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Abstract. A technique of spatial-spectral quantization of hyperspectral
images is introduced. Thus a quantized hyperspectral image is just sum-
marized by K spectra which represent the spatial and spectral structures
of the image. The proposed technique is based on α−connected compo-
nents on a region adjacency graph. The main ingredient is a dissimilarity
metric. In order to choose the metric that best fit the hyperspectral data
manifold, a comparison of different probabilistic dissimilarity measures
is achieved.
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1 Introduction

Gray-level images are pictures where each pixel is a scalar value which usually is
quantized between 0 and 255. Color and hyperspectral images are images where
each pixel can be considered as a vector, such that each coordinate of the vector
corresponds to the intensity of the pixel at a certain wavelength. In addition,
pixels values on spectral images are most of the time different. Quantization of
images can be seen as a way to remove this excess of variability by reducing
the number of (spectral) vectors and therefore to address the curse of dimen-
sionality [3]. The problem can be addressed using dictionary learning techniques
[2]. In these learning methods, a dictionary composed of k atoms is learned on
a set of vectors. Then each vector is represented by a (low) number of atoms
of the dictionary. Among these methods, VQ[6] is a well known technique that
quantizes a set of vectors, since each vector is represented by just one atom of
the dictionary. We consider in this paper a vector quantization method for hy-
perspectral images, halfway between manifold learning and dictionary learning
methods, since we explore a quantization of the image manifold. First, we review
existing similarity metrics on hyperspectral imaging and consider some proba-
bilistic distance less known on this domain. Finally we quantize hyperspectral
images using the best distances.
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2 Quantization of hyperspectral images

Background on hyperspectral images. Let us consider a hyperspectral im-
age where each pixel value vi is a spectral vector of dimension d ∈ N, such that
vi ∈ R

d. Because of the curse of dimensionality [3], spectral variability is added
to the vectors. First, let us consider a simple case where vi ∈ [0, 1]d and d = 1; in
this case it is easy to calculate that with 100 points, one get an interval between
points of around 10−2. However, if we consider a space of dimension d = 10 and
if one wants the points to be separated by a ball of radius 10−2, we can see that
this time we need 1020 points. Indeed, in the case of hyperspectral images, d is
usually about one or two hundred, which shows how sparse the sampled mani-
fold is (or how empty the whole space is), and how crucial is the question about
similarity between spectra. Moreover one can see a hyperspectral image as a set
of spectral classes. If we consider for instance three classes: “road”, “water”, or
“forest”, then each pixel belongs to one of these three classes. Due to the high
dimensional space, each class has a high variability with respect to the Euclidean
distance, and thus this distance will not be discriminative enough to separate
objects from different classes. A solution could be to reduce the dimension of the
manifold or to find another low-dimensional space to embed data, and then to
use Euclidean distance in this space. Actually, we do not focus here on this kind
of classical approach. We assess the interest of metrics on the original manifold
on the d-dimensional space that are more invariant to spectral variability [1, 11,
14]. Thanks to this kind of similarities we can expect to improve hyperspectral
image quantization.

Spectral/spatial image quantization. Quantization is the process which
allows to approach a signal with large set of values by a signal on a smaller
set. Images are signals on a spatial domain, so their quantization should takes
into account the expected spatial coherence. To achieve this goal, we choose
to use α−connected components representation [20, 22, 17], that produces an
image partition into homogenous spatial classes. Two pixels belongs to the
same α−connected component if there is a path linking these pixels such that
the similarity between successive pixels of this path is lower than α. However,
α−connected components algorithm often produces inadequate image partitions,
since it fails to respect image contours. A solution is to first use an initial par-
tition algorithm that would produce “superpixels” on our image and that must
follows main image contours. Then, the superpixels are connected between then
by their region adjacency graph (RAG). It is a graph where each node is a su-
perpixel, and edges represent the dissimilarity between superpixels. Here edges
are weighted by the dissimilarity between centroids of superpixels. In our case,
the superpixels are obtained by computing the classical watershed on the im-
age. Then the notion of α−connected components can be extended to RAG [17].
Moreover, by comparing nodes and thus regions, our quantization is more robust
to noise. For this purpose on each superpixel SPi the value of the original pixels
is replaced by the value of its centroid Ci. Finally the choice of α is done in order
to have a fixed number of centroids, and thus of different spectra.
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Assessment of image quantization. Our quantization depends on the
RAG and therefore, on the choice of distance. We focus on the potential interest
of probabilistic distances on spectral pixels. In this context, our assessment is
separated into two steps.

