the surface
of the histogram from 50% to 100% is greater than that of GM,
while the surface from 0% to 50% is less than that of GM.

The impact of noise is analyzed using the volumes proposed
in the same BrainWeb (the noise level varying from 1% to 9%
and RF inhomogeneity equal to 20%). &1 and x were calcu-
lated (Fig. 7) in comparison to the gold standard. The conclusion
is not exactly the same for the two indexes. Because &4 de-
pends on the number of voxels within the class, &yota1 0f CSF

TABLE 1
COMPARISON OF THE RESULTS OBTAINED USING OPTIMAL PARAMETERS,
NOTED P1 AND USING THE PARAMETERS CALCULATED BY THE
PROPOSED METHOD, P2

class 5 (%) L (%) Liotar (*4)
P1 P2 P1 P2 P1 P2
WM 2.28 2.60 3.72 3.51 6.01 6.11
GM 3.82 4.41 2.61 2.66 6.33 7.07
CSF 317 347 4.82 8.81 7.99 12.28
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Fig. 6. Error histogram as a function of percentage of pure tissue. Results

evaluated by percentages of classification in each 10% range (vertical axis)
versus the pure tissue proportion in this range (horizontal axis) for (a) CSF, (b)
WM, and (c) GM.

is the highest and those of GM and WM are almost identical.
Whereas,  indicates that the GM result is the worst. This is
logical because the GM has two borders: one with the CSF and
the other with the WM. As a result, there is less certainty about
the constitution of the mixclasses.



sum of the two emrors (%)

noise level (%)

—8— CSF —A— G ——\M

(2)

0,5 ; E

5
noise level (%)
—6—total —8— CSF —A&— GM ——\M

(b)

Fig. 7. Performance of the classification method using the simulated
T1-weighted MRI images, under varying conditions of noise (RF
inhomogeneity = 20%, slice thickness = 1 mm): (a) £total, (b) .

In any case, the performance is satisfactory. We have also
compared our results to those obtained by seven other methods,
presented in [34] [such as artificial neural networks (ANN),
K-nearest neighbors, Bayes, etc.). They used the same phantom.
The results of these seven methods are obtained using a fusion of
T1, T2, and PD-weighted image volumes. The author shows that
the best performance is obtained by the ANN method, which
derives benefit from a set of training samples. In the worst case
(noise level = 9%, RF inhomogeneity = 20%), the obtained »
value is about 0.81, while our method yields a better result, x =
0.85. In addition, our method is unsupervised and requires only
T1-weighted images.

D. Results on MRI Data

For real brain MR images, a quantitative assessment is very
difficult. Consequently, we propose to analyze statistical differ-
ences between the classification results, as a component of as-
sessing the validity of the algorithm. Two series of five data sets
with acquisition sequences SPGR (TE = 7ms, TR =30 ms, «« =
40°) and IR-FGRE (TE = 2 ms, TR = 12 ms, o = 10°) were
performed on a 1.5-T GE Signa scanner for the same subject.
Each dataset consists of 256x 256 x 124 voxels with a spatial
resolution 0f0.9375x 0.9375 x 1.2 mm?. The signal to noise ra-
tios (SNRs) of the two types of images are different even if they
are both T1-weighted. For the comparison, the five brain data
sets of each series were first realigned by the AIR package [35].
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Fig. 8. The x values for the SPGR and the IR MR sequences as a function of
volume number. The reference volume taken to calculate x is the mean volume
for each sequence. The obtained values are almost constant for both acquisition
sequences.

IR-FGRE

SPGR

Fig. 9.

Results of the classification algorithm. Column (a) shows two axial
MRI images (IR-FGRE and SPGR), Column (b) shows results of classification
into five classes: WM (white color), GW (light gray), GM (gray), GC (dark
gray), and CSF (black) classes. Column (c) shows the final results (WM, GM,
and CSF).

The mean volume of each series was then calculated, whose
SNR was improved in relation to that of each volume by a factor
V5. All data sets were first edited by ATOMIA and then seg-
mented by the proposed method. After modeling the histogram
with five Gaussian functions, the values of the risk « for nor-
mality rejection for both sequences were calculated. They are in
the range of acceptability ( is about 1.1, [ is about 4.5, v < 1%)
for both mixtures CG and GW. The results of each data set were
compared to the mean volume in order to show the stability and
consistency of the algorithm. x values are shown in Fig. 8. The
plots indicate that the algorithm yields almost constant errors,
thereby proving the stability of the method. A visual compar-
ison of the results is shown in Fig. 9. The results of labeling



into five classes [Fig. 9(b)] and three classes [Fig. 9(c)] are dis-
played for one axial slice. As expected, the obtained mixtures
can be mostly observed at the pure tissue boundaries and also
in subcortical locations (such as the globus pallidus and thal-
amus), that are known to have a high mixture of GM and WM.
The final results of classification in three classes show that these
regions are in general correctly segmented. As the subject is the
same for both acquisition sequences, the results of SPGR and
IR-FGRE are very similar. Unfortunately, we could not carry
out a more precise comparison between the two sequences be-
cause of inaccuracy in the voxel dimension caused by the MR
imaging system (this problem is discussed in [36]).

VI. CONCLUSION

A promising method is presented for segmenting WM, GM
and CSF volumes using a 3-D MRF model. The algorithm is
unsupervised, fully automatic, and uses only T1-weighted im-
ages. Mixtures of multiple tissue types within a voxel are taken
into account in the process of classification. The Gaussian dis-
tribution of the mixel intensities is demonstrated, which allows
us to simplify the image model, as well as the segmentation
method. First, the two-stage algorithm identifies the pure classes
and mixclasses, and then processes these mixclasses with an ad-
ditional energy term in the MRF model, obtained from multi-
fractal analysis. The results were quantified both on simulated
and real MR images to demonstrate the robustness and the sta-
bility of the algorithm with respect to the noise level and to dif-
ferent T1-weighted MR images. Apart from the global assess-
ment criteria which are widely used, we propose using the his-
tograms of errors described in Section V. They provide infor-
mation about misclassification in relation to the proportion of
tissue types. Due to poor contrast, some inaccuracy is present
in the gray nuclei region, therefore, improvement in the method
based on a priori anatomical knowledge is needed and is actu-
ally in progress.
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