Step 1: Evaluation of the probabilistic distances.

We consider that a good probabilistic distance is a dissimilarity measure that
has an invariant behaviour on each spectral class in a high dimension space. Dur-
ing the process of assessment, hyperspectral images with a ground truth spectral
classification are used. Thus the class of each pixel is known. Moreover for each
class the centroid for a dissimilarity measure can be computed: it corresponds
to the vector which minimizes the cumulated distance to the other vectors of
the class. The centroid represents the class. Figure 2 represents two scatter-plots
from a three-classes hyperspectral image. These scatter-plots depict the distance
of each spectrum to the centroids of each class. A good dissimilarity measure
should concentrates the data of each class around its centroid. In this example,
Kullback-Leibler divergence performs better than L2 norm from this viewpoint.
To quantitatively assess such property, the image is classified by calculating the
distance of each image spectrum to the class centroids. Then, the class of the
nearest centroid is given to each spectrum. After having classified the image,
we evaluate the Overall Accuracy (OA), and the Average Accuracy (AA), that
are two measures commonly used in hyperspectral imaging [9]. In addition, the
rank of classification is also computed for each pixel. For example, let us con-
sider that we have a spectrum X and three classes C1, C2, C3, and the spectrum
X belongs to cluster C1. After computing the distance of X to each class cen-
troid, denoted receptively D1, D2, D3, we obtain D1 > D3 > D2. Obviously the
classifier would consider that the class of X is C2. Since in this case D1 is the
highest distance, the classification mistake is very significant. The rank of good
classification is in the present case 3. Hence, the rank of classification (Rank) is
obtained as the mean of rank of good classification over all the pixels, divided
by the number of classes. The more the rank of classification is near to one, the
worst a dissimilarity measure is.

(a) (b)

Fig. 1. Scatter plot of distances of pixels (of Pavia image) of cluster 1 (in blue) to the
centroid of cluster 1 in X, to to the centroid of cluster 2 in Y, to the centroid of cluster
3 in Z. Similarly, in red for cluster 2, and in green for cluster 3. In (a) we use the L2

norm as dissimilarity measure, in (b) we used the Kullback-Leibler divergence.
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Step 2: Evaluation of the quantization results. Quantization is a sim-
plification operation that can destroy some relevant information. This introduces
an error between the quantized signal and the original signal. This error is gener-
ally called quantization noise (or distortion). Let us consider an image f , and its

quantized version f̂ . The distortion is measured as: ‖f − f̂‖2. Thus this distor-
tion is measured by the L2 norm and this point can be problematic for use since
we compare different measures of dissimilarity. To overcome this problem, we
used as measure the SNR that is also used on signal quantization. Nevertheless,
this metric might not be adapted to images since the spatial distortion is not
taken into account. We propose to introduce an additional measure of distor-
tion adapted to structured signals. The pattern spectrum (PS) [4] corresponds
to the probability density function (pdf) of the granulometric decomposition, a
multi-scale morphological image decomposition. We consider in fact the cumu-
lative distribution function of the difference image |f − f̂ |. A good quantization
schema filters out small spatial structures and keeps most of the large spatial
objects of the image |f − f̂ |. A quantized image f̂A is better than a quantized

image f̂B if the cumulative pattern spectrum of image |f − f̂A| stochastically
dominates [8] the one of |f − f̂B|.

3 Probabilistic distances on hyperspectral images

We focus on spectral metrics which model the data uncertainty as resulting from
randomness. Thus we consider each pixel as a random variable with the proba-
bility distribution obtained by normalizing the vector. Given two vectors X =
(x1, . . . , xd) ∈ R

d, and Y = (y1, . . . , yd) ∈ R
d, they are represented respectively

by their probability distribution function (pdf) as Px = ( x1∑
i xi

, . . . , xd∑
i xi

) ∈ R
d

and Py = ( y1∑
i yi

, . . . , yd∑
i yi

) ∈ R
d. One can represent the data by their pdf or by

their cumulative distribution function (cdf), or by their characteristic function.
All these representations of the data and the different possible dissimilarities
involves many ways to compare data.

Lp Minkowski norms. Given a real number p ≥ 1, we can define the Lp

norm on the pdf of vectors (X,Y ) ∈ R
d as follows: Np(X,Y ) = (

∑

i |Xi − Yi|p)
1
p .

Moreover the L∞ norm is defined by:N∞(X,Y ) = ‖X−Y ‖∞ =max (|X1 − Y1| , . . .
, |X2 − Y2|). One has to choose carefully the p−norm to be used. It is possible to
notice that when the value of p increases, the distance gives more weight to the
dimension of high dissimilarity. On the contrary, if one decrease the value of p,
the distance tends to average dissimilarities. The p−norms are particularly used
in hyperspectral imaging, because of their simplicity of use. However, the higher
the dimension of the spectra, the more there is a data concentration effect. Thus
it is impossible to discriminate data when the dimension increases. If we consider
a set of data {Xi ∈ R

d} then:

max
i6=j

(‖Xi −Xj‖p)) /min
i6=j

(‖Xi −Xj‖p)) → 1 when d → ∞
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Spectral Angle Mapper (SAM). Let us consider a spectrum X ∈ R
d of

an hyperspectral image. It can be considered as a set of n random tests, where
n =

∑

i Xi, and each event Xi is independent and provides a binary outcome.
Thus, each image spectrum can be seen as following a multinomial distribution
of parameter Px. It is then possible to define a Fisher-Rao distance between X
and Y , represented by their pdf Px, Py . This notion corresponds to the spherical
distance [15]:

DSpher(X,Y ) = 2 arccos(
∑

√

Px,iPy,i). (1)

It is called the spherical distance since it represents the geodesic distance be-
tween distributions that are embedded on a (d − 1)−unit sphere of equation:
∑d

i=1

√

Px,i

√

Px,i = 1.
A distance classically used on hyperspectral images is the spectral angle

mapper (SAM) [1], which for X,Y is defined between as:

DSAM (X,Y ) = arccos(

∑

XiYi
√
∑

XiXi

√
∑

YiYi

) =
1

2
DSpherical(X

2, Y 2). (2)

This metric is invariant to spectral multiplication sinceDSAM (αX, Y ) =DSAM (X,Y ),
∀α ∈ R

∗.

Hellinger distance. We considered above the geodesic distance between
two vector of the(d − 1)− unit sphere of equation. Indde, one can consider on
the unit sphere the chordal distance too, which is the distance between the points
in the flat embedding space, and happens to be the Hellinger distance [15]:

DHelli(X,Y ) = (1/
√
2)

(

d
∑

i=1

(
√

Px,i −
√

Py,i)
2

)1/2

, (3)

which is commonly used to quantify the similarity between two probability dis-
tributions.

χ2 distance. The χ2 distance is a similarity measure obtained from a statis-
tical test that takes as input two distributions Px, PY . This distance is defined
as

Dχ2(X,Y ) =

d
∑

i=1

(Px,i −mi)
2

mi
(4)

with mi =
Px,i + Py,i

2
, (5)

and measures the level of ”adequacy” of pair Px, PY [10]. More precisely, it
corresponds to the probability that data of Px follows the law Py.

Kullback-Leibler divergence. The Kullback-Leibler divergence [15] is a
distinguishability measure between two distributions Px and Py. Divergence



6 Gianni Franchi and Jesús Angulo

S(Px‖Py) tells us how much the expected lengths of a code change, when the
coding is optimal but made under the assumption that X follows Py . It is defined
as:

S(Px‖Py) =
∑

i

Px,i log
Px,i

Py,i
(6)

However, this Bregmann divergence [24] is not a metric distance since it is not
symmetric. Moreover this dissimilarity is related to Fisher-Rao metric, since if
we consider two distributions Px and Px + dPx, that are close each other, their
relative entropy is given by

S(Px‖Px + dPx) =
∑

i

Px,i log
Px,i

Px,i + dPx,i
≃ (1/2)

∑

i

dPx,idPx,i

Px,i
(7)

≃ DFisher−Rao(Px, Px + dPx). (8)

The use of an asymmetric divergence may be problematic for some applica-
tions. This is why we try to symmetrize the Kullback-Leibler divergence. There
are different ways to do it. The most commonly used in hyperspectral imaging
is the Jeffreys approach [24], which leads to a divergence called in the informa-
tion theory community the Jeffreys-Bregman Divergence, or in the hyperspectral
community the Spectral Information Divergence (SID):

SID(Px‖Py) = S(Px‖Py) + S(Py‖Px). (9)

Rényi divergences. The Shannon entropy is a function that corresponds to
the amount of information contained or send by a source of information. Some-
how, the more the source emits different information, the more the entropy is
large. Let us consider a pdf Px with d possible outputs. Then, Shannon defined
that the amount of information produced by knowing that an event of proba-
bility Px,i took place can be approximate by[15, 18]: I(Px,i) = − log(Px,i). The
Shannon entropy is a mean of amount of information over Px. It checks the
postulate of additivity of information, which states that the information of two
independent events is the sum of each information. However more general mea-
sures can be defined. Rényi [18] proved that to be able to verify the postulate of
additivity of information, it is necessary to have entropy of the form:

H(Px) = g−1

(

d
∑

i=1

Px,ig(I(Px,i))

)

, (10)

with g(x) = cx or g(x) = c2(1−α)x. The first case leads to the Shannon entropy,
whereas the second leads to other functional class called the Rényi entropy, which
is defined by:

Hα(Px) =
1

1− α
log

(

d
∑

i=1

Pα
x,i

)

, (11)
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Thus the Rényi entropy is a more flexible measure of uncertainty, where the
parameter α allows different notions of information. The case α = 1 leads to
the Shannon entropy. Similarly to the Shannon entropy, it is possible to intro-
duce divergence, that are called the Rényi divergence of order α, α > 0 of a
distribution Px from a distribution Py:

Sα(P‖Q) =
1

α− 1
log
∑

i

Pα
x,iP

1−α
y,i . (12)

Parameter α involves a family divergences, where Sα→1 (Px‖Py) = S(Px‖Py).
There are two other special cases: α = 1/2, which is: Sα=1/2(Px‖Py) = −2 log(1−
DHellinger(X,Y )/2); and α = 2 which leads to the quadratic Rényi diver-
gence, that is a function mostly used on finance that check Sα=2(Px‖Py) =
log
(

1 +Dχ2(X,Y )
)

.

Mahalanobis distance. We have considered above that each spectrum fol-
lows a multinomial distribution. It might be possible to consider alternatively
that the spectra follow normal distributions. This model is often used on hy-
perspectral imaging. In our case, we assume that each spectrum X follows a
multivariate normal of mean itself and with a fixed covariance for all the spec-
tra. Hence we have that X ∼ N (X,Σ). It turns out that the Fisher-Rao distance
between X,Y corresponds to the Mahalanobis distance [12, 13] defined as:

DMahal(X,Y ) = (X − Y )TΣ−1(X − Y ). (13)

Endowed with this distance, the hyperspectral space is a submanifold of the
manifold of multivariate normal distributions[13]. Moreover this kind of metric
depends on the estimation of the covariance matrix. We have considered two
ways to estimate the covariance matrix. The first one is the biased empirical
covariance estimator:

Σ =
1

d

d
∑

i=1

(Xi −X)(X i −X)T , (14)

where X = 1
d

∑d
i=1 Xi is the empirical mean. The second one is inspired from

the work [17, 19, 21], where thanks to random projections they succeed to have
a good estimator of the Mahalanobis distance. We will denote respectively the
corresponding distance DMahal1 and DMahal2.

Kolmogorov distance. Spectra X of a hyperspectral image can be repre-
sented by a pdf, but they can also be represented by their cumulative distribution
function (cdf), denoted CX , where Cx,i =

∑i
k=1 Px,k. This function is smoother

and less subject to high noise variation. Then, on can define the Kolmogorov-
Smirnov distance [10] for two spectraX and Y as the maximal difference between
their cumulative distribution functions:

DKolmo = max (|Px,1 − Py,1|, . . . , |Px,2 − Py,2|) . (15)
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This distance happens to be the L∞ norm applied to the cdf’s.

Earth Mover’s distance. Let us consider two spectra X and Y represented
by their respective pdf Px and Py. Their Earth Mover’s Distance [10] can be
defined as

DEMD = min
αi,j∈M





d
∑

i=1

d
∑

j=1

αi,jC(i, j)



 , (16)

where M = {αi,j ≥ 0;
∑d

i=1 αi,j = Py,j ;
∑d

j=1 αi,j == Px,i} and C is the cost
function. Different choices of cost functions have been considered. We adopt here
two different cost functions. The first one can be defined as:

C1(i, j) =
1

d
|i− j|. (17)

In such a case, the Earth Mover’s Distance is given by [16]:

DEMD1 =
1

d
‖Cx − Cy‖1 (18)

One can also use a thresholded version of the cost function [16] to increase the
computation speed:

C2(i, j) =

{

|i− j| if |i− j| ≤ s
s otherwise

(19)

where s is the value of the threshold. We will write this distance DEMD2.

4 Results on hyperspectral images

The question of the evaluation of the metrics is crucial. We first use two images
conventionally used in hyperspectral image processing: i) the Pavia image, which
represents the campus of Pavia university (urban scene), of size 610× 340 pixels
and d = 103 spectral bands, and is composed of 9 classes; ii) the Indian Pines
image, test site in North-western Indiana composed for two thirds of agriculture,
and one-third of forest, of 145 × 145 pixels and d = 224 spectral bands, and is
composed of 16 classes. On theses images, we calculate on Table 1, the evaluation
measures introduced in section 2. We also plotted the cumulative pattern spectra,
on Fig. 2, and example of quantized Indian Pines image on Fig. 3. From this
study we can deduce that Mahalanobis distance may have good results, however
the quality of the results of Mahalanobis distance depends on the estimation of
the covariance matrix. We can also deduce that χ2 distance can have excellent
results, and seems to be quite robust to the curse of dimensionality, using this
distance in dimensionality reduction [7] might improve the extracted feature.
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Fig. 2. Representation of the cumulative Pattern Spectrum of Pavia images for different
similarity measures.

(a) (b) (c) (d) (e)

Fig. 3. (a) False RGB color image (using three spectral bands) of Indian Pines hyper-
spectral image. False RGB color image of the quantized hyperspectral image thanks to
in (b) the norm 2, (c) the SAM, (d) the χ2 distance, (e) the EMD.
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Results on ”Pavia” image

L1 L2 L∞ DSpher DSAM DHelli D
χ2 S Sα=1/2 Sα=2 SID DMahal1 DMahal2 DKolmo DEMD1 DEMD2

OA 0.001 0.001 0.003 0.012 0.056 0.001 0.023 0.51 0.50 0.50 0.012 0.009 0.057 0.006 0.008 0.006

AA 0.001 0.001 0.013 0.085 0.12 0.001 0.11 0.25 0.22 0.22 0.089 0.003 0.22 0.09 0.1 0.08

Rank 0.93 0.93 0.91 0.81 0.62 0.46 0.33 0.21 0.47 0.22 0.36 0.58 0.37 0.90 0.90 0.41

SNR 22.82 22.96 22.89 22.72 14.90 21.92 23.90 21.88 21.97 21.20 21.26 21.4 22.0 22.47

Results on ”Indian Pines” image

L1 L2 L∞ DSpher DSAM DHelli D
χ2 S Sα=1/2 Sα=2 SID DMahal1 DMahal2 DKolmo DEMD1 DEMD2

OA 0.016 0.016 0.011 0.016 0.09 0.016 0.30 0.010 0.010 0.010 0.010 0.019 0.068 0.0162 0.029 0.0162

AA 0.012 0.0022 0.014 0.016 0.13 0.016 0.24 0.09 0.09 0.09 0.09 0.016 0.13 0.0019 0.069 0.016

Rank 0.44 0.45 0.45 0.45 0.22 0.46 0.18 0.46 0.44 0.45 0.46 0.39 0.34 0.45 0.45 0.42

SNR 12.86 12.74 12.73 12.73 5.59 12.69 14.01 12.88 12.81 12.86 12.73 12.74 11.01 12.55

Table 1. Comparison of probabilistic distances on hyperspectral images.

5 Conclusion

We have done a systematic study to compare and assess different probabilistic distances
in the context of hyperspectral image quantization. Our results are consistent to those
previously published [1, 11, 14] for some of the distances. We infer from our study the
importance of using appropriate distances to address the curse of dimensionality in
hyperspectral imaging. A distance that seems to be rather efficient is the χ2 distance.
However, each dissimilarity measure has its disadvantages and benefits. A potentially
interesting approach would be to take a dissimilarity measure as a linear combination of
dissimilarity measures, taking advantage of the discriminatory power of each of them.
This kind of approach is link with the multiple kernel learning [23]. For the particular
problem of image quantization, which involves computation of centroids, advanced
methods to compute centroid from divergences [5] can improve the results.
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